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Abstract

Neural networks mapping sequences to sequences (seq2seq) lead to significant progress in machine
translation and speech recognition. Their traditional architecture includes two recurrent networks (RNs)
followed by a linear predictor. In this manuscript we perform analysis of a corresponding algorithm and
show that the parameters of the RNs of the well trained predictive network are not independent of each
other. Their dependence can be used to significantly improve the network effectiveness. The traditional
seq2seq algorithms require short term memory of a size proportional to the predicted sequence length.
This requirement is quite difficult to implement in a neuroscience context. We present a novel memoryless
algorithm for seq2seq predictive networks and compare it to the traditional one in the context of time
series prediction. We show that the new algorithm is more robust and makes predictions with higher
accuracy than the traditional one.

1 Introduction

The majority of predictive networks based of the recurrent networks (RNs) are designed to use a fixed or
variable length m input sequence to produce a single predicted element (all the input and an output element
have the same structure). Such a system can be called m-to-1 predictive network. It includes a chain of RNs
(this chain can degenerate into a single RN) followed by a predictor that converts a last inner state sm of
the last RN of the chain into the predicted element. In order to predict a sequence of elements one has to
employ special algorithms that use the trained network recursively by appending already predicted terms to
the input sequence. In an ”expanding window” (EW) algorithm the length of the input sequence increases so
that the network should be trained on the inputs of variable length. To employ the input of fixed length one
uses a ”moving window” (MW) approach in which after each prediction round the input sequence is modified
by appending the predicted element and dropping the first element of the current input. The recursive
application of the m-to-1 network for prediction of the element sequence requires an access to a short term
memory to store the input sequence and this condition might be difficult to satisfy in neuroscience context.
To resolve this problem the author recently suggested a memoryless (ML) algorithm that was successfully
applied for time series prediction [2, 3].

The sequence prediction design can be considered from a different perspective – to construct a network
that takes an input sequence and produces directly an ordered sequence of k predicted elements using sequence
to sequence (seq2seq) algorithm. This approach can also be called m-to-k extension of the m-to-1 networks
discussed above. Such seq2seq networks are considered to be an ideal tool for machine translation and speech
recognition where both the input and output sequence length is not fixed. A traditional architecture of
seq2seq predictive networks has two RNs and a predictor [1]. The first RN maps the whole input sequence
of the length m into a single inner state vector sm, this vector is repeatedly (k times) fed into the second
RN and each its output σi is used by the predictor to generate the output sequence. In this approach the
same output σi should be also retained as current inner state of the second RN to be updated at the next
input of the vector sm. This means that one has to maintain several copies of the vector sm as well as to
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reserve memory for the inner states σi of the second RN. Again it is not clear whether these conditions can
be satisfied in the neuroscience context.

In this manuscript the author first considers the traditional seq2seq algorithm with two RNs and a predic-
tor. It is shown that if the predictive network employing such an algorithm is well trained (i.e., the deviation
of the predicted value sequence from the ground truth one is negligibly small) there exists a nontrivial func-
tional equation relating the parameters of both RNs and the predictor. In other words, knowledge of the
parameters of the first RN and the predictor determines the parameters of the second RN. This relation can
be used to improve the prediction quality of the whole network.

The author also shows that there exists a natural extension of the ML approach reported in [2] that
allows design of a seq2seq ML algorithm. The numerical simulations show that this algorithm is robust and
its predictive quality is not worse and in some cases is even better than demonstrated by the traditional one.
The same time it has a clear advantage from the point of view of its application in the natural neural systems.

