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1 Restricted partition functions

1.1 Restricted scalar partition function

Consider a problem of finding a number of nonnegative integer solutions of a Diophantine equation

m
∑

i=1

xidi = x · d = s, d = {d1, d2, . . . , dm}. (1)

A restricted partition function W (s,d) solving the above problem is a number of partitions of an
integer s into positive integers {d1, d2, . . . , dm}, each not greater than s. The generating function
for W (s,d) has a form

G(t,d) =
m
∏

i=1

1

1− tdi
=

∞
∑

s=0

W (s,d) ts , (2)

In other words the partition function equals a constant term in Taylor expansion of the following
expression

W (s,d) = constt

[

t−s
m
∏

i=1

(1− tdi)−1

]

. (3)

Sylvester proved [14] a statement about splitting of the partition function into periodic and non-
periodic parts and showed that the restricted partition function may be presented as a sum of the
Sylvester waves [11]

W (s,d) =
∑

j=1

Wj(s,d) , (4)
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where summation runs over all distinct factors j of the elements di. The waveWj(s,d) is a quasipoly-
nomial in s closely related to prime roots ρj of unity; it is a coefficient of t−1 in the series expansion
in ascending powers of t of the generator

Fj(s, t) =
∑

ρj

ρ−s
j est

∏m
k=1

(

1− ρdkj e−dkt
) . (5)

The summation is made over all prime roots of unity ρj = exp(2πin/j) for n relatively prime to j
(including unity) and smaller than j. It was shown [11] that it is possible to express the Sylvester
wave as a finite sum of the Bernoulli polynomials of higher order.

1.2 Restricted vector partition function

Consider a function W (s,D) counting the number of integer nonnegative solutions x ≥ 0 to the
linear system D · x = s, where D is a nonnegative integer l × m matrix. The vector partition
function (VPF) W (s,D) is a natural generalization of the restricted partition function to the vector
argument.

The generating function for the VPF reads

G(t,D) =
m
∏

i=1

1

1− tci
=

∑

s

W (s,D)ts, ts =
l

∏

k=1

tskk , tci =
l

∏

k=1

tdkik , (6)

where ci, 1 ≤ i ≤ m, denotes the i-th column of the matrix D. Note that some elements dki might
equal zero.

The partition problems that include inequalities can be reduced to the VPF problem as follows.
Assume that we have a system of k linear equations and l − k linear inequalities for m > l integer
nonnegative variables xi:

m
∑

i=1

djixi = sj , (1 ≤ j ≤ k),

m
∑

i=1

djixi ≤ nj, (k + 1 ≤ j ≤ l). (7)

Introduce l − k new integer variables xi, (k + 1 ≤ i ≤ l) that enter additively all above equations
and inequalities with corresponding factors dji = 0 for 1 ≤ j ≤ k, and dji = 1 for k+1 ≤ j ≤ l, and
transform all inequalities into equations

m+l−k
∑

i=1

djixi = sj , (1 ≤ j ≤ k),

m+l−k
∑

i=1

djixi = nj, (k + 1 ≤ j ≤ l). (8)

It is easy to see that the number of integer nonnegative solutions of (8) equals that of (7), and thus
any system of linear equations with constraints can be reduced to the standard vector partition
problem.

1.3 Sylvester-Cayley method of compound partitions

The problem of vector partitions has a long history and J.J. Sylvester made a significant contribution
to its solution. Sylvester [13] wrote: ”Any given system of simultaneous simple equations to be solved
in positive integers being proposed, the determination of the number of solutions of which they admit
may in all cases be made to depend upon the like determination for one or more systems of equations
of a certain fixed standard form. When a system of r equations between n variables of the aforesaid
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standard form is given, the determination of the number of solutions in positive integers of which it
admits may be made to depend on the like determination for

n(n− 1) . . . (n− r + 2)

1 · 2 . . . (r − 1)

single independent equations derived from those of the given system by the ordinary process of
elimination, with a slight modification; the final result being obtained by taking the sum of certain
numerical multiples (some positive, others negative) of the numbers corresponding to those indepen-
dent determinations. This process admits of being applied in a variety of modes, the resulting sum
of course remaining unaltered in value whichever mode is employed, only appearing for each such
mode made up of a different set of component parts.”

Then he added in the footnote: ”If there be r simultaneous simple equations between n variables
(in which the coefficients are all positive or negative integers) forming a definite system (that is,
one in which no variable can become indefinitely great in the positive direction without one or more
of the others becoming negative), and if the r coefficients belonging to each of the same variable
are exempt from a factor common to them all, and if not more than r − 1 of the variables can be
eliminated simultaneously between the r equations, then the determination of the number of positive
integer solutions of the given system may be made to depend on like determinations for each of n
derived independent systems, in each of which the number of variables and equations is one less than
in the original system.”

In other words, Sylvester claimed that VPF can be reduced to a sum of
( n
r−1

)

scalar partition
functions (see also [9]) and the reduction is an iterative process based on the variable elimination.
Sylvester considered a specific double partition problem as an illustration of his method and deter-
mined regions (chambers) on a plane {s1, s2} each having a unique expression for VPF valid in this
region only. He showed that the expressions in the adjacent chambers coincide at their common
boundary (see also [12]).

