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In the present paper we derive the general solution of the unsteady Stokes equations in an un-
bounded fluid in spherical polar coordinates. The solution is an expansion in vector spherical
harmonics and given as a sum of a particular solution, proportional to pressure gradient exhibiting
power-law dependence, and a solution of vector Helmholtz equation decaying exponentially fast at
infinity. The proposed decomposition resembles the classical Lamb’s solution for the steady Stokes
equations: the series coefficients are projections of radial component, divergence and curl of the
boundary flow on scalar spherical harmonics. The proposed solution provides an explicit form of
the potential far from an oscillating body (“generalized Darcy’s law”) and high- and low-frequency
expansions. The leading order of the high-frequency expansion yields the well-known ideal (inviscid)
flow approximation. Continuation of the proposed solution to imaginary frequency provides general
solution of the Brinkman equations describing viscous flow in porous medium.

I. INTRODUCTION

The method of spherical harmonics expansion is a stan-
dard method for solving the Laplace equation widely used
in the various fields. In this work we derive a similar ex-
pansion for the transient Stokes equations describing low-
Reynolds-number (Re < 1) transient or unsteady flows
of incompressible viscous fluid [1–3]. The smallness of
Re allows to drop the nonlinear (quadratic) term in the
full Navier-Stokes equations yielding the linear unsteady
Stokes equations, possessing a general solution. In the
present paper we describe the methods of construction
of the general solutions of the unsteady Stokes equations
and study their properties.
Low-Reynolds-number (viscous) hydrodynamics dis-

tinguishes between steady Stokes equations, obtained
by dropping all inertia terms (i.e., due to the material
derivative of the velocity) in the Navier-Stokes equations,
and unsteady Stokes equations obtained by keeping the
velocity time-derivative (i.e., the Eulerian acceleration
term). The steady Stokes equations read η∇2v = ∇p,
where v is the incompressible (solenoidal) fluid veloc-
ity, p is the pressure and η is the dynamic viscosity of
the fluid; they contain no explicit time dependence and
the quasi-static approximation applies. There are sev-
eral known representations of the general solution of the
steady Stokes equations. The seminal Lamb’s solution
[4] is a sum of three series, whose terms are composed
from solid spherical harmonics (see, e.g., [2]). The first
series is a particular solution of the Stokes equations due
to the source ∇p, while and the remaining two series pro-
vide a general solenoidal solution of the vector Laplace
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equation ∇2v = 0 (see [1]). Another form of the gen-
eral solution is given by the so-called adjoint method
that uses the expansion of an arbitrary vector field into a
complete set of vector functions derived from the spher-
ical harmonics [1, 5]. This set is rather similar to vector
spherical harmonics (VSH) employed here (see [6]), how-
ever has somewhat more cumbersome orthogonality rela-
tions. Other forms of the general solution of the Stokes
equations are the Papkovich-Neuber [7–9], the Naghdi-
Hsu [10–12] and the Boussinesq-Galerkin [11, 13] formu-
lations. Finally, [14] provided a general solution derived
from poloidal-toroidal decomposition of incompressible
flow [15, 16] (see also [17]). Lamb’s decomposition is by
far the most useful, see, e.g., [18] for numerical imple-
mentation for many-particle systems.

In striking contrast to the steady Stokes equations, the
general solutions of the transient Stokes equations, given
in the frequency domain by −iρωv = η∇2v − ∇p, at-
tracted far less attention. Here ρ is the fluid density, ω
is the frequency and i is the imaginary unit. The main
reason for lesser attention is that typically the time and
convective derivative terms are of the same order of mag-
nitude. The transient Stokes equations apply when the
flow is periodic and/or has significant time dependence.
The general solution for axially symmetric case was pro-
vided in [19] in terms of the stream-function. For non-
axisymmetric flows the only available representation (to
the best of our knowledge) is the poloidal-toroidal decom-
position [20]. This solution is, however, less transpar-
ent than the one derived here, as shall be demonstrated
below. Our representation of the solution is similar to
Lamb’s decomposition, i.e., it is constructed as a sum
of the particular solution −iω−1∇(p/ρ) where ∇2p = 0,
and a general solution of the solenoidal vector Helmholtz
equation with an imaginary coefficient, −iωv = ν∇2v;
here ν = η/ρ is the kinematic viscosity. The stan-
dard fundamental set of solutions of the vector Helmholtz
equation with real-valued coefficients, −k2v = ν∇2v, is
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provided by the VSH (see, e.g. [21, 22]). The radial
dependence of the set’s functions is given by spherical
Bessel functions. The extension to imaginary coefficient
leads to Bessel functions of imaginary argument or modi-
fied Bessel functions, which can be reduced to polynomi-
als. The resulting solution of the Helmholtz equation de-
cays exponentially fast away from the origin and is given
by the elementary functions. Here we only consider the
solution of the exterior problem, or the flow external to
a sphere, while the corresponding interior problem was
solved in [23].

The proposed representation provides some important
insights. For example, it is well known that at distances
beyond the viscous penetration depth δ = (2ν/ω)1/2 from
an oscillating body the flow is potential [3]. This property
readily follows from the fact that the vorticity ζ ≡ ∇×v

obeys the vector Helmholtz equation −iωζ = ν∇2ζ, and
thus decays exponentially fast away from the object’s sur-
face where it is generated (alternatively, this property
can be demonstrated by using integral representation of
the flow and properties of the fundamental solution [24]).
In our approach the emergence of the potential flow is
an immediate consequence of the exponential decay of
solutions of the Helmholtz equation and a simple, yet
fundamental connection between the flow and the pres-
sure, v ≈ −iω−1∇(p/ρ), at distances larger than δ. This
result can also be obtained by rewriting the flow equa-
tion as iωv − ρ−1∇p = ν∇ × ζ and considering the ex-
ponential decay of the right-hand-side (RHS) far from
the body. It seems that both representations derived
here, v ≈ −iω−1∇(p/ρ) and the expression for p via the
boundary conditions, are missing in the literature.

The limit of an ideal (or inviscid) flow is a funda-
mental topic in fluid mechanics [3, 25]. In this limit δ
tends to zero and the above considerations imply that
v ≈ −iω−1∇(p/ρ) hold everywhere, in accord with the
ideal flow approximation. Within this approximation,
the potential −iω−1p/ρ is obtained as the solution of the
Laplace equation, whose normal derivative at the surface
coincides with the corresponding component of the veloc-
ity at the boundary (see, e.g., [24, 26]). We are not aware
of a rigorous proof of this representation of the potential.
We show here that the ideal flow approximation is the
leading term of the expansion of the general solution in
the viscosity coefficient. The expansion parameter is

√
ν,

rather than ν, indicating that adding viscosity yields a
singular perturbation. The dimensionless expansion pa-
rameter is 1/

√
Ro where Ro=a2ω/ν is the Roshko num-

ber defined with the radius a of the sphere at which the
boundary conditions are prescribed. This asymptotic se-
ries can alternatively be considered as the high-frequency
expansion.

The Roshko number, Ro, provides an estimate for the
ratio of the Eulerian time-derivative and viscous terms
in the unsteady Stokes equations and can be written
as product of the Strouhal number, Sl = ts/T , and
Reynolds number, Re = v0a/ν. Here ts = a/v0 is the
Stokes time with v0 being a characteristic velocity and

T is the characteristic time 1/ω. If Ro ≪ 1, then the
quasi-static (low-frequency) approximation provided by
the Stokes equations applies. We demonstrate below that
both the Lamb’s and the adjoint method’s solutions of
the Stokes equation can be obtained in the limit Ro→0.
However we demonstrate that care needs to be exercised
when applying the approximation. Corrections to the
low-frequency quasi-static approximation are given by
a series expansion in

√
Ro. Therefore, similarly to the

high-frequency expansion, low-frequency expansion also
proves to be singular.
We observe that v ≈ −iω−1∇(p/ρ) that holds at large

distances is remarkably similar to the Darcy’s law for
porous medium. In fact, it can be called the generalized
Darcy’s law because it constitutes the analytic contin-
uation of that law as we demonstrate in Sec. IX. The
demonstration is done by providing the general solution
of the Brinkman equations [27, 28].
We believe that our work is a significant step toward

general understanding of the unsteady Stokes equations
and several important closely related topics in viscous
hydrodynamics. Potential applications are considered in
the Conclusions section.