2 Traditional seq2seq RNN

The traditional seq2seq recurrent network architecture is actually comprised of two independent RNs and the
linear predictor. The input sequence X = {xi}, 1 ≤ i ≤ m, of d-dimensional elements xi is fed into the first
RN made of n1 neurons that generates the corresponding states sequence S = {si}, 1 ≤ i ≤ m. The elements
of S are n1-dimensional vectors si representing inner states of RN computed using a recurrent relation

si = F1(xi, si−1), s0 = 0, (1)

which describes a simple rule – the current inner state si of the RN depends on the previous inner state si−1

and the current input signal xi. This rule corresponds to an assumption that the neural network does not
store its state but just updates it with respect to the submitted input signal and its previous state. The final
state sm is replicated k times producing the input sequence Y = {yi}, yi = sm, 1 ≤ i ≤ k that is fed into
the second RN which n2-dimensional inner states σi are determined by the relation

σi = F2(yi,σi−1) = F2(sm,σi−1), σ0 = 0. (2)

All inner states σi are linearly transformed by the predictor P to produce

x̄m+i = P (σi), 1 ≤ i ≤ k, (3)

a sequence of k predicted d-dimensional values x̄m+i approximating the ground truth ones x̄m+i ≈ xm+i.
We assume that the predictive network is well trained, i.e., the deviations between x̄m+i and xm+i can be
neglected. This m-to-k network is a generalization of m-to-1 predictive networks that employs only a single
recurrent network F1 and the predictor P. The described algorithm requires memory sufficient to hold k states
σi in proper order to be transformed into the predicted sequence of x̄m+i.

3 Dependence of the recurrent networks

Consider first few prediction rounds of the expanding window algorithm. In what follows the round number
j is denoted as the superscript of the corresponding quantity.

Round 1. The input sequence X1 = {xi}, 1 ≤ i ≤ m. The first RN state sequence S1 = {si}, 1 ≤ i ≤ m
produced by si = F1(xi, si−1). The second RN inner states are computed by σ1

i = F2(sm,σ
1
i−1) and used

further to generate
x̄1
m+i = P (σ1

i ), 1 ≤ i ≤ k, (4)

Round 2. The input sequence X2 is produced by appending the first predicted element x̄1
m+1 ≈ xm+1

to the sequence X1. Assuming that the added element x̄1
m+1 in X2 can be replaced by the ground truth

value xm+1 we have X2 = {xi}, 1 ≤ i ≤ m + 1. The last element sm+1 of the first RN state sequence
S2 = {si}, 1 ≤ i ≤ m + 1 is replicated and used as input to the second RN σ2

i = F2(sm+1,σ
2
i−1) and used

further to generate
x̄2
m+1+i = P (σ2

i ), 1 ≤ i ≤ k, (5)
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Round 3. The input sequence X3 is produced by appending the second predicted element x̄2
m+2 ≈ xm+2

to the sequence X2 and we have X3 = {xi}, 1 ≤ i ≤ m + 2. The last element sm+2 of the first RN state
sequence S3 = {si}, 1 ≤ i ≤ m + 2 is replicated and used as input to the second RN σ3

i = F2(sm+2,σ
3
i−1)

and used further to generate
x̄2
m+2+i = P (σ3

i ), 1 ≤ i ≤ k, (6)

Round k. The input sequence Xk is produced by appending the (k − 1)-th predicted element x̄2
m+k−1 ≈

xm+k−1 to the sequence Xk−1 and we have Xk = {xi}, 1 ≤ i ≤ m + k − 1. The last element sm+k−1 of
the first RN state sequence Sk = {si}, 1 ≤ i ≤ m+ k − 1 is replicated and used as input to the second RN
σk
i = F2(sm+k−1,σ

k
i−1) and used further to generate

x̄k
m+k−1+i = P (σk

i ). 1 ≤ i ≤ k, (7)

From (4) and (5) it follows that the element x̄m+2 predicted in both the first (j = 1) and the second
(j = 2) prediction rounds. Compare the values x̄j

m+2 for j = 1, 2. From (4) we obtain x̄1
m+2 = P (σ1

2), where
σ1
2 = F2(sm,σ

1
1), and σ1

1 = F2(sm,0), so that

x̄1
m+2 = P (F2(sm,F2(sm,0))). (8)

