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Abstract

In the recent publication [1] a fast prediction algorithm for a single recurrent network (RN) was
suggested. In this manuscript we generalize this approach to a chain of RNs and show that it can be
implemented in natural neural systems. When the network is used recursively to predict sequence of values
the proposed algorithm does not require to store the original input sequence. It increases robustness of the
new approach compared to the standard moving/expanding window predictive procedure. We consider
requirements on trained networks that allow to implement the proposed algorithm and discuss them in
the neuroscience context.

1 Introduction

Recurrent networks (RNs) due to their ability to process sequences of data are used in many fields of sci-
ence, engineering and humanities, including speech, handwriting and human action recognition, automatic
translation, robot control as a tools of time series prediction, text and image generation and more complex
problems in neurolinguistic programming. There are several basic RN architectures of different complexity
and multiple variants of these types were discussed recently. Multitude of recurrent network versions allows
flexible combinations of different RNs in a single complex network designed for a specific task.

After network is trained one obtains a predictive tool that should be applied properly to perform the
desired task, i.e., one has to have a reliable predictive algorithm to be used with the trained network. The
standard ”moving window” (MW) algorithm has an input of an ordered sequence of the elements of similar
structure, transforms each input element into a network state and then send the last state into a predictor
that generates a new element of the same structure as input ones. Then a new input sequence is formed by
addition of this predicted element to original input sequence (with its first term dropped), so that the input
length remains constant and the prediction round repeats several times to generate more elements.

The author of this manuscript recently suggested in [1] a novel fast predictive algorithm for a system made
of a single recurrent network and a predictor. This approach does not require to store a part of the initial
input in a short term memory for the second and subsequent prediction rounds. Instead the network after the
first prediction round uses its own dynamics to extrapolate the input. It was shown that in the neuroscience
context this memoryless (ML) algorithm is more robust and provides a significant speed up compared to MW
approach. The same time for an input of large enough length the extrapolations by both algorithms coincide.

The number of neuron connections (parameters) of RN scales as a square of neuron number. To increase
network robustness it might be useful to replace a single RN with large number of neurons by a chain of a
few smaller RNs. In this manuscript we generalize ML algorithm for a case of a neural network made of a
RN chain and a predictor. We show that such general ML algorithm is indeed faster than the standard one
and it can be implemented in natural neural systems. It appears also that ML algorithm can be successfully
applied for the well trained network (i.e., the network for which the deviation of the predicted value from the
ground truth value is negligibly small) that has high importance for neuroscience.
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2 Signal transformation in a chain of recurrent networks

Consider a general predictive network consisting of an encoder, a chain of k recurrent networks (RNs), a
predictor and a decoder (Fig. 1a). The signal is represented by a finite length (m) sequence E of objects
ei, 1 ≤ i ≤ m of similar structure (words, symbols, images, musical notes etc.)

a

E RN1 RN2 RN3 .... RNk P D

b

X RN1 RN2 RN3 .... RNk P xm+1

S1 S2 skm

Figure 1: (a) The architecture of a general predictive network consisting of an encoder (E), a chain of
recurrent networks (RNr), a predictor (P) and a decoder (D). The prediction itself is performed in the
reduced network shown in (b). The input sequence X of the length m is fed into a chain of RNs leading to
generation of the corresponding states sequences Sr (each one being an input sequence for the subsequent
RN). The final state of the last k-th RN sk,m is fed into the predictor P which generates a predicted vector
x̄m+1 of the length n0 equal to the dimension of input vectors in X.

Each input object ei is transformed by the encoder into a vector xi = s0,i of the length n0 thus forming
an input sequence X. The decoder transforms a n0-dimensional vector back into an object em+1 having the
same structure as the input elements ei, i.e., predicts a new element based on the sequence E.

The heart of the predictive network is a chain between the encoder and the decoder (Fig. 1b). The
input sequence X of the length m is fed into a chain of RNs leading to generation of the corresponding
states sequences Sr (each one being an input sequence for the subsequent RN). The elements of Sr are nr
dimensional vectors sr,i representing an inner state of r-th RN (made of nr neurons). Before the first element
x1 is fed into the network the initial state sr,0 of each RN is assumed to be a zero vector of the corresponding
length nr. The transformation of the state vector of the r-th RN is given by

sr,i = Fr(sr−1,i, sr,i−1), (1)

which describes a simple rule – the current inner state of the RN depends on the previous inner state and
the current input signal. This rule corresponds to an assumption that the neural network does not store its
state but just updates it with respect to the submitted input signal and its previous state. The final state
sk,m of the last k-th RN is fed into the predictor P that generates a vector

x̄m+1 = p(sk,m) (2)

having the length n0 equal to the dimension of input vectors in X. Further we will consider only the
architecture shown in Fig. 1b as it completely determines the predictive properties of the network shown in
Fig. 1a.