II. GENERAL SOLUTION OF UNSTEADY

STOKES EQUATIONS

In this work we derive the general solution of unsteady
Stokes equations

∂tv=−ρ−1∇p+ν∇2v, ∇ · v=0, (1)

in spherical coordinates. We use the Fourier transform

v(ω,x) ≡
∫

v(t,x)eiωtdt, (2)

where we use the same letter for the Fourier-transformed
variable with no ambiguity. The Fourier-transformed
flow equations in the frequency domain then read

−iωv=−ρ−1∇p+ν∇2v, ∇ · v=0. (3)

The study of the above equation is performed assum-
ing ω > 0. Once the solution is obtained we find using
v(−ω) = v∗(ω) that

v(t,x) =

∫ ∞

0

v(ω,x)e−iωt dω

2π
+ c.c., (4)

where c.c. stands for complex conjugate. We shall study
the solution in the exterior of a sphere with radius a. The
solution for the interior problem was provided in [23] and
has quite different properties due to the absence of far-
flow regime. We assume that the flow vanishes at infinity
and is prescribed at the sphere surface at r= a where r
is the radial coordinate.
Solutions with given frequency ω can be characterized

by the viscous penetration depth, δ=
√

2ν/ω. It provides
the characteristic length of penetration of vorticity gen-
erated at the boundaries, into the fluid bulk, see e.g. [3].
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The strength of the frequency term with respect to the
viscosity term in Eqs. (2) is determined by the dimension-
less Roshko number, Ro ≡ a2ω/ν, estimating the terms’
ratio, see the Introduction. The Stokes equations’ limit
holds at Ro → 0. The condition of negligibility of the
frequency term is

√
Ro≪ 1 and not Ro≪ 1, similarly to

the fundamental solution [1], see below. Frequency term
is a singular perturbation of the Stokes equations [24].
For Ro & 1 the unsteady term cannot be neglected.
Dimensionless variables—We will use dimension-

less variables by measuring velocity in units of aω, pres-
sure in units of ηω and coordinate in units of a. We des-
ignate dimensionless velocity by u and the dimensionless
pressure by p (we use the same letter with no ambiguity
below). We have

λ2u=−∇p+∇2u, ∇·u=0; λ2=−iRo=− ia
2ω

ν
. (5)

We define below the square root by λ = (1−i)
√

Ro/2. In
the limit Ro→ 0 Eqs. (5) reduce to steady Stokes equa-
tions and for Ro & 1 the unsteady term in the equations
cannot be neglected (more precisely the neglect is invalid

at
√
Ro & 1, see below). We look below for the general

solution of Eqs. (5) in spherical coordinates. The solu-
tion involves arbitrary constants that can then be fixed
once the values of u on the sphere r = 1 are considered
as prescribed.
General form of the pressure—We observe by tak-

ing divergence of the first of Eqs. (5) that pressure is a
harmonic function. Therefore it can be represented as,

p(r) =
∑

lm

clmYlm(θ, φ)

rl+1
, where

∑

lm

≡
∞
∑

l=1

l
∑

m=−l

, (6)

where we used the boundary conditions at infinity and
the spherical harmonics Ylm(θ, φ) are defined by

Ylm =

√

(2l+ 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ) exp (imφ) , (7)

where Pm
l are associated Legendre polynomials. We

use the multiplicative factor of [6] in the definition of
Ylm(θ, φ), so the following orthogonality relation among
the spherical harmonics reads
∫

YlmY
∗
l′m′dΩ =

∫ π

0

sin θdθ

∫ 2π

0

dφYlmY
∗
l′m′ = δll′δmm′ .

The term with l = 0 is omitted in Eq. (6) assuming that
there is no net mass flux to infinity (see the next subsec-
tion). The constant coefficients clm are to be determined
from the boundary conditions on the velocity. The coef-
ficients depend on λ as a parameter in the equation.

A. Qualitative behavior of the solution as

superposition of power-law and exponentially

decaying terms

A particular solution of Eqs. (5) for u, where p is con-
sidered as a source, is −∇p/λ2. We observe that the

solution diverges at ω → 0 and does not reduce to the
similar Lamb’s partial solution of the Stokes equations,
see [1] and below. Still the use of this particular solu-
tion in comparison to others is advantageous, because it
provides a straightforward decomposition of u into two
terms that have qualitatively different spatial behavior.
Indeed the general solution of Eqs. (5) can be constructed
as superposition of −∇p/λ2 and a solenoidal solution us

of vector Helmholtz equation

u = us −
∇p
λ2
, λ2us=∇2us, ∇·us=0. (8)

Solutions of the Helmholtz equation are known to de-
cay exponentially away from the source with exponent
given by real part of λ (e.g. the asymptotic behavior of
solutions of at large distances r is given by the exponen-
tial decay exp(−λr)). Thus, considering the boundary
conditions on the sphere as the source, us component
of the solution is negligible at distances r − 1 from the
sphere that are much larger than the dimensionless pen-
etration depth δ/a (we observed that the real part of λ is
√

Ro/2 = a/δ). The flow there is given by u ≈ −∇p/λ2.
It is potential and decays as a power law, see Eq. (6)
and below. It is remarkable that these conclusions can
be arrived at via qualitative study of the solutions. We
remark that inclusion of l = 0 term in Eq. (6) would lead
to finite flux ∝ ∇r−1 behavior of the flow at infinity.

B. Vector spherical harmonics

To complete the general solution of unsteady Stokes
equations one has to determine the general solution of
the vector Helmholtz equation, see Eqs. (6) and (8). This
is often achieved by using the vector spherical harmonics
(VSH) which generalize the ordinary harmonics to vector
case [21, 22, 39]. Easy to use definition of the VSH was
given in [6],

Ylm = r̂Ylm, Ψlm = r∇Ylm = θ̂∂θYlm +
φ̂∂φYlm
sin θ

,

Φlm=r×∇Ylm=−∇×(rYlm)= φ̂∂θYlm− θ̂∂φYlm
sin θ

, (9)

where ∇ is the three-dimensional gradient and r̂, θ̂, φ̂
are the unit vectors of the spherical coordinate system.
For instance,

Y10 =

√

3

4π
cos θ, Ψ10 = −θ̂

√

3

4π
sin θ, (10)

and we have that

−∇
(

Ylm
rl+1

)

=
(l + 1)Ylm−Ψlm

rl+2
. (11)

Thus the particular solution’s component of the general
solution −∇p/λ2 obeys

−∇p
λ2

=
∑

lm

clm
(l + 1)Ylm −Ψlm

λ2rl+2
. (12)
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Any vector field can be represented as a series in dimen-
sionless VSH [6]. We introduce the expansion of us

us=
∑

lm

(

crlm(r)Ylm+c
(1)
lm(r)Ψlm+c

(2)
lm(r)Φlm

)

, (13)

where crlm(r), c
(i)
lm(r) are certain functions of the radial

variable r only. The l = 0 term is omitted since Ψ00

and Φ00 vanish identically and cr00 = 0, see below and
Appendix A.

C. General solution

We solve the Helmholtz equation for us by the plug-
ging into it the expansion of us in the VSH and solving
the resulting system of linear ordinary differential equa-

tions for crlm(r), c
(i)
lm(r). The solution is presented in Ap-

pendix A. The radial coefficient functions can be written
via elementary functions producing the general solution

us=
exp(−λr)

r

√

π

2λ

∑

lm

(

l
∑

k=0

(l + k)!

k!(l − k)!(2λr)k

×
(

c̃rlmYlm

r
+ c̃lmΦlm

)

− c̃rlmΨlm

(l+1)r

(

l
∑

k=0

(l+k)!

k!(l−k)!(2λr)k

+
1

2l

l−1
∑

k=0

(l − 1 + k)!

k!(l − 1− k)!(2λr)k−1

))

. (14)

The solution is defined by two sets of constant coefficients
c̃rlm and c̃lm (one out of three sets for vector solutions is
not showing due to solenoidality) . It can be observed
that the solution is given by exp(−λr) times a series
which looks quite similar to the solution of the Laplace
equation, apart from the fact that each lm term involves
a polynomial Pl(λ

−1r−1) in negative integer powers of r
and not just a single power. We defined

Pl(x)≡
l
∑

k=0

(l+k)!xk

k!(l−k)!2k . (15)

This polynomial originates from the modified Bessel func-
tions Kν(x) encountered in the solution of the Helmholtz
equation with imaginary coefficient,

Kl+1/2(x)=

√

π

2x
e−xPl

(

1

x

)

. (16)