On the other hand (5) leads to x̄2
m+2 = P (σ2

1), where σ2
1 = F2(sm+1,0), and we obtain

x̄2
m+2 = P (F2(sm+1,0)). (9)

Using
sm+1 = F1(x̄1

m+1, sm) = F1(P (σ1
m+1), sm) = F1(P (F2(sm,0)), sm).

in the above relation we arrive at

x̄2
m+2 = P (F2(F1(P (F2(sm,0)), sm),0)). (10)

For the well trained predictive network the values x̄j
m+2 with j = 1 and j = 2 should be very close to

each other and we assume them to be equal. As the predictor P performs in both cases the same linear
transformation we conclude that σ1

2 = σ2
1 and we arrive at

F2(sm,F2(sm,0)) = F2(F1(P (F2(sm,0)), sm),0). (11)

Repeating the same steps for a pair of x̄j
m+3 for j = 2 and j = 3 we find similar to (11)

F2(sm+1,F2(sm+1,0)) = F2(F1(P (F2(sm+1,0)), sm+1),0). (12)

By induction the following relation holds

F2(si,F2(si,0)) = F2(F1(P (F2(si,0)), si),0), m ≤ i ≤ m+ k − 1.

As the input sequence generating the inner values si can be selected from a large number of samples we
conclude that the above relation must also be valid for every hidden vector s corresponding to any input
value x that belongs to sequences used for network training

F2(s,F2(s,0)) = F2(F1(P (F2(s,0)), s),0). (13)

This implies that for the well trained seq2seq predictive network there exists a set of nontrivial relations
(13). Given the function F1 determining the first RN and the linear transformation P for the predictor the
relations (13) restrict and actually define the function F2. In other words, the RNs are not independent –
the functional equation (13) represents a condition on parameters of the ideal predictive network and can
be viewed as a tool for network improvement. It can be done as follows – first the network is trained using
standard backpropagation algorithm fixing the parameters of all three components of the network. Then the
parameters of any two of the three components (preferentially, the predictor and the first RN generating s
values) are fixed and the parameters of the remaining RN are tuned to satisfy the relation (13) as good as
possible.
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4 Memoryless algorithm

The traditional seq2seq network architecture and the corresponding algorithm lead to a specific memory
requirements that can be easily implemented in silico but in the author opinion is quite difficult to satisfy in
natural neural networks.

First, one has to produce k exact copies of sm and feed them one by one into the second RN. It can be
done if existence time of the inner state sm is equal or larger than an interval required to process copies of
this state k times through the second RN. Second, each inner state σi of the second RN should be used as
an input in two independent processes – nonlinear transformation (2) and linear transformation (3) of the
predictor P. It can be done by making a copy of σi before feeding it into the predictor.

On the other hand it is possible to simplify network architecture and use a memoryless (ML) algorithm
introduced recently [2, 3] for the m-to-1 predictive networks. The essence of the method is that for the well
trained RN (with x̄m+1 ≈ xm+1) one can produce a sequence of sm+i+1, 0 ≤ i ≤ p−1 using a simple relation
for the nonlinear transformation F of the single RN:

sm+i+1 = F (P (sm+i), sm+i) = F (x̄m+i+1, sm+i), (14)

without constructing new input sequences Xi+1 required by the EW or MW approach. Notice that in ML
algorithm a computation of each new predicted element x̄m+i+1 = P (sm+i) naturally leads to sm+i+1 used
for prediction of the next element x̄m+i+2 while no memory is required in this recursive process.

The relation (14) allows to produce sequence of k predicted values x̄m+i, 1 ≤ i ≤ k, compare it to the
sequence of the ground truth values xm+i, 1 ≤ i ≤ k and compute the training error E1 (defined below) used
in backpropagation training algorithm.