This approach was successfully applied by Cayley [4] to double partitions subject to some re-
strictions on the positive elements of matrix D (the columns ci are linearly independent and for all
1 ≤ i ≤ m the inequality ci2 < s2 + 2 holds). Cayley noticed: ”The subject (as I am aware) has
hardly been considered except by Professor Sylvester, and it is greatly been regretted that only an
outline of his valuable researches has been published: the present paper contains the demonstration
of a theorem, due to him, by which (subject to certain restrictions) the question of Double Partitions
is made to depend upon the ordinary theory of Single Partitions”.

In this manuscript we present the result for double partitions obtained by Cayley and modify
it to apply to the Gaussian polynomial problem. A discussion of the Sylvester-Cayley method to
multiple partitions with l > 2 will be considered elsewhere.

2 Double partitions

Introduce an augmented matrix E obtained by prepending the column vector s to the matrix D,
so that e10 = s1 = r and e20 = s2 = ρ. Denote the rest elements of first row of E as e1i = d1i =
bi, (1 ≤ i ≤ m), and of the second row by e2i = d2i = βi, (1 ≤ i ≤ m). For simplicity assume that
all βi > 0, and perform a partial fraction expansion (PFE) step to present G(t,D) as sum of m
fractions

G(t,D)t−s = t−s

m
∏

i=1

1

1− tbi1 t
βi

2

=

m
∑

i=1

Ti(t), Ti =
Ai(t)t

−s

1− tbi1 t
βi

2

. (9)
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Then the solution reads as a sum of the terms

Ui = constt [Ti(t)] . (10)

Cayley showed that the first term U1 corresponding to elimination of the second column of matrix
E can be written as

U1 = constt1



t
−(rβ1−b1ρ)
1

m
∏

j 6=1

(1− t
bjβ1−b1βj

1 )−1



 . (11)

This result can be obtained using a simple transformation of the original system of equations D ·x =
s. Namely, divide the second equation by β1 6= 0, so that ē2i = d̄2i = βi/β1, (1 ≤ i ≤ m), ē20 = ρ/β1.
Denote t2 = a, perform PFE to

t−r
1 a−ρ/β1

m
∏

i=1

(1− tbi1 a
βi/β1)−1 =

m
∑

i=1

τi(t),

and find that τ1 corresponds to a simple pole a1 = t−b1
1 , and is equal to

τ1 =
t−r
1 a−ρ/β1

(a− a1)B′(a1)
, B(a) =

m
∏

j=1

(1− t
bj
1 aβj/β1) . (12)

The derivative evaluates to

B′(a) = −

m
∑

i=1

tbi1 (βi/β1)a
βi/β1−1

m
∏

j 6=i

(1− t
bj
1 aβj/β1) .

Using a = a1 = t−b1
1 find the only surviving term (for i = 1)

B′(a1) = −tb11

m
∏

j 6=1

(1− t
bj−b1βj/β1

1 ) ,

and

τ1 = −t−r−b1
1

a−ρ/β1

(a− t−b1
1 )

m
∏

j 6=1

(1− t
bj−b1βj/β1

1 )−1 . (13)

The constant term w.r.t. a can be evaluated as the residue of τ1/a at a = 0, so that we have

Res(a−ρ/β1−1/(a− t−b1
1 ), a = 0) = −t

(ρ/β1+1)b1
1 ,

and finally arrive at

τ1(t1) =
1

t
r−b1ρ/β1

1

m
∏

j 6=1

(1− t
bj−b1βj/β1

1 )−1 . (14)

The contribution U1 is found as constant term in expansion of τ1(t1) in Taylor series w.r.t. t1, and
it can be checked by direct computation that

U1 = constt1



t
−(rβ1−b1ρ)
1

m
∏

j 6=1

(1− t
bjβ1−b1βj

1 )−1



 . (15)
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Comparing this to (3) we see that U1 corresponds to W (rβ1−b1ρ,d1), where the elements d1j of the
vector d1 are given by d1j = bjβ1 − b1βj , j 6= 1. Effectively, this result corresponds to elimination
[6] of the first unknown x1 in the system D · x = s that leads to a single Diophantine equation
d1 · x

′ = rβ1 − b1ρ, where x′ is the vector of unknowns obtained from x by dropping x1.
Similar transformations allow to find all m contributions to obtain

W (s,D) =
m
∑

i=1

Ui =
m
∑

i=1

W (Li,di), Li = rβi − biρ, dij = bjβi − biβj , j 6= i, (16)

where both Li and dij as the determinants of 2 × 2 matrices made of the columns {c0, ci} and
{cj , ci}, respectively. Cayley mentioned [4] that the contribution of each term in (16) is nonzero
only when Li is nonnegative, thus reintroducing the notion of chambers of the vector partition. He
also pointed out that when some elements of the vector di are negative (say, dijk < 0 for 1 ≤ k ≤ K)
one has