Thus elementary solutions χλ
lm of the scalar Helmholtz

equation which vanish at infinity are

χλ
lm ≡ −Kl+1/2(λr)Ylm√

r
, ∇2χλ

lm = λ2χλ
lm. (17)

We can rewrite Eq. (14) as

us=
∑

lm

(

c̃rlmKl+1/2(λr)Ylm

r3/2
+
c̃lmKl+1/2(λr)Φlm√

r

− c̃rlmΨlm

l(l + 1)r

(

lKl+1/2(λr)√
r

+λr1/2Kl−1/2(λr)

))

. (18)

The Bessel functions are also showing in the general so-
lution of the unsteady Stokes equations in the axially
symmetric [19] and general [20] cases. The use of Pl(x)
emphasizes that the solution is given in terms of the el-
ementary functions and does not involve fractional pow-
ers of r. (We found the relation between modified Bessel
functions of half-integer order and Bell polynomials [29]
less useful.) The full solution, given by superposition in
Eq. (8) reads

u=
∑

lm

((

c̃rlmKl+1/2(λr)

r3/2
+

(l + 1)clm
λ2rl+2

)

Ylm

+
c̃lmKl+1/2(λr)√

r
Φlm −Ψlm

( clm
λ2rl+2

+
c̃rlm

l(l+ 1)r

(

lKl+1/2(λr)√
r

+λr1/2Kl−1/2(λr)

)))

. (19)

We shall now proceed to calculation of the coefficients.

D. Coefficients of expansion

The free constants clm, c̃rlm and c̃lm are to be deter-
mined from the boundary conditions. We consider the
case when these are given by prescribed values of veloc-
ity on the unit sphere. We find by projecting the general
solution given by Eq. (19) onto the VSH and using the
VSH orthogonality relations of [6] that the constant co-
efficients obey
∫

urY
∗
lmdΩ= c̃rlmKl+1/2(λ) +

(l + 1)clm
λ2

, (20)

∫

u ·Ψ∗
lmdΩ=−c̃rlm

(

lKl+1/2(λ)+λKl−1/2(λ)
)

−clml(l+ 1)

λ2
,

∫

u ·Φ∗
lmdΩ= l(l + 1)c̃lmKl+1/2(λ),

where we used u · Y ∗
lm = urY

∗
lm. Multiplying the first

of the above equations by l and combining it with the
second equation gives

c̃rlm=− l
∫

urY
∗
lmdΩ +

∫

u ·Ψ∗
lmdΩ

λKl−1/2(λ)
. (21)

We thus find that

clm=
λ
(

lKl+1/2(λ)+λKl−1/2(λ)
)

(l+1)Kl−1/2(λ)

∫

urY
∗
lmdΩ

+
λKl+1/2(λ)

(l+1)Kl−1/2(λ)

∫

u·Ψ∗
lmdΩ. (22)

It is useful in calculations to observe the simple relation
between the coefficients clm and c̃rlm

clm=
λ2

l+1

∫

urY
∗
lmdΩ− λ2Kl+1/2(λ)c̃

r
lm

l+1
. (23)

Eqs. (20)-(22) provide the coefficients of the expansion
via projections of the surface velocity onto the VSH.
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These projections involve vectors and their direct deriva-
tion is cumbersome. The calculations are simplified by
using the following identities
∫

Y ∗
lm∇s · udΩ = 2

∫

Y ∗
lmurdΩ−

∫

u ·Ψ∗
lmdΩ,

∫

r=1

Y ∗
lm(∇×u)rdΩ = −

∫

u ·Φ∗
lmdΩ, (24)

derived in Appendix B. Above ∇s ·u is known as surface
divergence [1] at r = 1

∇s ·u=∇ · u− ∂ur
∂r

=2ur+
∂θ(sin θuθ)+∂φuφ

sin θ
. (25)

The first form in the above equation involves ∂rur(r = 1)
that is not provided by the boundary conditions. This
value can be obtained by using any continuation of the
boundary condition to r 6= 1 since the end result is in-
dependent of that continuation, as seen from the second
form. The utility of the first form is due to the fact that
in actual calculations a simple continuation of the bound-
ary conditions is often evident, see examples below. We
notice that the radial component of the curl of the flow
is determined uniquely by u(r = 1) so the integrals in
Eqs. (24) are uniquely determined by the flow at the sur-
face. The above formulae allow to find the coefficients
of the solution by projecting the scalar functions onto
the usual spherical harmonics. We have for the pressure
coefficients clm, defined in Eq. (6), that

clm=
λ
(

(l + 2)Pl(λ
−1)+λPl−1(λ

−1)
)

(l+1)Pl−1(λ−1)

∫

r=1

Y ∗
lmurdΩ

− λPl(λ
−1)

(l+1)Pl−1(λ−1)

∫

Y ∗
lm∇s · udΩ. (26)

Similarly we find

c̃lm=− 1

l(l+ 1)Kl+1/2(λ)

∫

r=1

Y ∗
lm(∇×u)rdΩ, (27)

and

c̃rlm=

∫

Y ∗
lm∇s · udΩ− (l + 2)

∫

urY
∗
lmdΩ

λKl−1/2(λ)
. (28)

The above formulas show that the complexity in finding
the coefficients of the expansion of the unsteady Stokes
equation is the same as of the usual Stokes equations -
the expansion of Lamb’s solution is determined by the
same projections of the boundary flow [1].

III. LAMB-TYPE FORM OF THE SOLUTION

In this section, we show that Lamb’s solution of the
steady Stokes equations ∇p = ∇2u, that was originally
provided without derivation [4], could be obtained in a
way similar to our approach above. Again pressure is
a harmonic function that for solutions vanishing at in-
finity can be written as p =

∑∞

l=1 p−l−1. Here p−l−1 is

a solid spherical harmonics given by linear combination
of r−l−1Ylm with m ranging from −l to l, see Eq. (6)
and [1]. A partial, solenoidal solution of the Stokes equa-
tions∇2un = ∇pn is αn

(

r2∇pn − 2nrpn/(n+ 3)
)

where
2αn(2n+ 3)(n + 1) = n+ 3, see exercise 4.1 in [1]. The
general solution for the steady Stokes flow vanishing at
r = ∞ is then written as

uLamb =

∞
∑

l=1

(

− (l− 2)r2∇p−l−1

2l(2l− 1)
+

(l + 1)rp−l−1

l(2l− 1)

)

+

∞
∑

l=1

(∇Φ−l−1 +∇× (rχ−l−1)) . (29)

Here the first line is a partial solution of ∇2u = ∇p and
the last line provides a form of the general solenoidal
solution of the vector Laplace equation ∇2u = 0 with
Φ−l−1, χ−l−1 solid spherical harmonics similar to p−l−1,
see [1].
Generalization of Lamb’s solution to finite

frequency—A main result of our work is that our gen-
eral solution can be written in the form similar to Lamb’s

u = −∇p
λ2

+ eλ(1−r)uH +∇× (reλ(1−r)X), (30)

where uH and X are certain vector and scalar fields,
respectively. Similarly to Lamb’s solution the first term
is a partial solution and the last two terms are solutions of
homogeneous equation where one of the terms is toroidal.
Toroidal component—We observe that using the

definition Φlm=−∇×(rYlm) we can write

∑

lm

c̃lmKl+1/2(λr)√
r

Φlm=
∑

lm

c̃lm∇×(rχλ
lm), (31)

where we used χλ
lm defined in Eq. (17). The last term

provides simple generalization of the last term in Lamb’s
solution to unsteady Stokes equations. We remark that
elementary solutions χλ

lm of the scalar Helmholtz equa-
tion generate elementary solenoidal solutions ∇×(rχλ

lm)
of the vector Helmholtz equation so the showing of the
toroidal component in the solution seems inevitable.
Using the above identity we can introduce the decom-

position of us in Eqs. (8), (18) as

us=∇× (reλ(1−r)X) + eλ(1−r)uH , (32)

where the toroidal component of the solution X and uH

are defined by

X≡eλ(r−1)
∑

lm

c̃lmχ
λ
lm; uH ≡eλ(r−1)

∑

lm

c̃rlm
r3/2

(

Kl+1/2(λr)Ylm−
(

lKl+1/2(λr)+λrKl−1/2(λr)
)

Ψlm

l(l+ 1)

)

.