After the network is trained to predict k values it is easy to extend it for prediction of a sequence having
pk of elements reusing (14) recursively, and one can define a prediction error Ep defined as

E2
p =

1

kp

kp∑
i=1

‖x̄m+i − xm+i‖2 , (15)

where ‖v‖ denotes an Euclidean norm (L2-norm) of vector v. The training error E1 is a particular case of
(15) for p = 1.

5 Numerical simulations

It is instructive to compare the two architectures of the seq2seq predictive networks described in the previous
Sections. First we consider the traditional algorithm (Section 2) and then turn to the ML approach (Section
4).

5.1 Traditional seq2seq network

As the traditional networks employ two RNs with the number of neurons equal to ni, i = 1, 2, it is interesting
to learn what ratio r = n1/n2 for fixed total number n = n1 + n2 leads to the smallest error Ep defined by
(15). To address this problem we train networks to predict the time series of the phase modulated 1D noisy
signals – sine wave Gs(t) = aξ(t) +A0 +A sin(2πt/T ) and trapezoid wave

Gt(t) = aξ(t) +A0 +


At/r, 0 ≤ t < r,
A, r ≤ t < r + w,
A(r + w + f − t)/f, r + w ≤ t < r + w + f,
0, r + w + f ≤ t < T = r + w + f + s,

where T is the wave period, a is the amplitude of white noise ξ(t), A0 is the offset and A is the wave amplitude.
The phase modulation is implemented by following argument replacement t → t + ∆ sin(2πt/s), where ∆ is
the amplitude of the phase modulation and s defines its periodicity.

The training set construction is performed as follows: for given function Gs or Gt we create a set of points
G(ti) with ti = i × δt where 1 ≤ i ≤ 20000 and δt = 0.01 and noise amplitude a = 0.15. The parameters
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of phase modulation read ∆ = 2, s = 10, while the trapezoid parameters are r = f = 0.1, w, s = 0.4, so
that T = 1. Then from each set a pairs of input I and output O sequences are generated – I contains
the values G(ti) with p ≤ i ≤ p + m − 1 and the ground truth sequence O contains the values G(ti) with
p + m ≤ i ≤ p + m + k − 1. We use 20 ≤ m ≤ 80, while the length k of the output sequence is equal to
k = 10. For each type of signals 4000 training samples are produced and merged into a single training set.
The networks are trained using the Adam algorithm for 50 epochs with 20% of data used as a validation set.

The analysis of the simulation results are presented in Fig. 1. First we observe that the sine wave
prediction quality (Fig. 1a) does not depend significantly on the total number n of neurons. On the other
hand for trapezoid wave (Fig. 1b) both the ratio r and the total neuron number n influence the training and
prediction errors. We observe in this case that when the total number n of neurons is small the prediction
quality improves for larger ratios r (solid curves). These trends are reproduced when one recursively repeats
the prediction algorithm (dashed curves). When the total number of neurons is large (n = 220) the error
demonstrates average growth for increasing r with local minima and maximum around r ∼ 1. Finally in the
intermediate case n = 100 the minimal error is observed for the ratios r ≈ 1.
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Figure 1: Dependence of the error E on logarithm ln r of the ratio r = n1/n2 for (a) sine and (b) trapezoid
phase modulated wave with added noise of amplitude a = 0.15. The total number of neurons n = n1 + n2
is n = 50 (green), n = 100 (blue) and n = 220 (red). The length of the input sequence m = 70 and the
predicted sequence size is k = 10. The error values are found as an average of 1000 randomly selected input
sequences. Both RNs were selected to be the basic (vanilla) recurrent networks. The solid and dashed curves
represent kp = 10 and kp = 40 total number of predicted points respectively.

Another important trend (Fig. 2) demonstrates that the error E dependence on the number n1 of the
neurons in the first basic RN is on average the same (with some local deviations) for different total number n
of the neurons in predictive network. We observe that for the sine wave the error does not change significantly
for n ≤ 50 and starts to increase with n ≥ 100. In case of trapezoid wave the error decreases when n is below
30 but for larger n it starts to increase but this behavior is nonmonotonic.