For the network training one feeds it with an input sequences Xk to generate a predictions x̄k
m+1 which

compared to the actual values xk
m+1. The networks parameters are fitted to minimize the mean square

difference after N training rounds

(1/N)

N∑
k=1

(x̄k
m+1 − xk

m+1)2.

3 Predictive algorithms for trained network

Once the network is trained it can be used to generate several consecutive values xm+j , 1 ≤ j ≤ p. Here and
further we drop the bar over the predicted values notation.
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3.1 Moving/expanding window algorithm

When the network is trained on the sequences of the fixed length the standard predictive algorithm uses a
”moving window” (MW) recursion. One starts with a sequence X1 of length m supplied as an input to the
network; it leads to generation of the state sequences Sj

r and the last element s1km of the last state array is
sent to the predictor to compute a prediction of the next point xm+1 = p(s1km). The next input sequence
X2 is produced by dropping the first point of X1 and adding the predicted point xm+1 to the result. This
sequence is used as a new input leading to generation of xm+2 and a next input X3 is formed. Thus at
j-th predictive step the input Xj to RNN is formed by adding to the original input X1 all previously j − 1
predicted points and shifting a ”window” by j− 1 steps forward (Fig. 2). In the end of each predictive round
the initial state vectors sjr,0 of each RN either retain their values from the previous round (i.e., sjr,0 = sj−1

r,m )

or set to zero (sjr,0 = 0). The result of prediction is not affected significantly by either choice.

Xj RN1 RN2 RN3 .... RNk P xm+j Xj+1
S1
j S2

j skm
j

Figure 2: The moving window algorithm prediction procedure. The input sequence Xj of the length m is
fed into a chain of RNs leading to generation of the corresponding states sequences Sj

r (each one being an
input sequence for the subsequent RN). The final state of the last k-th RN sjkm is fed into the predictor P
which generates a predicted vector xm+j used to update the input sequence Xj+1 for the next prediction
round.

The recursive procedure is repeated p times to produce a sequence of p points xm+j , (1 ≤ j ≤ p) approx-
imating the sequence {xi} for m + 1 ≤ i ≤ m + p. The total number Nk

MW of transformations (1) and (2)
required to produce p points is equal to Nk

MW = (mk + 1)p.
For network training with sequences of the variable length (not larger than M) the MW predictive algo-

rithm can be modified into the ”expanding window” (EW) version. After each predictive round the newly
generated point is added to the input sequence, so that after the j-th prediction round the length of the
input sequence Xj is m + j, where m denotes the size of the initial input sequence and m + j ≤ M . The
main reason of EW algorithm application is that a gradual increase of the input length usually leads to
better prediction quality. The total number Nk

EW of transformations required to predict p points is equal to
Nk

EW = Nk
MW + kp(p− 1)/2. We observe that EW method requires more memory to store the input values

while MW needs a fixed memory size, so that further we focus on MW approach as more economical one.
In the neuroscience context an implementation of both ”window” prediction algorithms in a natural brain

environment requires satisfaction of several conditions. First, either all (for the EW) or a part (for MW)
elements of the initial input X1 should be stored and reused for the second and subsequent prediction rounds.
This means that some sort of short term memory should be employed. The neuron activation corresponding
to these values should be maintained constant for the duration of p predictive rounds. Second, the appearance
of these values in the input sequenceXj should follow the original order ofX1. The author of this manuscript
showed [1] that when the first condition is not met the quality of prediction goes down while if the second
requirement fails the accurate prediction becomes impossible. These considerations encouraged the author
to look for an alternative predictive algorithm that does not require the input sequence storage and thus
increases predictive robustness.