The superscript H refers to exp(λ(1 − r))uH being a
solenoidal solution of the vector Helmholtz equation,
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∇2
(

exp(λ(1 − r))uH
)

= λ2 exp(λ(1 − r))uH . We ob-
serve from Eqs. (27) and (16) that X can be written as

X=
∑

lm

ctlm
Pl(λ−1)

Pl

(

1

λr

)

Ylm(θ, φ)

r
, (33)

where the toroidal field’s coefficients ctlm are independent
of the frequency

ctlm=
1

l(l + 1)

∫

r=1

Y ∗
lm(∇×u)rdΩ. (34)

We observe from Eq. (15) that at λ → 0 we have
Pl((λr)

−1)/Pl(λ
−1) = r−l . Thus X has regular behav-

ior in the limit of small λ which reproduces the Lamb’s
toroidal term,

X(λ = 0)=
∑

lm

ctlmYlm(θ, φ)

rl+1
. (35)

Thus the toroidal field in Eq. (32) can be considered
as analytic continuation of the corresponding term in
Lamb’s solution to finite frequency. This term is asso-
ciated with oscillatory rotations in the boundary condi-
tion, see the solution for oscillatory rotation of a rigid
sphere below.
Recovering Lamb’s solution from finite fre-

quency solution—In contrast with the toroidal term,
the first two terms in the RHS of Eq. (30) are not ana-
lytic continuation to finite frequency of the correspond-
ing terms in Lamb’s solution, see below. For instance
the partial solution, given by the first term in the RHS
of Eq. (30), diverges at λ → 0 instead of converging to
Lamb’s partial solution. We demonstrate however that
the sum of the first two terms in Eq. (30) converges to
the sum of the first two terms in Eq. (29). We have using
the definition of uH above and Eqs. (6) and (23) for p
that

eλ(1−r)uH−∇p
λ2

= −∇
∑

lm

Ylm(θ, φ)
∫

urY
∗
lmdΩ

(l + 1)rl+1

+
∑

lm

Cr
lm

(

∆(r)Ylm(θ, φ)r̂

λKl−1/2(λ)rl+2
− ∇Ylm(θ, φ)

Kl−1/2(λ)

×
(

∆(r)

λ(l + 1)rl+1
− r1/2Kl−1/2(λr)

l(l+ 1)

))

, (36)

where ∇ is the three dimensional gradient operator. We
introduced ∆(r) ≡ rl+1/2Kl+1/2(λr)−Kl+1/2(λ) that
vanishes at the surface r = 1 and rescaled coefficients
Cr

lm≡ c̃rlmλKl−1/2(λ) that by Eq. (28) obey

Cr
lm=

∫

Y ∗
lm∇s ·udΩ−(l+2)

∫

urY
∗
lmdΩ. (37)

We consider the zero frequency limit of Eq. (140). We
use the first terms of the Taylor expansion

λKl+1/2(λr)

Kl−1/2(λ)
=
λ exp (λ(1 − r))√
rPl−1 (λ−1)

Pl

(

1

λr

)

=
2l− 1

rl+1/2

+
λ2

2

(

2l − 1

(2l − 3)rl+1/2
− 1

rl−3/2

)

+ o (λ) , (38)

where the derivatives of the function on the LHS at λ = 0
are obtained by observing that the identity

(

λKl+1/2(λr)

Kl−1/2(λ)

)

λ

=
λKl+1/2(λr)Kl−3/2(λ)

K2
l−1/2(λ)

−λrKl−1/2(λr)

Kl−1/2(λ)
,

that can be proved by using the formulas for derivatives
of the modified Bessel functions. We find that

eλ(1−r)uH − ∇p
λ2

=
∑

lm

(

−∇Ylm(θ, φ)
∫

urY
∗
lmdΩ

(l + 1)rl+1

+
Cr

lm

2rl

(

r̂Ylm
r2

−r̂Ylm− ∇Ylm
(l + 1)r

+
(l − 2)r∇Ylm
l(l + 1)

))

.(39)

We observe that the pressure representation p =
∑∞

l=1 p−l−1 (valid at any frequency) where p−l−1 =

r−l−1
∑m=l

m=−l clmYlm, see Eq. (6), gives at λ = 0

∞
∑

l=1

(

− (l − 2)r2∇p−l−1

2l(2l− 1)
+

(l + 1)rp−l−1

l(2l− 1)

)

=
∑

lm

Cr
lm

(

(l − 2)∇Ylm
2l(l+ 1)rl−1

− r̂Ylm
2rl

)

. (40)

where we used that Eq. (23) gives clm=−(2l−1)Cr
lm/(l+

1) at λ = 0. We conclude that

lim
λ→0

(

eλ(1−r)uH − ∇p
λ2

)

=

∞
∑

l=1

(

− (l− 2)r2∇p−l−1

2l(2l− 1)

+
(l+ 1)rp−l−1

l(2l− 1)
+∇Φ−l−1

)

(41)

where we introduced

Φ−l−1≡−
m=l
∑

m=−l

Ylm(θ, φ)

(l + 1)rl+1

(
∫

urY
∗
lmdΩ+

Cr
lm

2

)

, (42)

which by Eq. (30) reproduces Lamb’s solution given by
Eq. (29). In fact, the presented formulas provide useful
explicit form of the Lamb’s solution.
Difficulties in analytic continuation of Lamb’s

solution—We saw that despite that Eq. (30) generalizes
Lamb’s solution to a finite frequency, it does so not in
the term-by-term way. The reason for this is that finite-
frequency is a singular perturbation because at distances
larger than the viscous penetration depth, the finite-
frequency and zero-frequency solutions are very different
however small λ is. Other aspect of this difference is
that the first term in Eq. (30) has a power-law behavior
whereas the remaining terms decay exponentially with r:
both X and uH have power-law type dependence on r,
see Eq. (33) and equivalent form of uH given by

uH =
∑

lm

Cr
lm

(

r̂Ylm
λPl−1(λ−1)r2

Pl

(

1

λr

)

(43)

−
(

l

r
Pl

(

1

λr

)

+λPl−1

(

1

λr

)) ∇Ylm
l(l+ 1)λPl−1(λ−1)

)

,



7

as can be seen from Eqs. (15)-(16), (19) and (28). The
difference in behavior holds because pressure at finite fre-
quency still solves the Laplace equation however the ho-
mogeneous solution solves the vector Helmholtz equation.
Finally it must be observed that gradients of elementary
solutions, ∇χλ

lm, see Eq. (17) solve the vector Helmholtz
equation however have finite divergence at non-zero fre-
quency. This is the reason why uH term cannot be con-
structed as superposition of ∇χλ

lm terms.

IV. SMALL FREQUENCY CORRECTIONS TO

THE STEADY STOKES LIMIT

In this section we consider the flow at small but fi-
nite frequency and describe the corrections to the Stokes
limit.

A. Solution via frequency-independent coefficients

If we consider the solution’s dependence on the fre-
quency at fixed flow on the boundary, then the frequency
dependence comes both from the expansion coefficients
and the functional form of the solution. In many situ-
ations, including the low and high frequency limits, it
is advantageous to have a representation of the solu-
tion written via frequency-independent coefficients Ilm
defined by

Ilm(W ) =

∫

r=1

u ·W ∗
lmdΩ, (44)

where W is any of the vector spherical harmonics. We
rewrite u in Eq. (19) as

u=
∑

lm

ulm, ulm=AY
lmYlm+AΨ

lmΨlm+AΦ
lmΦlm, (45)

where we defined functions of radial coordinate

AY
lm=

(Ilm(Ψ)+lIlm(Y ))(Al(1)−rlAl(r))+Ilm(Y )

rl+2
,

AΨ
lm=(Ilm(Ψ)+lIlm(Y ))

(

Bl−1(r)

rl(l + 1)
− Al(1)−rlAl(r)

rl+2(l + 1)

)

− Ilm(Y )

rl+2(l + 1)
, AΦ

lm = Ilm(Φ)
Bl(r)

rl(l + 1)
, (46)

and we introduced

Al(r) =

√
rKl+1/2(λr)

λKl−1/2(λ)
, Bl(r) =

√
rKl+1/2(λr)

Kl+1/2(λ)
. (47)

B. Small frequency expansion

We study the solution in the limit of low frequency
assuming that the velocity field prescribed on the sphere
surface has a fixed functional form independent of the
frequency. The expansion is singular and its parameter

is
√
ω and not ω as would be the case if Eq. (3) could

be solved by a series in ω (thus summation of infinite
number of terms in such a series is done by our solution
implicitly). We study the solution up to quadratic order
in

√
ω by deriving the asymptotic expansion of ulm in

Eq. (45)

ulm = u0
lm + λu1

lm + λ2u2
lm + . . . , (48)

where dots stand for higher order terms. This expansion,
by definition, is a quadratic polynomial in λ. We observe
that the force acting on a sphere moving at a given time-
dependent velocity in the fluid is also quadratic in λ.
Hence interpretation of the terms can be transferred from
that in the study of the force [1].
The solution’s form given by Eqs. (45)-(46) reduces

the study to two functions Al and Bl defined after the
equations. We have the low-frequency expansions

rlAl(r)−Al(1) = −r
2 − 1

2
+

(r2 − 1)2

8(2l− 3)
λ2

+
δl1
6
(r − 1)2(1 + 2r)λ(1 + λ), (49)

and

Bl(r) =
1

rl
+ λ2

(1− r2)

2rl(2l − 1)
, l > 0, (50)

Bl−1(r)=
1

rl−1
+λ(1+λ)δl1(1 − r)+

λ2(1−r2)
2rl−1(2l−3)

.