W (Li,di) = (−1)KW (Li −

K
∑

k=1

|dijk |, |di|), |di| = {|dij |}. (17)

2.1 Matrix with zero elements in one row

Consider now a case when one or more elements in one (say, the second) row of the matrix D are
zeroes. Denote the number of nonzero elements as m0, and without loss of generality we assume
that βi 6= 0 for 1 ≤ i ≤ m0, and βi = 0 for m0 + 1 ≤ i ≤ m. Similar to (9) we have

G(t,D)t−s = t−s

m0
∏

i=1

(1− tbi1 t
βi

2 )−1
m
∏

i=m0+1

(1− tbi1 )
−1 =

m0
∑

i=1

Ti(t), (18)

the number m0 of the terms Ti is equal to the number of the partial fractions generated by PFE.
Again in order to obtain the term T1 introduce ē2i = d̄2i = βi/β1, (1 ≤ i ≤ m), ē20 = ρ/β1. Perform
PFE to

t−r
1 a−ρ/β1

m
∏

i=m0+1

(1− tbi1 )
−1

m0
∏

i=1

(1− tbi1 a
βi/β1)−1 =

m0
∑

i=j

τj(t),

and find that τj corresponds to a simple pole a1 = t−b1
1 , and is equal to

τ1 =
t−r
1 a−ρ/β1

(a− a1)B′(a1)

m
∏

i=m0+1

(1− tbi1 )
−1 , B(a) =

m0
∏

j=1

(1− t
bj
1 aβj/β1) . (19)

Using a = a1 = t−b1
1 obtain

B′(a1) = −tbi1

m0
∏

j 6=1

(1− t
bj−b1βj/β1

1 ) ,

and

τ1 = −t−r−b1
1

a−ρ/β1

(a− a1)

m0
∏

j 6=1

(1− t
bj−b1βj/β1

1 )−1
m
∏

i=m0+1

(1− tbi1 )
−1 . (20)

Recalling that βi = 0 for m0 + 1 ≤ i ≤ m rewrite expression (refmCayley50) in more compact form

τ1 = −t−r−b1
1

a−ρ/β1

(a− a1)

m
∏

j 6=1

(1− t
bj−b1βj/β1

1 )−1 , (21)
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which coincides with (13). This means that the result (16) remains valid in this case too, but the
number of terms in this sum reduces to m0. The elimination in this case is performed for all columns
with nonzero second element and we obtain

W (s,D) =

m0
∑

i=1

W (Li,di), Li = di0 = rβi − biρ, dij = bjβi − biβj , j 6= i. (22)

It should be noted that determinants Li can be computed for all 1 ≤ i ≤ m, but for m0+1 ≤ i ≤ m
their values are always negative, so that the corresponding partition functions vanish and thus do
not contribute into the final result.

2.2 Matrix with zero elements in both rows

The above algorithm does not work when zeros appear in both rows and we have to use a different
approach. Sort the matrix columns to have bi = 0 for 1 ≤ i ≤ n < m and produce an auxiliary
matrix D′ made of the last m−n columns of the matrix D. The generating function G(t,D) reads

G(t,D) = G(t,D′)

n
∏

i=1

1

1− tβi

2

. (23)

Assume that the partition W (s,D′) is known. In case n = 1 the product in (23) degenerates into a

single factor 1/(1 − tβ1

2 ) that can be presented as an infinite series
∑

k1
tk1β1

2 . This leads to

∑

s

W (s,D)ts =
∞
∑

k1=0

∑

s

W (s,D′)tstk1β1

2 ,

which in its turn produces a finite series for s = {s1, s2}

W (s,D) =

⌊s2/β1⌋
∑

k1=0

W (s− k1β1ê2,D
′), (24)

where ⌊x⌋ denotes the largest integer smaller or equal to x and ê2 = {0, 1} is a unit vector in
direction s2. The finite number of terms in (24) are due to the requirement of nonnegativeness of all
components of the vector argument of the partition function. For n > 1 the relation (24) generalizes
to

W (s,D) =

⌊s2/β1⌋
∑

k1=0

⌊s2/β2⌋
∑

k2=0

. . .

⌊s2/βn⌋
∑

kn=0

W (s− ê2

n
∑

i=1

kiβi,D
′). (25)

Thus the partition function W (s,D) in this case is constructed using the following algorithm – first
all columns ci with first zero elements are dropped to produce the matrix D′ for which the auxiliary
partition W (s,D′) is computed; it is then used in (25) to construct W (s,D) as a finite sum of known
partitions. The chambers of W (s,D) coincide with that of W (s,D′).