5.2 Memoryless seq2seq network

To compare the prediction quality of the traditional and the memoryless networks we construct a predictive
network with a single basic RN having n = 50 neurons and train it on the same data set that was used for
the traditional one. We observe that the error estimates in ML networks are consistently lower than those for
the traditional one (Fig. 3). The same time the trends for the sine and trapezoidal noisy waves are opposite
– for the sine wave the ML algorithm reports smaller error for medium and large ratios (Fig. 3a), while for
the trapezoidal signal it becomes significantly lower at small ratios (Fig. 3b).

We illustrate these observations in Fig. 4 showing the input sequence curve, its ground truth continuation
and the predicted curve obtained by employing both algorithms in the networks with n = 50. We confirm
that for large values of r the ML network predicts the sine wave better than the traditional one. On the other
hand the ML network predicts much better the trapezoid wave better than the traditional one for smaller
ratios while for large ratios the predicted curves effectively coincide.

5



a

0 50 100 150 200

0.30

0.35

0.40

0.45

0.50

0.55

0.60

n1

E

b

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

n1

E

Figure 2: Dependence of the error E on the number n1 of neurons in the first RN for (a) sine and (b)
trapezoid noisy wave. The total number of neurons n = n1 + n2 is n = 50 (green), n = 100 (blue) and
n = 220 (red). The solid and dashed curves represent kp = 10 and kp = 40 total number of predicted points
respectively. All other parameters are as in Fig. 1.
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Figure 3: Dependence of the error E on logarithm ln r of the ratio r = n1/n2 for the total number of
neurons n = 50 compared to the error value in ML networks with the same n. Comparison for (a) sine
and (b) trapezoid phase modulated wave with added noise of amplitude a = 0.15. The length of the input
sequence m = 70 and the predicted sequence size is k = 10. The error values are found as an average of 1000
randomly selected input sequences. Blue (a) and red (b0 curves correspond to Gs and Gt respectively; the
black curve describes the ML network error. The solid and dashed curves represent kp = 10 and kp = 40
total number of predicted points respectively.

6 Discussion

In this manuscript the author considers the traditional architecture and training algorithm of seq2seq pre-
dictive network that includes two RNs and a predictor. It appears that for this network the parameters of
the second RN depend on those defining the first RN and the predictor. This dependence has a form of
a functional vector equation satisfied for a very large number of the vector arguments sm. These vectors
depend both of the parameters of the first RN and the sample input sequence, i.e., on the time series to be
predicted.

It is important to underline that the established functional equation corresponds to the ideally trained
predictive network and cannot be satisfied for all arguments. The same time it can serve as a tool to improve
the predictive power of the network in the following manner. First the traditional network is trained using
standard algorithms. Then for the fixed parameters of the first RN F1 and the predictor P one performs
tuning of parameters of the second RN F2 using arguments sm generated by feeding the input sequences from
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Figure 4: Comparison of the ground truth continuation (red) of the input noisy phase modulated sine (a,b)
and trapezoid (c,d) wave sequence (green) to the predictions computed by ML (solid blue) and traditional
(dashed blue) algorithms in the network with the total number of neurons n = 50. The length of the input
sequence m = 70 and the predicted sequence size is kp = 40. The ratio r of the traditional network is r = 4
(a,c) and r = 1/4 (b,d).

the training set into the first RN. The choice of the tuning algorithm will be discussed elsewhere.
The traditional seq2seq algorithm requiring memory to preserve the replicated inner state sm might

be difficult to implement in neuroscience context. To overcome this difficulty one can use an alternative
memoryless (ML) algorithm being an extension of the algorithm proposed recently in [2, 3]. The network
implementing this approach employs only a single RN and a predictor is shown to successfully predict the
phase modulated noisy periodic signals. The comparison to the traditional seq2seq networks demonstrates
that the ML network has lower error, i.e., higher prediction quality.
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