We consider different order terms in λ.

C. Leading order: yet another form of general

solution of steady Stokes flow

We derived in the previous section Lamb’s solution for
the steady Stokes flow by taking the limit λ→ 0 in our so-
lution. In this subsection we study the same limit for de-
riving a different representation. We have from Eq. (45)
at λ = 0

u0
lm = aYlmYlm + aΨlmΨlm + aΦlmΦlm, (51)

where

aYlm =
(Ilm(Ψ) + lIlm(Y ))(r2 − 1) + 2Ilm(Y )

2rl+2
, (52)

aΨlm=
Ilm(Ψ)+lIlm(Y )

rll(l+1)
− aYlm
l+1

, aΦlm=
Ilm(Φ)

rl+1l(l+1)
.

Given a boundary condition on the steady Stokes flow
the coefficients Ilm, defined in Eq. (44), can be readily
obtained from Eqs. (24)-(25). This gives a general solu-
tion of steady Stokes flow which is seemingly missing in
the literature. We believe that it is simpler than several
representations provided in [1]. For instance the adjoint
method [1] represents the solution as expansion in the
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surface vector fields Alm,Blm,Clm defined as follows

Alm = lỸlmr̂ + ∂θỸlmθ̂ +
∂φỸlm
sin θ

φ̂, (53)

Blm = −(l+ 1)Ỹlmr̂ + ∂θỸlmθ̂ +
∂φỸlm
sin θ

φ̂,

Clm=
∂φỸlm
sin θ

θ̂−∂θỸlmφ̂; Ỹlm=(−1)mPm
l (cos θ)eimφ.

The above fields are linear combinations of the VSH. We
demonstrate how the transition between the expansions
can be made. It is easy to obtain

Ỹlmr̂ =
Alm −Blm

2l + 1
, (54)

∂θỸlmθ̂ +
∂φỸlm
sin θ

φ̂ =
(l + 1)Alm + lBlm

2l+ 1
.

We find using the definition in Eq. (7)

Ylm = ηlmỸlm, ηlm = (−1)m

√

(2l + 1)

4π

(l −m)!

(l +m)!
.

This gives by comparing Eqs. (54) and (9) that

Ylm =
ηlm

2l+ 1
(Alm −Blm), Φlm = ηlmClm,

Ψlm =
ηlm

2l + 1
((l + 1)Alm + lBlm). (55)

The inverse transformation is

Alm =
Ψlm + lYlm

ηlm
, Blm =

Ψlm − (l + 1)Ylm

ηlm
,(56)

and Clm = Φlm/ηlm. The advantage of the representa-
tion provided here is that the VSH, which are orthogonal
at each point, seem to be simpler than the surface vector
fields, which are not. Most significantly the coefficients of
the expansion are given by simple Eqs. (24). Similar ad-
vantages hold in comparison with other respresentations
in [1].

D. Leading order correction in frequency

Using Eqs. (49)-(51) in Eqs. (45)-(46) it is easy to find
that the linear term in λ appears only for l = 1 so that
u1
lm = δl1u

1
1m. We have

u1
1m =

(1 − r)

12r3
(I1m(Ψ) + I1m(Y ))

×((1 + r + 4r2)Ψ1m − 2(1 + r − 2r2)Y1m). (57)

This correction is proportional to square root of the fre-
quency similarly to correction for the fundamental solu-
tion of the unsteady Stokes equations [1]. In time domain
the correction is non-local and has the structure of the
Basset memory integral [1].

E. Next order, linear correction in frequency

We have using Eqs. (49)-(51) in Eqs. (45)-(46)

u2
lm = aYlmYlm+aΨlmΨlm+aΦlmΦlm (58)

where we defined functions of radial coordinate a(r)
(whose domain of definition for aΨ and aΦ is l > 0 due
to Ψ00 = Φ00 = 0) by

aYlm=−
(

(r2 − 1)2

8(2l − 3)
+
δl1(r − 1)2(1 + 2r)

6

)

(59)

× (Ilm(Ψ)+lIlm(Y ))

rl+2
; aΦlm =

(1− r2)Ilm(Φ)

2rl+1l(l + 1)(2l− 1)
,

aΨlm=(Ilm(Ψ)+lIlm(Y ))

(

δl1(1−r)
rl(l+1)

+
(1−r2)

2rll(l+1)(2l−3)

+
(r2 − 1)2

8(2l− 3)rl+2(l + 1)
+
δl1(r − 1)2(1 + 2r)

6rl+2(l + 1)

)

In time domain this correction is local.

V. FLOW AROUND AN OSCILLATING

SPHERE

General oscillatory motion of a rigid sphere can be de-
composed into the sum of oscillatory translations and ro-
tations. Both problems were solved previously. Here we
demonstrate that these problems give insight into which
properties of the boundary flow give rise to various terms
in the solution given by Eq. (30).

A. Periodic translations

The most well-known solution of unsteady Stokes equa-
tions (there are not so many) is the flow due to rigid
sphere’s oscillations in infinite fluid which was solved by
Stokes [1]. Here the flow on the sphere is given in fre-
quency domain by a constant complex vector U . In this
case both the surface divergence and radial component
of vorticity at r = 1 vanish. We find from Eq. (24) that
∫

u · Y ∗
lmdΩ =

∫

UrY
∗
lmdΩ,

∫

u ·Φ∗
lmdΩ = 0,

∫

u ·Ψ∗
lmdΩ = 2

∫

UrY
∗
lmdΩ. (60)

Thus the coefficients reduce to the calculation of
∫

UrY
∗
lmdΩ = Ux

∫

sin θ cosφY ∗
lmdΩ

+Uy

∫

sin θ sinφY ∗
lmdΩ+ Uz

∫

cos θY ∗
lmdΩ. (61)

The straightforward, yet cumbersome, calculations are
provided in Appendix C. It is found that the flow is de-
termined by l = 1 term of the series solution, i. e., ulm in
Eq. (45) is proportional to δl1 (similar fact holds for the
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counterpart problem for the steady Stokes flow). The
solution has the general structure provided in Eq. (30)
with

p=

(

1+λ+
λ2

3

)

3U ·r
2r3

, X = 0, (62)

uH =
3(1+λr) (U−3(U ·r̂)r̂)

2λ2r3
+

3 (U−(U ·r̂)r̂)
2r

.

Thus periodic translations of the sphere generate the flow
with zero toroidal component. The agreement with the
known solution is confirmed in Appendix C. We provide
for the reference below the surface traction which is asso-
ciated with the oscillations. This is given by the value of
σik r̂k on the particle surface where σik the stress tensor
[1, 30]

σik≡−pδik+
∂vi
∂xk

+
∂vk
∂xi

. (63)

It is found by direct calculation that

σr̂ = −3(1 + λ)U + λ2(U · r̂)r̂
2

. (64)

In the limit of λ → 0 this reproduces the constant trac-
tion of the Stokes flow −3U/2 whose surface integral
gives the Stokes force −6πU . Surface integral of the
above equation gives the force F on oscillating sphere

F = −6π(1 + λ+ λ2/9)U , (65)

cf. [1].