3 Gaussian polynomials and their coefficients

The Gaussian polynomial coefficients Pn
m(s) are defined as a number of nonnegative integer solutions

of a linear Diophantine equation with a constrain

m
∑

i=1

ixi = s,
m
∑

i=1

xi ≤ n. (26)
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The coefficients Pn
m(s) of the Gaussian polynomial Gn

m(t) satisfy [8, 15]

Gn
m(t) =

Gm(t)Gn(t)

Gm+n(t)
=

mn
∑

s=0

Pn
m(s)ts, Gm(t) =

m
∏

i=1

1

1− ti
, (27)

where Gm(t) denotes the generating function for the restricted partition function Wm(s) =
W (s, d̂m = {1, 2, . . . ,m}). The quasipolynomials Pn

m(s) have a finite order mn and the follow-
ing properties [15]

Pn
m(0) = Pn

m(mn) = 1, Pn
m(s) = 0, for s > mn,

Pn
m(s) = Pm

n (s) = Pn
m(mn− s), Pn

m(mn/2− s) = Pn
m(mn/2 + s), (28)

Pn
m(s)− Pm

n (s− 1) ≥ 0, for 0 ≤ s ≤ mn/2.

Cayley [3] considered a problem of computation of the Gaussian polynomial coefficients and found
the generating functions (27) and (30, see below). Some interesting results about explicit expression
of Pn

m(s) through the regular partition functions were reported recently in [7].

3.1 Sylvester-Cayley algorithm for Gaussian polynomial coefficients

The problem (26) is a particular case of (7) for k = 1, l = 2, and d1i = i, d2i = 1, thus it can be
transformed into a VPF problem

m
∑

i=0

ixi = s,

m
∑

i=0

xi = n, (29)

and dealt with using the Sylvester-Cayley algorithm.
Write (22) for

D =

(

1 1 1 . . . 1
0 1 2 . . . m

)

, s =

(

n
s

)

,

that determines a generating function for Pn
m(s) with fixed integers m and n

m
∏

i=0

1

1− ati
=

∞
∑

n=0

Gn
m(t)an =

∞
∑

n=0

mn
∑

s=0

Pn
m(s)ants. (30)

In (22) we have m0 = m, r = n, ρ = s, bi = 1, βi = i and obtain Li = ni−s and dij = βi−βj =

i− j. Thus the set di can be written as a union of d̂i and −d̂m−i. We then observe from (22)

Pn
m(s) =

m
∑

i=1

wi(m,n; s), wi(m,n; s) = W (ni− s,−d̂m−i ∪ d̂i), (31)

where the i-th term in the above sum contributes for 0 ≤ s ≤ ni. This immediately leads to a
conclusion that Pn

m(s) = 0 for s > nm as all m terms in (31) vanish. By the representation (31) the
Gaussian polynomial Pn

m(s) has m chambers bounded by lines s = ni, 0 ≤ i ≤ m. Specifically, in
the k-th chamber bounded by the lines s = n(m− k) and s = n(m− k + 1) one has to retain only
k terms in the sum with m− k + 1 ≤ i ≤ m. Using (17) we arrive at

wi(m,n; s) = (−1)m−iW (ni− s− sm−i, d̂
i ∪ d̂m−i), sm = m(m+ 1)/2, (32)

where the partition function W can be computed using the algorithm discussed in [11]. It is con-
venient to introduce Pn

m(r, s) that explicitly accounts for the summands entering Pn
m(s) in the r-th

chamber

Pn
m(r, s) =

m
∑

i=r

wi(m,n; s), (r − 1)n ≤ s ≤ rn. (33)

7



3.2 Convolution of restricted partitions

Consider a general term W (s, d̂k1 ∪ d̂k2) in (32). Its generating function reads G(t) = Gk1(t)Gk1(t)
and we obtain

∑

s=0

W (s, d̂k1 ∪ d̂k2)ts =
∑

s1=0

∑

s2=0

Wk1(s1)Wk2(s1)t
s1+s2 ,

leading to a discrete convolution (the Cauchy product)

W (s, d̂k1 ∪ d̂k2) =
s

∑

k=0

Wk1(k)Wk2(s− k),

and setting here k1 = i, k2 = m− i we find

W (s, d̂i ∪ d̂m−i) =
s

∑

k=0

Wi(k)Wm−i(s− k).

Substituting it in (32) and (31) we obtain

Pn
m(s) =

m
∑

i=1

ni−s−sm−i
∑

k=0

(−1)m−iWi(k)Wm−i(ni− s− sm−i − k),

where the chamber boundaries remain unchanged. Noticing that W0(s) = δs,0 we rewrite the above
expression as

Pn
m(s) = Wm(mn− s) +

m−1
∑

i=1

ni−s−sm−i
∑

k=0

(−1)m−iWi(k)Wm−i(ni− s− sm−i − k), (34)

where the first term in r.h.s. contributes to all chambers. The partial expression Pn
m(r, s) for the

r-th chamber reads

Pn
m(r, s) = Wm(mn−s)+

m−1
∑

i=r

ni−s−sm−i
∑

k=0

(−1)m−iWi(k)Wm−i(ni−s−sm−i−k), (r−1)n ≤ s ≤ rn. (35)

The relations (28) imply a symmetry s ↔ mn− s leading to an equivalent representation

Pn
m(r, s) = Wm(s) +

r−1
∑

i=i

s−in−si
∑

k=0

(−1)iWm−i(k)Wi(s− in− si − k), (r − 1)n ≤ s ≤ rn.