3.2 Memoryless algorithm for single RN network

Consider the simplest predictive network made of a single RN (k = 1) and a predictor. In this case the
transformations (1) reduces to

si = F (xi, si−1), (3)

where xi denotes an element of the input sequence. The MW prediction scheme is shown in Fig. 3a; the top
panel shows the first predictive round while the bottom panel corresponds to one of the subsequent rounds.
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Figure 3: The predictive algorithms in the network consisting of a single recurrent network RN and a predictor
P. (a) The MW algorithm first (top panel) and a subsequent j-th (j > 1) predictive round (bottom panel).
The input sequence X1 of the length m is fed into the RN with the zero initial state producing the state
sequence Sj and its final state s1m is fed into the predictor P which generates a predicted vector xm+1 used
for the update of the input sequence X2. This procedure is repeated at each subsequent prediction round.
(b) The memoryless (ML) algorithm first (top panel) and a subsequent j-th (j > 1) predictive round (bottom
panel). The first round is similar to the one in the MW algorithm (top panel in (a)) All subsequent rounds
use the transformation (3) of the single input value xm+j−1 (it is the prediction made in the previous round)
with the initial RN state sj−1

m (it is the final RN state in the previous round). The new value sjm is used as
the RN state in the next round.

Consider the dynamics of the RN state vectors sji and sj+1
i in two adjacent prediction rounds. First

note that the MW algorithm implies the following simple relation xj
i = xj+1

i−1 between the elements of input

sequences Xj and Xj+1. It is reasonable to compare the states sji+1 and sj+1
i and introduce a shifted

difference
δji = sji+1 − s

j+1
i . (4)

It was shown in [1] that the norm δji of the shifted difference decays exponentially with the transformation

step i (Fig. 4) and for i = m − 1 � 1 we find δjm−1 = |sjm − s
j+1
m−1| � 1. This means that the state vectors

0 10 20 30 40 50 60 70

-8

-6

-4

-2

0

i

ln
δ
i2

Figure 4: The dynamics δ2i for the individual basic (red), gated (black) and LSTM (blue) recurrent networks
with n = 20 neurons.
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sjm and sj+1
m−1 are nearly equal so that

sj+1
m−1 = sjm + εj , εj � 1. (5)

This relation together with (2,3) leads to

sj+1
m = F (xj+1

m , sj+1
m−1) = F (xm+j , s

j
m) = F (p(sjm), sjm). (6)

This transformation allows to compute recursively the sequence of the final RN states sjm for 2 ≤ j ≤ p by
feeding the predicted value xm+j−1 from the previous round into the RN with the initial state sj−1

m inherited
from the same previous round. Parallel to this computation of RN states one also fnds all the predicted values
xm+j for 1 ≤ j ≤ p.

The above result paves way to a memoryless (ML) predictive algorithm replacing both MW and EW
approaches. The initial predictive round is the same as in MW/EW algorithm (the top panel in Fig. 3b).
The remaining prediction rounds use the relation (6) illustrated in the bottom panel in Fig. 3b. An important
feature of this algorithm that it uses the initial sequence X1 only once and further it relies on the trained
network own dynamics determined by the last expression in (6). The total number of transformations is
N1

ML = m + 2p − 1 compared to N1
MW = (m + 1)p and thus this approach is faster and more reliable than

the standard MW prediction. The speed gain reads

γ1 =
N1

MW

N1
ML

=
(m+ 1)p

m+ 2p− 1
. (7)

Moreover, its implementation in a natural neuronal network is simple – as soon as the first prediction value
xm+1 is obtained it is immediately fed back into the network which internal state s1m is inherited from the
first round. The result of transformation (6) is an updated internal state s2m that allows to predict xm+2,
and then this process repeats.

The comparison of the predictive quality of two approaches performed in [1] showed that for relatively
small m ∼ 20−40 the ML method prediction slightly deviates from the MW extrapolation, but for m > 60−70
both predictions coincide. As the number p of predicted points is usually less or approximately equal to the
length m of the initial input sequence the speed gain estimates is in the range from γ1 ∼ p for p � m to
γ1 ∼ m/3 for p ∼ m.

4 ML algorithm for RN chain

The numerical experiments in [1] show that for simple trajectories like noisy sine or triangle wave a RN with
n = 10− 20 neurons using the ML algorithm demonstrates quite high predictive quality. For more complex
cases one needs a RN with much larger number n of neurons but the number of trainable parameters scales
as n2 so that the RN robustness decreases. From this perspective it might be useful to use instead a chain of
k > 1 RN with nr neurons in r-th RN where

∑k
r=1 nr = n.