B. Small frequency expansion

It is of interest to consider the small frequency expan-
sion of the above solution. We have after tedious yet
straightforward calculation

u=
3(2 + 2λ+ λ2) (U+(U ·r̂)r̂)

8r
− λ(1 + λ)U

+
(2 + λ)2(U−3(U ·r̂)r̂)

16r3
+
3rλ2(3U−(U ·r̂)r̂)

16
, (66)

where we discarded terms of order (λr)3 and higher. The
expansion is in λr ≪ 1. It is singular with the expan-
sion parameter proportional to the square root of the fre-
quency and not the frequency itself, cf. above. The flow
obeys u(r = 1) = U in the considered order. The above
equation reduces at λ = 0 to the usual steady Stokes flow
caused by particle moving at the speed U .
The leading order correction in frequency in Eq. (66)

contains the constant term λU that does not decay with
the distance. Similar fact holds for the Green’s function
of the unsteady Stokes equations [1]. Remarkably a sim-
ilar constant correction to the Stokes flow is induced by
small but finite stratification [31]. The constant correc-
tion demands some care since in the presence of many
particles it could produce coherent phenomena. For in-
stance, consider a dilute solution of N particles in a fluid

volume whose linear size is much smaller than 1/λ (this
situation demands that 1/λ & 100 to allow for large dis-
tance between the particles). Since the particles are at
distance r ≫ 1 from each other than in the leading order
i−th particle induces uniform flow −λUi at the position
of other particles. Therefore if the particles oscillate in
the same direction, of which the simplest case is that
their oscillatory velocities coincide, Ui = U , then there
is constructive interference of the flows induced by differ-
ent particles. The total flow induced by other particles
at a position of one of the particles may be no longer a
small correction to the Stokes flow and there is a possibil-
ity for transition to coherent motion of all the particles.
The corresponding consistent study is beyond our scope
here.

C. Oscillatory rotation of a sphere

We consider another well-known solution of unsteady
Stokes equations, the oscillatory rotation of a sphere [1].
This problem gives an example of a purely toroidal flow.
In the frequency domain the flow on the surface of the

unit sphere is ω × r̂, where ω is a constant vector of
angular velocity. We find readily from Eq. (25), by using
ω × r as the boundary flow continuation to the whole
space, that ∇s · u = ∇ · u = 0. The radial component
of vorticity obeys at the surface (∇ × u)r = 2ωr. We
conclude from Eqs. (24) that the only non-zero projection
is
∫

u ·Φ∗
lmdΩ=−2

∫

r=1

Y ∗
lmωrdΩ=−2

∫

r=1

Y ∗
lmdΩ

× (ωx sin θ cosφ+ ωy sin θ sinφ+ ωz cos θ) . (67)

Calculations brought in Appendix D demonstrate that
the solution has the general form given by Eq. (30). Both
p and uH vanish and the flow is toroidal

u=
(1+λr)ω × r

(1+λ)r3
e−λ(r−1) = ∇× (reλ(1−r)X),

X =
(1+λr)ω · r
(1+λ)r3

e−λ(r−1). (68)

This agrees with the solution provided in [3]. The surface
traction is

σr̂ = −ω × r̂

(

3 +
λ2

1 + λ

)

, (69)

see e. g. [32]. The torque is readily found to be [1]

T = −8πω − 8πωλ2

3(1 + λ)
. (70)

The torque’s dependence on λ in this case is more com-
plex than the parabolic dependence of the force in the
problem considered in the previous section.
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VI. FAR FIELD BEHAVIOR OF THE GENERAL

SOLUTION

The decomposition u = us − λ−2∇p introduced in
Eq. (8) is very useful for understanding the long distance
behavior of the solutions. We observe that us decays
exponentially far from the sphere, cf. Eq. (16) so that

u = −∇p
λ2

+O(exp(−λr)), r ≫ δ. (71)

The formula for p is then provided by Eq. (6) with co-
efficients in Eq. (26). In non-degenerate case, where at
least one of c1m is non-zero, we have

p =
m=1
∑

m=−1

c1mY1m(θ, φ)

r2
+ o

(

1

r

)

, (72)

where the coefficients c1m are given by Eq. (26). We
observe by using the definitions of Y1m that in the lead-
ing order the pressure can be written as the solution for
sphere oscillating with effective velocity Ueff

p=

(

1+λ+
λ2

3

)

3Ueff ·r
2r3

, (73)

where we introduced

Ueff ≡
√

1

6π

(

1+λ+
λ2

3

)−1

∇ ((c1,−1−c11)x

−i (c1,−1+c11) y+
√
2c10z

)

, (74)

cf. Eq. (118). Thus at large distances any source of
boundary flow looks as an oscillating rigid sphere. This
is true if the above solution does not become trivial for
a given boundary flow, in which case higher order terms
must be considered leading to rotating sphere and similar
terms.

VII. AXIALLY SYMMETRIC CASE AND THE

SOLUTION OF RAO

We consider the reduction of our solution in the case
of axially symmetric flows with

u=u(r, θ)r̂+v(r, θ)θ̂, (75)

where u and v are the radial and polar components of
the flow respectively. This solution applies if the bound-
ary conditions at r = 1 have the form in the equation
above. The coefficients c̃lm vanish in this case, see the
last of Eqs. (24) and Eq. (34). Thus X component in the
solution given by Eq. (30) is zero. The coefficients clm
and c̃rlm vanish if m 6= 0. We find projecting the solution
given by Eq. (30) onto the radial direction that

u = −
∞
∑

l=1

(

Dl(λ)

rl+2
+
Fl(λ)Kl+1/2(λr)

r3/2

)

Pl(cos θ). (76)

where we used Yl0 = Pl(cos θ)
√

(2l + 1)/(4π), see
Eq. (7). We defined the coefficients

Dl≡−
√

2l+1

4π

(l+1)cl0
λ2

, Fl≡−eλ
√

(2l+1)λ

2

c̃rl0
π
. (77)

The explicit form of the coefficients is found by using
the formulas for cl0 and c̃rl0. Calculations brought in Ap-
pendix F give

Dl=− (2l+1)
(

lPl(λ
−1)+λPl−1(λ

−1)
)

2λPl−1(λ−1)

∫ 1

−1

Pl(x)u(x)dx

− (2l+ 1)Pl(λ
−1)

2λPl−1(λ−1)

∫ 1

−1

P 1
l (x)v(x)dx. (78)

The corresponding formula for Fl is readily inferred from
the relation between clm and c̃rlm given by Eq. (23). The
obtained solution reproduces the known solution of [19],
see details in the Appendix.

VIII. IDEAL FLOW AND HIGH FREQUENCY

EXPANSION

In this section we demonstrate that the ideal flow ap-
proximation, that is often postulated rather than derived,
can be obtained from our solution, including the correc-
tions in small but finite viscosity. The limit of small vis-
cosity corresponds to the large |λ| limit, see the definition
in Sec. II. In this limit δ becomes vanishingly small. The
flow outside a narrow boundary layer of width δ around
the sphere the flow is potential up to exponentially small
corrections in |λ|, see Eq. (30). In contrast, the asymp-
totic expansion of the potential, which is given by −p/λ2,
is a power series in |λ|−1. Hence, neglecting exponentially
small corrections, the expansion with respect to small
viscosity or large |λ| is obtained by expansion of the po-
tential which is determined by the pressure coefficients
clm, see Eq. (6). We have (cf. Eq. (71))

u = ∇ψ, ψ = ψ0 +
ψ1

λ
+
ψ2

λ2
+ . . . . (79)

In order to derive the asymptotic expansion of clm we
rewrite Eq. (26) as

clm=
λ2blm
l+1

+
λPl(λ

−1) ((l + 2)blm − dlm)

(l+1)Pl−1(λ−1)
, (80)

where we introduced the coefficients

blm ≡
∫

r=1

Y ∗
lmurdΩ, dlm ≡

∫

Y ∗
lm∇s ·udΩ. (81)

We will assume in the asymptotic expansions below that
blm and dlm are fixed i.e. the flow on the boundary sphere
is prescribed and we study how the flow that it generates
depends on the viscosity. We have from Eq. (16) that

Pl(λ
−1)

Pl−1(λ−1)
= 1 +

l

λ
+O

(

1

λ2

)

. (82)
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A. Ideal flow approximation

We find from the above that

clm=
λ2blm
l+1

+O (|λ|) . (83)

We conclude that in the leading order in small viscosity
we have

u = ∇ψ0, ψ0 = −
∑

lm

blmYlm(θ, φ)

(l + 1)rl+1
. (84)

Thus, in this limit the solution is fully determined by the
normal component of the flow ur. In fact, we have

∂rψ0(r = 1) =
∑

lm

Ylm(θ, φ)

∫

r=1

Y ∗
lmurdΩ, (85)

which demonstrates that the normal component of the
solution provided by Eq. (79) coincides with ur on the
sphere surface. We have recovered the prescription of the
ideal flow [3].