The formulas (34,35) present a closed form of the Gaussian polynomial coefficients as a superpo-
sition of the restricted partitions discrete convolutions. Below we illustrate the above approach by
deriving explicit expressions of Pn

m(s) for small m = 3, 4 (see also [5]). More cumbersome expressions
required for derivation of Pn

5 (s) and Pn
6 (s) are presented in Appendix.

3.3 Explicit formula for P
n
3 (s)

Use (34) to find

Pn
3 (s) = W3(3n− s) +

2
∑

i=1

ni−s−s3−i
∑

k=0

(−1)i+1Wi(k)W3−i(ni− s− s3−i − k),

8



and we have W1(s) = 1, s2 = 3, s1 = 1 to obtain

Pn
3 (1, s) = W3(3n − s) +

n−s−3
∑

k=0

W2(k)−

2n−s−1
∑

k=0

W2(k), 0 ≤ s ≤ n,

Pn
3 (2, s) = W3(3n − s)−

2n−s−1
∑

k=0

W2(k), n ≤ s ≤ 2n,

Pn
3 (3, s) = W3(3n − s), 2n ≤ s ≤ 3n. (36)

Recall that W2(s) = s/2 + 3/4 + (−1)s/4 and find

Σ2(s) =

s
∑

k=0

W2(k) =
(s+ 1)(s + 3)

4
+

1 + cosπs

8
,

to arrive at the final expression

Pn
3 (s) =







W3(3n − s) + Σ2(n− s− 3)− Σ2(2n− s− 1), 0 ≤ s ≤ n,
W3(3n − s)− Σ2(2n − s− 1), n ≤ s ≤ 2n,
W3(3n − s), 2n ≤ s ≤ 3n,

(37)

where

W3(s) =
47

72
+

s

2
+

s2

12
+

1

8
cos πs+

2

9
cos

2πs

3
. (38)

Note that in [5] the authors completely describe Pn
3 (s) using 36 explicit expressions while our

representation requires only three formulas in (37). It indicates that the approach based on Sylvester-
Cayley algorithm employing the idea of chambers provides more compact and clear result.

3.4 Explicit formula for P
n
4 (s)

Start with

Pn
4 (s) = W4(4n− s) +

3
∑

i=1

ni−s−s4−i
∑

k=0

(−1)i+1Wi(k)W4−i(ni− s− s4−i − k),

and use s3 = 6 to write

Pn
4 (s) =

n−s−6
∑

k=0

W3(n− s− 6− k)−

2n−s−3
∑

k=0

W2(k)W2(2n− s− k− 3) +

3n−s−1
∑

k=0

W3(k) +W4(4n− s), (39)

where

W4(s) =
2s3 + 30s2 + 135s + 175

288
+
(s+ 5)

32
cos πs+

1

8
cos

πs

2
+

2

27

(

cos
2πs

3
− cos

2π(s + 1)

3

)

. (40)

3.5 Maximal coefficient of Gaussian polynomial

The problem of computation of the maximal coefficient of Gaussian polynomial was addressed
recently in [5] (also L. Fel, private communication).

First note that by (28) the maximal coefficient pnm is given by pnm = Pn
m(mn/2) for even mn and

pnm = Pn
m((mn + 1)/2) for odd mn. For even m = 2k we have to compute Pn

m(s) at s = kn that

9



belongs to the (k + 1)-th chamber where kn ≤ s ≤ (k + 1)n. For odd m = 2k − 1 the argument of
Pn
m belongs to the middle k-th chamber with (k − 1)n ≤ s ≤ kn. Thus we have three cases

pnm =







Pn
2k(k + 1, kn), m = 2k,

P 2r
2k−1(k, 2kr − r), m = 2k − 1, n = 2r,

P 2r−1
2k−1 (k, 2kr − k − r + 1), m = 2k − 1, n = 2r − 1.

(41)

Use here k = 2 and for m = 3 we find p2r3 = P 2r
3 (2, 3r), and p2r−1

3 = P 2r−1
3 (2, 3r − 1); with m = 4

we obtain pn4 = Pn
4 (3, 2n).

Consider first the case m = 3. For even n = 2r we obtain s = 3r, so that 3n − s = 3r and
2n− s−1 = r−1 leading to P 2r

3 (2, 3r) = W3(3r)−Σ2(r−1). For odd n = 2r−1 we use s = 3r−1,
that gives 3n− s = 3r− 2 and 2n− s− 1 = r− 1 producing P 2r

3 (2, 3r− 1) = W3(3r− 2)−Σ2(r− 1).
After algebraic transformations we arrive at

p2r3 =
1

2

[

(r + 1)2 + cos
πr

2

]

, p2r−1
3 =

r(r + 1)

2
. (42)

For m = 4 we find

Pn
4 (3, 2n) = W4(2n) +

n−1
∑

k=0

W3(k),

that reduces to

pn4 =
(2n + 5)3

288
+

(2n + 5)

32
+

3

16
cosπn+

4

27
cos

2πn

3
+

4

27
sin

π(8n + 1)