It is instructive to design a generalization of the ML approach to the case of RN chain. The necessary
condition of such generalization is a validity of an assumption that for each r-th RN in the chain the shifted
difference norm δjri decays exponentially with the transformation step i. To test it we consider a chain of
k = 3 RNs of different types – the first RN is the basic recurrent network with n1 = 10, the next is the LSTM
network [2] with n2 = 15 and the last one is the gated recurrent network [3] with n3 = 8.

The chain is trained on the set of one-dimensional (n0 = 1) values representing a sine wave sin(2πt)+aξ(t)
with added white noise component with amplitude a = 0.15. The time step ∆t between the adjacent time
points is selected equal to ∆t = 0.01. The training set consists of 12000 segments of variable length m in the
range 5 ≤ m ≤ 150. The RNNs are trained using the Adam algorithm for 50 epochs on 80% of the complete
training set with 20% validation set.

First we consider the shifted difference dynamics for the MW algorithm assuming that at the beginning
of each prediction round the initial RN state is refreshed by setting it to zero sjr0 = 0. Fig. 5a shows that

the state vectors sjri for j = 2 and r = 1, 2, 3 decay exponentially. The largest decay rate is observed in the
first RN (r = 1) and the norm δ21i levels off for large i > 50. Nevertheless, for two other RNs the decay is
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Figure 5: The dynamics of the shifted difference norm δ2ri (shown in logarithmic scale) in the r-th RN of the
chain for r = 1 (black), r = 2 (blue), r = 3 (red) and m = 75. (a) The MW algorithm with renewal of the
state vectors sjr0 before start of the prediction round. (b) The MW algorithm with inheritance of the state

vectors sjr0 = sj−1
rm between the rounds.

also significant and the norm δ2rm is negligibly small compared to the characteristic norm of the state vector
itself δ2r,m−1 � s2rm, s

3
r,m−1 ∼ 1.

Similar behavior we observed in case when at the prediction round j the initial state sjr0 of the r-th RN is

inherited from the previous round, namely, sjr0 = sj−1
rm . The results are shown in Fig. 5b. Assuming that the

results presented in Fig. 5 remain valid for all prediction rounds we start development of the ML algorithm
generalization for RN chains.

Note that for the r-th RN the dynamics of its state governed by (1) which gives for i = m at the j-th
prediction round (j > 1)

sjr,m = Fr(sjr−1,m, s
j
r,m−1) = Fr(sjr−1,m, s

j−1
r,m ). (8)

This transformation relates the final m-th states sjr,m, s
j−1
r,m of the r-th RN at two adjacent predictive rounds

and the final m-th state sjr−1,m of the preceding (r − 1)-th RN at the current j-th round. The relation for
first (r = 1) RN reads

sj1,m = F1(sj0,m, s
j
1,m−1) = F1(xm+j−1, s

j−1
1,m) = F1(p(sj−1

k,m), sj−1
1,m). (9)

These two relations completely determine the dynamics of the final states sjr,m for 1 ≤ r ≤ k and 2 ≤ j ≤ p.
The computation of the states s1r,m and the first predicted value xm+1 is performed using once the standard
MW algorithm. The corresponding schematics is depicted in Fig. 6. The second prediction round starts with
feeding the first predicted value xm+1 = s20,m into the first RN being in the state s11m inherited from the first
round. The result of the transformation (9) is a new state s21m of the first RN which in its turn represents
the input fed into the second RN. At this moment the state of the second RN is s12m and the transformation
(8) produces a new state s22m. This procedure is repeated for all remaining RNs in the chain until the last
k-th RN is reached. The result of (8) application is s2km that is used by the predictor P to generate a new
prediction xm+2 which serves as an input to the next round of prediction (bottom panel in Fig. 6). It is
reasonable to assume that an implementation of the memoryless algorithm is innate in brain environment.

The total number of transformations Nk
ML = mk + 1 + (k + 1)(p − 1) = k(m + p − 1) + p compared to

Nk
MW = (mk + 1)p leads to the speed gain

γk =
Nk

MW

Nk
ML

=
(mk + 1)p

k(m+ p− 1) + p
. (10)

To address the problem of prediction quality of ML approach compared to MW algorithm we perform
computation of specified number p of the predicted values for the different length m of the input sequence
using both algorithms.
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Figure 6: The predictive ML algorithm in the chain of RNr followed by the predictor P for the first (top
panel) and subsequent (bottom panel) predictive rounds. The first round is similar to the one in the MW
algorithm while all subsequent rounds use the transformations (8, 9). The new states sjrm are used as the
corresponding RN states in the next round.
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Figure 7: Comparison of the predictions of p = 75 elements by the moving window (blue) and the memoryless
(black) algorithms for the sine wave with noise amplitude a = 0.15 input sequence (green) of length (a) m = 25
and (b) m = 75; in (b) the curves coincide.