B. Corrections to ideal flow approximation

We consider small viscosity corrections to the ideal flow
approximation, which seemingly were not provided pre-
viously. We have from the above that

clm=
λ2blm
l+1

+
(λ+l) ((l+2)blm−dlm)

l+1
+O

(

1

|λ|

)

. (86)

We find that the corrections to the ideal flow ψ1 and ψ2

in Eq. (79) are given by

ψ1 =
∑

lm

(dlm−(l+2)blm)Ylm(θ, φ)

(l+1)rl+1
(87)

ψ2 =
∑

lm

l (dlm−(l+2)blm)Ylm(θ, φ)

(l+1)rl+1
= −∂r(rψ1).

Several things are to be observed about the correction.
It is proportional to square root of the viscosity and not
the viscosity itself. It involves tangential components of
the surface flow via the dlm coefficients. Finally, in con-
trast to the ideal flow approximation, the leading order
correction is not local in time. As can be seen by inverse
Fourier transform the flow in this order has memory and
cannot be written in terms of the instantaneous flow on
the surface (here we refer to arbitrary, not necessarily
periodic, time-dependent flow on the surface).

C. Force

The ideal flow approximation gives that the force on
the sphere is determined by pressure component of the

stress tensor only and is given by

Fid = −
∫

r=1

pr̂dΩ = −
∑

lm

clm

∫

r=1

Ylm(θ, φ)r̂dΩ

= −
∑

m

c1m

√

2π

3
(x̂(δm,−1 − δm,1)−iŷ(δm,−1 + δm,1)

+ẑ
√
2δm0

)

, (88)

where we used Eq. (146) from Appendix E. The same
Appendix shows that generally the force at any λ obeys
the parabolic dependence that can be written as

F =−λ2
√

π

6

(

x̂(b1,−1−b11)−iŷ(b1,−1+b11)+ẑ
√
2b10

)

+(1+λ)

√

3π

2
(x̂(d1,−1−3b1,−1−d11+3b11)

−iŷ(d1,−1−3b1,−1+d11−3b11)+ẑ
√
2 (d10−3b10)

)

. (89)

Comparison of the last two equations, using Eq. (83),
demonstrates that in the leading, quadratic, order, F and
Fid coincide, confirming the ideal flow prescription. In
higher orders F has also the viscous stress contributions,
see Appendix E.

IX. GENERAL SOLUTION OF BRINKMAN

EQUATIONS

The analysis proposed in this paper can be applied
directly to the study of the Brinkman equations

νv

k
+ ρ−1∇p = ν∇2v. (90)

These equations describe the flow in the porous medium
at low volume fraction of solids [27, 28] and can serve as
the starting point for the derivation of Darcy’s law. Here
k is the damping coefficient and ν/k is the permeability
[27], see [33] for recent discussion of the coefficients and
more references.
We observe that Eq. (19) provides the solution of

Eqs. (5) also when λ is a complex number whose square
is not purely imaginary. In the case of ω = iν/k,
where λ2 = a2/k, Eq. (5) becomes the Brinkman equa-

tions. Thus Eq. (19) with λ = a/
√
k is the general

solution of these equations and all the rest of our con-
siderations can be transferred by analytic continuation.
At large distances we find the well-known Darcy’s law
v = −(k/a2)∇p.
In fact, the general solution presented here can be used

to study the more general equations
(

−iω +
ν

k

)

v + ρ−1∇p = ν∇2v, (91)

that interpolate between the unsteady Stokes and
Brinkman equations. The above equations, which are
called the unsteady Brinkman equations, can be consid-
ered as a model of unsteady flow in the porous medium
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[34]. It is plausible that they can actually be derived from
unsteady Stokes equations in the porous medium simi-
larly to the derivation of the usual Brinkman equations
from time-independent Stokes equations, see references in
[28]. However, this derivation is beyond our scope here.
Eqs. (91) can also be studied by analytic continuation of
our solution to a complex frequency which is neither real
nor imaginary.
We remark that a complete solution of the time-

independent Brinkman equations was proposed previ-
ously in [35] and its generalization for the unsteady case
in [34]. The properties of the solutions are not readily
available from the proposed representations. Thus the
reduction from the Brinkman equations to the Darcy’s
law is not as immediate as in solutions proposed here.

X. CONCLUSIONS AND FUTURE WORK

We presented the general solution of unsteady Stokes
equations as a series in vector spherical harmonics (VSH).
The solution allows to fix the flow in the whole space
given the values of the flow at a spherical boundary. The
solution has a Lamb-type form and is given by Eq. (30)
which is a main result of this paper.
The solution’s form as a superposition of a partial so-

lution and a solenoidal solution of a vector Helmoholtz
equation provides unique insights into the general be-
havior of the solutions. Thus it is immediate that at dis-
tances from the sphere that are much larger than the vis-
cous penetration depth a generalized Darcy’s law holds,
u = −i∇p/(ρω). The pressure is a series of spherical
harmonics whose coefficients are determined by projec-
tions of the surface radial velocity and divergence on the
spherical harmonics. In the leading order in the distance
the far flow is that due to an oscillating rigid sphere with
an effective amplitude of the oscillations.
Both limits of large and small frequency are singular.

The solutions in these limits is given by an asymptotic se-
ries in 1/

√
Ro and

√
Ro, respectively. Here Ro = a2ω/ν

so the limits can also be interpreted as those of small and
large viscosity, respectively.
The leading order term in the small frequency expan-

sion is Lamb’s solution of the steady Stokes equations.
We also provide a different form of the solution of the
steady Stokes equations, similar to that in the adjoint
method [1]. The next order correction, proportional to√
Ro is peculiar - it consists of the VSH with l = 1 only.

It is not local in the time domain so the leading order
correction to the steady Stokes equations limit is non-
local. The next order, proportional to Ro and linear in
the frequency, is local in time.
The limit of Ro → ∞ can be considered as that of

viscosity going to zero. We prove that in the leading
order the flow is potential and can be derived from the
usual ideal flow prescription (this prescription is usually

unproved) [3, 25]. The next order corrections in 1/
√
Ro

are also potential. We provide explicit formulas for the
potentials of orders 1/

√
Ro and 1/Ro.

The power of the general solution, besides giving qual-
itative insights above, is that it can be used for solving
uniformly for unsteady Stokes flow caused by any bound-
ary condition. We provide some cases where the solution
can be applied.
A wide-spread situation is the case of a rigid particle,

considered as a sphere, in an external unsteady Stokes
flow e.g. a shear flow. Representing the solution as the
sum of the external flow and the perturbation flow due to
the particle, we find that perturbation flow obeys equa-
tions to which the solution presented here can be applied.
Thus the boundary flow is a sum of the external flow and
superposition of rigid translation and rotation. Further
conditions are implied by the mechanics. For instance if
the inertia of the particle is negligible then the conditions
of zero force and torque on the particle must be imposed.
Using the formulas for the force and the torque presented
in Appendix E, the general solution can be derived read-
ily.
Similar calculational scheme arises for the problem of

spherical squirmers, which is one of the most popular
model for swimming at low Reynolds number [36]. The
particle self propels by periodically changing its shape
that remains all the time close to a sphere. The flow
is then determined by the boundary conditions on the
moving envelope which in the leading order reduces to
periodic flow on the spherical boundary. The flow then
can be obtained similarly to the above case of rigid par-
ticle in external flow.
We can consider similarly the problem of unsteady mo-

tion of a slightly deformed sphere. Perturbation theory
in small deviations from sphericity leads to the problem
of unsteady Stokes equations with given boundary condi-
tions on the sphere, similarly to the steady Stokes coun-
terpart problem [2, 37]. Our solution can then be used
for deriving the terms of the perturbation series.
Other type of problems where our general solution can

be useful is many body problems. An example is a so-
lution of rigid spheres driven by external periodic flow.
Assuming that the solution is dilute, the total flow per-
turbation due to the particles is given by superposition
of perturbations of each particle. We demonstrated that
constructive interference between the single-particle per-
turbations is possible. Thus, collective phenomena can
be envisaged whose future study is intriguing. Our solu-
tion is also a good starting point for the corresponding
numerical algorithm design. The solution can be used
similarly to how in the case of steady Stokes equations
Lamb’s solution is used as a starting point for simulating
clusters of particles [18].
The above directions demonstrate that there a lot of

possibilities for future applications of the solution pre-
sented here. Thus we believe that our work provides a
significant contribution to the fluid mechanics.
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Appendix A SOLUTION OF VECTOR

HELMHOLTZ EQUATION

In this Appendix we provide details of derivation of
solution of vector Helmholtz equation for the subsection
II C. The curl of Eq. (13) reads [6],

∇× us =

∞
∑

l=1

l
∑

m=−l

(

− l(l+ 1)c
(2)
lmYlm

r
(92)

−
(

dc
(2)
lm

dr
+
c
(2)
lm

r

)

Ψlm +

(

dc1lm
dr

+
c
(1)
lm

r
− crlm

r

)

Φlm

)

.