6
. (43)

Turning to case m = 5 we use k = 3 and consider two separate cases – for even n = 2r we obtain
s = 5r, so that p2r5 = P 2r

5 (3, 5r), while with odd n = 2r − 1 we have p2r−1
5 = P 2r−1

5 (3, 5r − 2). The
corresponding expressions read

p2r5 =
(23r2 + 69r + 49)(r + 1)(r + 2)

288
+

425

1728
+

3(2r + 3)

64
cos πr +

4

27
cos

2πr

3

+
1

8

(

cos
πr

2
+ sin

πr

2

)

, (44)

p2r−1
5 =

(23r2 + 46r + 36)r(r + 2)

288
−

37

1728
−

1

64
cos πr −

1

8
sin

πr

2

+
2

27
cos

2πr

3
−

2

27
sin

π(8r + 1)

6
. (45)

Finally, for m = 6 we again take k = 3 to obtain pn6 = Pn
6 (4, 3n) leading to

pn6 =
(2n+ 7)(66n4 + 924n3 + 4606n2 + 9604n + 12061)

172800
+

2n2 + 14n + 55

256
cos πn

+
1

16

(

cos
πr

2
− sin

πr

2

)

+
4

81
cos

2πn

3
+

4

81
sin

π(4n + 1)

6
+

8

125

(

cos
2πn

5
+ cos

4πn

5

)

+
4

125

(

− cos
π(2n+ 1)

5
+ cos

π(4n + 1)

5
+ 2 cos

π(8n + 1)

5

)

+
4

125

(

sin
π(4n+ 1)

10
+ 2 sin

π(8n+ 1)

10
− sin

π(12n + 1)

10

)

. (46)

It is easy to see from (42-46) that the behavior of the maximal coefficient is mainly determined by
the polynomial part of the corresponding expressions. This observation leads us to consideration of
the polynomial part of Gaussian polynomial coefficients.

10



4 Polynomial part of Gaussian polynomial coefficients

4.1 Polynomial part of partition function

It is known that a leading contribution to the partition function W (s,d) for the set of generators
d = {d1, d2, . . . , dm} is provided by its polynomial part w(s,d) that can be expressed through the
Bernoulli polynomials of higher order Bk(s,d) [11]

w(s,d) =
Bm−1(s + σm,d)

(m− 1)!πm
, σm =

m
∑

i=1

di, πm =
m
∏

i=1

di, (47)

where the Bernoulli polynomials of higher order can be defined in umbral calculus notation as

Bk(s,d) = (s+

m
∑

i=1

iBdi)
k,

after the expansion the replacement (iBdi)
k → Bkd

k
i is applied, and Bk denotes the k-th Bernoulli

number. This definition implies

Bk(s,d) =

k
∑

l=0

(

k

l

)

slBk−l(d), (48)

and Bk(d) ≡ Bk(0,d) denotes the Bernoulli number of higher order.

4.2 Polynomial part of Gaussian polynomial coefficients

It is instructive to consider a polynomial part Pn
m(s) of quasipolynomial Pn

m(s)

Pn
m(s) =

m
∑

i=1

Wi(m,n; s), (49)

where Wi(m,n; s) denotes the polynomial part of wi(m,n; s) defined in (32). For d̂m we have
σm = sm, πm = m! and we find that

w(s, d̂i ∪ d̂m−i) =
Bm−1(s+ si + sm−i, d̂

i ∪ d̂m−i)

(m− 1)!i!(m − i)!
.

Use here the replacement s → ni− s− sm−i to obtain

Pn
m(s) =

m
∑

i=1

(−1)m−iBm−1(ni− s+ si, d̂
i ∪ d̂m−i)

(m− 1)!i!(m − i)!
. (50)

The polynomial part Pn
m(r, s) of the solution in r-th chamber reads

Pn
m(r, s) =

m
∑

i=r

(−1)m−iBm−1(ni− s+ si, d̂
i ∪ d̂m−i)

(m− 1)!i!(m − i)!
, (r − 1)n ≤ s ≤ rn. (51)

11



5 Polynomial part of maximal coefficient

The last result leads to expressions for the polynomial part of the maximal coefficient of the Gaussian
polynomial. For small m ≤ 6 we have

Pn
2 (2, n) =

2n+ 3

4
,

P2r
3 (2, 3r) =

(r + 1)2

2
+

1

36
, P2r−1

3 (2, 3r − 1) =
(3r + 1)(3r + 2)

18
,

Pn
4 (3, 2n) =

(2n + 5)3

288
, (52)

P2r
5 (3, 5r) =

(r + 1)(r + 2)(23r2 + 69r + 49)

288
+

571

14400
,

P2r−1
5 (3, 5r − 2) =

(r + 2)r(23r2 + 46r + 36)

288
+

89

1600
,

Pn
6 (4, 3n) =

(2n + 7)(66n4 + 924n3 + 4606n2 + 9604n + 7511)

172800
.