The results presented in Fig. 7 show that the increase in m makes ML prediction to coincide with that of
by MW algorithm. It can be explained by inspection of the shifted difference behavior (see Fig. 5) – for large
m the value of δjrm is negligibly small that allows the approximate transformations in (8,9) more precisely
reproduce the prediction dynamics determined by the MW approach.

Thus it is reasonable to consider cases where the number p of predicted points is usually less or approx-
imately equal to the length m of the initial input sequence. Then the speed gain estimates is in the range
from γk ∼ p for p � m to γk ∼ mk/(2k + 1) for p ∼ m. For the less frequent case p � m the speed gain is
γk ∼ mk/(k + 1).

It is instructive to consider the RN chains with increased number of recurrent modules. We tested the
networks with k = 5 and k = 7 and found that the dynamics of the shifted difference norm demonstrates
a lower rate of exponential decay (Fig. 8) for the larger number of RNs. The same time ML algorithm for
k = 5, 7 continues to produce predicted trajectories of the same quality as MW approach does (similar to
those shown in Fig. 7).
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Figure 8: The dynamics of the shifted difference norm δ2ri in the r-th RN of the chain with m = 75 and (a)
k = 5 and (b) k = 7. The black curve corresponds to r = 1.

5 ML algorithm for well trained network

The numerical experiments discussed in the previous section show that the high quality of prediction makes
possible the existence of the ML algorithm even when the the shifted difference decay is not strongly pro-
nounced in some of (or all) RN modules. To simplify the presentation of the results we use in this section a
different notation for the main transformation (1), namely

sr,i = Fr(sr−1,i, sr,i−1) ≡ Fr[sr,i−1](sr−1,i). (11)

The relations (8) and (9) take form

sj+1
1,m = F1[sj1,m](p(sjk,m)). sj+1

r,m = Fr[sjr,m](sj+1
r−1,m). (12)

First consider a network with a single RN module and a predictor discussed in Section 3.2. Note that the
condition (5) implies (6) for the MW algorithm independent of the prediction quality. In other words, the
network can be trained badly (for example, due to a small number of neurons n) but if (5) holds the network
prediction will be governed by (6).

On the other hand, in case when the network is trained well (i.e., the norm of the difference |x̄m+1−xm+1|
between the predicted value and the ground truth is negligible compared to the characteristic range A ∼ 1
of the sequence X) the application of EW algorithm leads to this transform naturally. Consider a recurrent
network of general type which state dynamics is governed by (3) and use it for prediction of the value
x̄m+j+1 based on the input sequence Xm+j = {xi}, 1 ≤ i ≤ m + j, consisting of m + j elements xi. The
prediction x̄m+j+1 = p(sm+j) is performed by applying the transformation p to the final RN state sm+j .
Use the same RN to predict the next point x̄m+j+2 using the expanded input sequence of m+ j+ 1 elements
Xm+j+1 = {xi}, 1 ≤ i ≤ m + j + 1 and find the final network state sm+j+1 = F [sm](xm+j+1). Assuming
that the prediction quality of the RN is good enough replace in the above relation xm+j+1 by x̄m+j+1 as
these two values are close to each other and obtain

sm+j+1 ≈ F [sm+j ](x̄m+j+1) = F [sm+j ](p(sm+j)) ≡ F (p(sm+j), sm+j),

which is equivalent to (6). Note that in this case the condition εj � 1 in (5) is not required.
Turn to the predictive network made of k RNs and a predictor considered in details in Section 4. For the

input sequence Xm+j = {xi}, 1 ≤ i ≤ m+ j, we predict x̄m+j+1 = p(sk,m+j) which by assumption is close
to last element xm+j+1 of the expanded input sequence of m+ j+ 1 elements Xm = {xi}, 1 ≤ i ≤ m+ j+ 1.
Use Xm+j+1 and find for r = 1

s1,m+j+1 = F1[s1,m+j ](xm+j+1). (13)