5.1 Polynomial part for even m

For even m = 2k the maximal coefficient equals

Pn
2k(k + 1, kn) =

2k
∑

i=k+1

(−1)i
B2k−1(ni− nk + si, d̂

i ∪ d̂2k−i)

(2k − 1)!i!(2k − i)!

=

k
∑

j=0

(−1)j
B2k−1(n(k − j) + s2k−j, d̂

j ∪ d̂2k−j)

(2k − 1)!j!(2k − j)!

=

k
∑

j=0

(−1)j
(

2k

j

)

B2k−1(n(k − j),−d̂2k−j ∪ d̂j)

(2k − 1)!(2k)!
, (53)

where we employ the relation Bn(s,−d) = Bn(s+ σm,d). Use here (48) to write

Pn
2k(k + 1, kn) =

1

(2k − 1)!(2k)!

2k−1
∑

p=0

(

2k − 1

p

)

np
k

∑

j=0

(−1)j
(

2k

j

)

B2k−p−1(−d̂2k−j ∪ d̂j)(k − j)p. (54)

5.2 Polynomial part for odd m = 2k − 1 and even n = 2r

In this case the maximal coefficient reads

P2r
2k−1(k, (2k − 1)r) =

2k−1
∑

i=k

(−1)i+1

(

2k − 1

i

)

B2k−2(2r(i − k) + r,−d̂i ∪ d̂2k−1−i)

(2k − 2)!(2k − 1)!

=

k−1
∑

j=0

(−1)j
(

2k − 1

j

)

B2k−2(2r(k − 1− j) + r,−d̂2k−1−j ∪ d̂j)

(2k − 2)!(2k − 1)!
, (55)

and we find with (48)

P2r
2k−1(k, (2k − 1)r) =

1

(2k − 2)!(2k − 1)!

2k−2
∑

p=0

(

2k − 2

p

)

rp

12



×
k−1
∑

j=0

(−1)j
(

2k − 1

j

)

B2k−p−2(−d̂2k−1−j ∪ d̂j)(2(k − 1− j) + 1)p. (56)

5.3 Polynomial part for odd m = 2k − 1 and n = 2r − 1

We observe

P2r−1
2k−1(k, (2k − 1)r − k + 1) =

2k−1
∑

i=k

(−1)i+1

(

2k − 1

i

)

B2k−2((2r − 1)(i − k) + r − 1,−d̂i ∪ d̂2k−1−i)

(2k − 2)!(2k − 1)!

=

k−1
∑

j=0

(−1)j
(

2k − 1

j

)

B2k−2((2r − 1)(k − 1− j) + r − 1,−d̂2k−1−j ∪ d̂j)

(2k − 2)!(2k − 1)!
,

=

k−1
∑

j=0

(−1)j
(

2k − 1

j

)

B2k−2(2r(k − 1− j) + r + (j − k),−d̂2k−1−j ∪ d̂j)

(2k − 2)!(2k − 1)!
,

leading to

P2r−1
2k−1(k, (2k − 1)r − k + 1) =

1

(2k − 2)!(2k − 1)!

2k−2
∑

p=0

(

2k − 2

p

)

rp

×

k−1
∑

j=0

(−1)j
(

2k − 1

j

)

B2k−p−2(j − k,−d̂2k−1−j ∪ d̂j)(2(k − 1− j) + 1)p. (57)

6 Leading term of maximal coefficient

Consider derivation of a general expression for the leading term of the maximal coefficient. The
leading in n term in the summand in (53) evaluates to

(−1)jn2k−1

(

2k

j

)

(k − j)2k−1

(2k − 1)!(2k)!
,

so that the leading term Ln,k of Pn
2k(k + 1, kn) reads

Lkn =
n2k−1

(2k − 1)!(2k)!

k
∑

j=0

(−1)j
(

2k

j

)

(k − j)2k−1, (58)

where the sum evaluates to A2k−1,k being a particular case of the Eulerian numbers of type A [2]

An,k =

k
∑

j=0

(−1)j
(

n+ 1

j

)

(k − j)n. (59)

These numbers used in a definition of the polylogarithm function

Li−n(ρ) =

∞
∑

k=1

knρk =
1

(1− ρ)n+1

n
∑

i=0

An,iρ
n−i, ρ 6= 1,

13



which in its turn relates to the Eulerian polynomials Hn(ρ) defined through the generating function

1− ρ

et − ρ
=

∞
∑

n=0

Hn(ρ)
tn

n!
, Hn(ρ) = (−1)n

1− ρ

ρ
Li−n(ρ).

It is worth to note that the function Hn(ρ) can be extended into the Eulerian polynomials of higher
order used in the derivation [11] of the partition function W (s,dm). From (58, 59) it follows that
for even m the leading term Lmn of Pn

m(m/2 + 1,mn/2) reads

Lmn =
nm−1Am−1,m/2

(m− 1)!m!
,

producing L2n = n/2, L4n = n3/36, L6n = 11n5/14400 that coincide with the leading term of the
corresponding expressions in (52).