8



Use (11) to write for r = 2:

s2,m+j+1 = F2[s2,m+j ](s1,m+j+1) = F2[s2,m+j ] ◦ F1[s1,m+j ](xm+j+1), (14)

where ◦ denotes function composition: R ◦ P (x) ≡ R(P (x)). Continue for r > 2 to obtain

s3,m+j+1 = F3[s3,m+j ](s2,m+j+1) = F3[s3,m+j ] ◦ F2[s2,m+j ] ◦ F1[s1,m+j ](xm+j+1),

. . .

sk,m+j+1 = Fk[sk,m+j ](sk−1,m+j+1) = Fk[sk,m+j ] ◦ . . . ◦ F2[s2,m+j ] ◦ F1[s1,m+j ](xm+j+1). (15)

Now in the last equation in (15) replace xm+j+1 by x̄m+j+1 = p(sk,m+j) and find

sk,m+j+1 = Fk[sk,m+j ] ◦ . . . ◦ F2[s2,m+j ] ◦ F1[s1,m+j ](p(sk,m+j)). (16)

It is easy to see that (16) is equivalent to the relations (12), this equivalence implies that the well trained
network represented by a chain of RNs can be used for prediction by memoryless algorithm.

6 Discussion

In this manuscript we consider a general type predictive network that transforms an input sequence made
of elements with similar structure to predicts a single element of the same type. The input sequence flows
first into an encoder then to a chain of the recurrent networks (RNs) to a predictor and finally to a decoder.
We focus on the network central part (the RN chain and the predictor) responsible for the actual prediction
procedure. When one needs to generate several predicted values there exists the traditional moving window
(MW) predictive algorithm well fitted for usage in the artificial neural networks. However its implementation
in the natural neural network existing in brain can fail as some requirement are very difficult to satisfy and
the prediction loses both robustness and reliability. In [1] for the simplest predictive network we proposed
another faster and more stable algorithm that that does not require memorization of the input sequence (as
a whole or a part of it) and we call it memoryless (ML) algorithm. We show that the ML approach can be
generalized to the case of the RN chain (compared of a single RN in [1]).

The essence of the approach is that it requires the input sequence only once to predict the first value and to
update the state of each RN in the chain. Then the original input can be forgotten and consecutive prediction
rounds are based on the own network dynamics. The input sequence is replaced by the latest predicted value
which is transformed in the network to update the RN states and generate the next prediction.

We show that ML algorithm produces results that are very close to those generated by MW approach.
The increase of the input sequence length makes ML results to coincide with MW ones but gives the speed
up proportional to the number of predicted points. We also discuss a possibility of the ML algorithm
implementation in brain networks and show that it is quite suitable to this purpose.

Based on the MW algorithm analysis we establish a set of conditions for ML application irrespective of
the predictve quality of the network that demand the shifted difference norms δjr,i to decay exponentially. It
appears that when the network is well trained the conditions on the difference norms can be dropped. It is
quite important result as in the natural neural systems the analysis of such behavior is very difficult if not just
impossible. On the other hand the evolution of natural neuron networks should select only those networks
that have highest predictive ability which in its turn successfully implement the robust and fast memoryless
algorithm. This observation makes the proposed ML algorithm a critical element of a self-consistent scheme
based on neural networks of high performance – it allows to achieve fast and extremely robust predictions
with these networks.

The number of transformation layers in a chain is an important factor determining both complexity and
prognostic ability of a predictive network. For example, the GPT (Transformer) network that uses more
complex (compared to (3)) attention signal transformation [4] demonstrates an increasing ability to solve
successfully complex language-based tasks when the number of elements in the chain grows from 12 to 96
with parallel increase of total number of neurons in individual attention block from 768 to 12288 [5]. In brains
with small total number of neurons the number k of RNs in the chain might be limited and it can be ascribed
to a restriction of the total number of neurons assigned for a specific networks. It is instructive to know
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how increase in the RN number affects possibility of successful implementation of ML algorithm especially in
case when the condition of the exponential decay of the shifted difference norm δjr,i fails. The answer to this
question requires to train RN chains with increasing k and test whether the shifted difference exponential
decay is preserved. We tested the chains of k = 3, 5, 7 RNs and found that the decay rate decreases with
increase of k. It is reasonable to extend such analysis to much larger number (several dozens) of RN modules
in the chain.
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