In case of odd m = 2k−1 we observe from (52) that L2k−1,2r−1 = L2k−1,2r (it is also can be seen
by comparing (56) to (57)), so that it is sufficient to consider the case of even n = 2r only. Using
(56) we obtain

L2k−1,2r =
r2k−2

(2k − 2)!(2k − 1)!

k−1
∑

j=0

(−1)j
(

2k − 1

j

)

(2(k − 1− j) + 1)2k−2. (60)

The sum in (60) evaluates to the central MacMahon numbers B2k−1,k being a particular case of the
Eulerian numbers Bn,k of type B that satisfy [1] (also see Ch.11 in [10])

Bn,k = (2(n − k) + 1)Bn−1,k−1 + (2k + 1)Bn−1,k, Bn,k =
k

∑

j=0

(−1)k−j

(

n+ 1

k − j

)

(2j + 1)n,

and we find

L2k−1,2r =
r2k−2B2k−1,k

(2k − 2)!(2k − 1)!
, → Lmn =

(n/2)m−1Bm,(m+1)/2

(m− 1)!m!
,

producing L3,2r = r2/2, L5,2r = 23r4/288 coinciding with the leading term of the corresponding
expressions in (52).

Collecting the above results we obtain a general expression for the leading term of the maximal
coefficient of the Gaussian polynomial through the Eulerian numbers

Lmn =
1

(m− 1)!m!







nm−1Am−1,m/2, even m,

(n/2)m−1Bm,(m+1)/2, odd m, even n,

((n+ 1)/2)m−1Bm,(m+1)/2, odd m,n.
(61)
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A Computation of P n
5 (s) and P

n
6 (s)

As it follows from (31) and (32) the solution for m = 5 can be constructed using only three basic
expressions. Namely, we have

W (s, d̂2 ∪ d̂3) =
s4 + 18s3 + 112s2 + 279s + 220

288
+

37

1728
+

2s + 9

64
(−1)s +

2

27
cos

2πs

3
,

W (s, d̂1 ∪ d̂4) =
s4 + 22s3 + 166s2 + 495s + 465

576
+

25

3456
+

2s + 11

128
(−1)s

+
2

27
sin

(4s + 1)π

6
+

1

16

(

cos
πs

2
+ sin

πs

2

)

,

W (s, d̂5) =
s4 + 30s3 + 310s2 + 1275s + 1687

2880
+

41

86400
+

2s+ 15

128
(−1)s +

2

27
cos

2πs

3

+ +
1

16

(

cos
πs

2
+ sin

πs

2

)

+
2

25

(

cos
2πs

5
+ cos

4πs

5

)

. (A1)

Then we use (32) to find wi(5, n; s) to insert into (31) or (33) for explicit expression of Pn
5 (s) or

Pn
5 (r, s) respectively.
The solution for m = 6 is produced based on the four following expressions

W (s, d̂3 ∪ d̂3) =
6s5 + 180s4 + 2020s3 + 10440s2 + 24299s + 19650

25920
+

s+ 6

64
(−1)s

+
6s+ 34

243
cos

2πs

3
+

4

243
sin

π(4s + 1)

6
,

W (s, d̂2 ∪ d̂4) =
12s5 + 390s4 + 4720s3 + 26130s2 + 64458s + 54275

69120
+

2s2 + 26s + 75

512
(−1)s

+
2

81
cos

2πs

3
+

2

81
sin

π(4s+ 1)

6
+

1

32

(

cos
πs

2
+ sin

πs

2

)

,

W (s, d̂1 ∪ d̂5) =
6s5 + 240s4 + 3560s3 + 24000s2 + 71325s + 70888

86400
+

s+ 8

128
(−1)s

+
2

81
cos

2πs

3
+

2

81
sin

π(4s+ 1)

6
+

1

16
sin

πs

2
+

2

125

(

cos
2πs

5
+ cos

4πs

5

)

+
2

125

(

cos
π(2s + 1)

5
+ 3 cos

π(6s + 1)

5
+ 2 cos

π(8s + 1)

5

)

−
2

125

(

2 sin
π(8s+ 1)

10
+ sin

π(12s + 1)

10
+ 3 sin

π(16s + 1)

10

)

,

W (s, d̂6) =
12s5 + 630s4 + 12320s3 + 110250s2 + 439810s + 598731

1036800
+

6s2 + 126s + 581

4608
(−1)s

+
6s+ 61

486
cos

2πs

3
+

2

243
sin

π(4s + 1)

6
+

1

18
cos

πs

3

+
1

32

(

cos
πs

2
+ sin

πs

2

)

+
2

125

(

cos
2πs

5
+ cos

4πs

5

)

+
2

125

(

cos
π(2s + 1)

5
+ 3 cos

π(6s + 1)

5
+ 2 cos

π(8s + 1)

5

)

−
2

125

(

2 sin
π(8s+ 1)

10
+ sin

π(12s + 1)

10
+ 3 sin

π(16s + 1)

10

)

. (A2)

Now employ (32) to obtain wi(6, n; s) and then use it in (31) or (33) for explicit expression of Pn
6 (s)

or Pn
6 (r, s) respectively.
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