Taking curl of the curl and using that incompressibility
implies ∇2us = −∇× (∇× us) we find,

∇2us =
∞
∑

l=1

l
∑

m=−l

(

l(l+ 1)Ylm

r

(

dc
(1)
lm

dr
+
c
(1)
lm

r
− crlm

r

)

+Ψlm

(

d

dr
+

1

r

)

(

dc
(1)
lm

dr
+
c
(1)
lm

r
− crlm

r

)

(93)

−Φlm

[

l(l + 1)c
(2)
lm

r2
−
(

d

dr
+

1

r

)

(

dc
(2)
lm

dr
+
c
(2)
lm

r

)])

.

The coefficients obey by λ2us = ∇2us that

λ2crlm − l(l + 1)

r

(

dc
(1)
lm

dr
+
c
(1)
lm

r
− crlm

r

)

= 0, (94)

λ2c
(1)
lm −

(

d

dr
+

1

r

)

(

dc
(1)
lm

dr
+
c
(1)
lm

r
− crlm

r

)

= 0,

λ2c
(2)
lm +

l(l + 1)c
(2)
lm

r2
−
(

d

dr
+

1

r

)

(

dc
(2)
lm

dr
+
c
(2)
lm

r

)

= 0.

The last equation can be written,

d2

dr2

(

rc
(2)
lm

)

−
(

λ2 +
l(l + 1)

r2

)

rc
(2)
lm = 0. (95)

The solution that decays at infinity (Reλ > 0) is,

c
(2)
lm =

c̃lmKl+1/2(λr)√
r

, (96)

where c̃lm is a constant and we the modified Bessel func-
tion Kl+1/2 is defined in Eqs. (15)-(16). The incompress-

ibility condition does not impose any restrictions on c̃
(2)
lm .

We have,

∇·u=

∞
∑

l=1

l
∑

m=−l

(

dcrlm
dr

+
2crlm
r

− l(l+1)c
(1)
lm

r

)

Ylm. (97)

The rest of Eqs. (94) give,

d(rc
(1)
lm )

dr
− crlm =

λ2r2crlm
l(l+ 1)

,

d2

dr2

(

rc
(1)
lm

)

− dcrlm
dr

= λ2rc
(1)
lm . (98)

Consistency of these equations demands that,

d
(

r2crlm
)

dr
= l(l + 1)rc

(1)
lm . (99)

which is equivalent to incompressibility condition, see
Eq. (97). Using this condition we find coupled equations,

d(rc
(1)
lm )

dr
= crlm +

λ2r2crlm
l(l+ 1)

,

d
(

r2crlm
)

dr
= l(l+ 1)rc

(1)
lm . (100)

Taking derivative of the last equation and using the first,

d2y

dr2
−
[

λ2 +
l(l+ 1)

r2

]

y = 0, (101)

where y = r2crlm. The solution that vanishes at infinity
is,

crlm =
c̃rlmKl+1/2(λr)

r3/2
, (102)

where c̃rlm is a constant. We find using Eq. (99),

c
(1)
lm =

c̃rlm
l(l+ 1)r

d
(

r1/2Kl+1/2(λr)
)

dr
. (103)

We conclude that general solution of Eqs. (5) has the
form,

u=
∞
∑

l=1

l
∑

m=−l

((

c̃rlmKl+1/2(λr)

r3/2
+

(l + 1)clm
λ2rl+2

)

Ylm

+

(

c̃rlm
l(l + 1)r

d
(

r1/2Kl+1/2(λr)
)

dr
− clm
λ2rl+2

)

Ψlm

+
c̃lmKl+1/2(λr)√

r
Φlm

)

, (104)

where we used Eqs. (8), (12). We can rewrite the above
by using

dKν(z)

dz
= −νKν(z)

z
−Kν−1(z),

which gives

(

r1/2Kl+1/2(λr)
)′

=− lKl+1/2(λr)+λrKl−1/2(λr)√
r

.

The usage of this identity in Eq. (104) gives Eq. (19).

Appendix B TRANSFORMATION OF THE

COEFFICIENTS

In this Appendix details for the identities that underly
the transformation of the coefficients of expansion in sub-
section IID, cf. Appendix of [38]. We introduce the field
ũ as the field which has zero radial component and has
r−independent azimuthal and polar components. It is
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set that ũ coincides with u on the sphere r = 1. We
have then

∫

u ·Ψ∗
lmdΩ =

∫

ũ ·Ψ∗
lmdΩ =

∫

r=1

ũ · ∇Y ∗
lmdΩ

=

∫

r=1

∇ · (ũY ∗
lm) dΩ−

∫

r=1

Y ∗
lm∇ · ũdΩ. (105)

We use that by divergence theorem

0 =

∫

x<1

∇ · (ũY ∗
lm) dV =

∫ 1

0

rdr (∇ · (ũY ∗
lm))r=1 dΩ

=
1

2

∫

r=1

∇ · (ũY ∗
lm) dΩ. (106)

We conclude from the above that
∫

u·Ψ∗
lmdΩ=−

∫

Y ∗
lm

(

∂(uθ sin θ)

∂θ
+
∂uφ
∂φ

)

dθdφ,(107)

where we used ∇· ũ in spherical coordinates. We develop
a similar formula for
∫

u·Φ∗
lmdΩ=−

∫

r=1

ũ · ∇×(rY ∗
lm)dΩ

=

∫

r=1

∇ · (ũ×(rY ∗
lm)) dΩ−

∫

r=1

Y ∗
lmr · ∇×ũdΩ,(108)

where we observed that radial component of the vector
field ũ×(rYlm) is zero and other components depend on
r linearly. We have similarly to the above

0 =

∫

x<1

∇ · (ũ×(rY ∗
lm)) dV =

∫ 1

0

r2drdΩ (109)

× (∇ · (ũ×(rY ∗
lm)))r=1 =

1

3

∫

r=1

∇ · (ũ×(rY ∗
lm)) dΩ.

We conclude that
∫

u·Φ∗
lmdΩ=

∫

r=1

Y ∗
lm

(

∂uθ
∂φ

− ∂(uφ sin θ)

∂θ

)

dθdφ,(110)

where we used curl in spherical coordinates. The above
gives Eq. (24).

Appendix C OSCILLATING SPHERE PROBLEM

Here we provide the calculations that reproduce the
known solution for the flow around an oscillating sphere
used in Sec. V. We observe that the first two terms in
the VSH expansion of the solution are non-zero only if
m = 1 or m = −1. We use

Yl1 =

√

(2l + 1)

4πl(l+ 1)
P 1
l (cos θ) exp (iφ) = −Y ∗

l,−1,(111)

and that definition of Pm
l implies

∫

√

1− x2P 1
l (x)dx = −

∫

(1− x2)P ′
l (x)dx

= −2

∫

xPl(x)dx = −4δl1
3
. (112)

This gives

∫

sin θ cosφYlmdΩ =

√

2π

3
δl1(δm,−1 − δm,1),

∫

sin θ sinφYlmdΩ = −i
√

2π

3
δl1(δm,−1 + δm,1).(113)

We also have
∫

cos θY ∗
lmdΩ=2δl1δm0

√

π/3 that is readily
confirmed by using the first of Eqs. (10). We conclude
that

∫

U ·Y ∗
lmdΩ=

∫

u·Ψ∗
lmdΩ

2
=

√

2π

3
(Ux+iUy) δl1δm,−1

−
√

2π

3
(Ux − iUy)δl1δm,1 + 2

√

π

3
Uzδl1δm0. (114)

We find the coefficients clm. We have from Eq. (26)

clm=

(

λ2

2
+

3λK3/2(λ)

2K1/2(λ)

)

√

2π

3
δl1 ((Ux + iUy) δm,−1

−(Ux − iUy)δm,1 +
√
2Uzδm0

)

. (115)

We observe from Eq. (16) that

K1/2(λ)=

√

π

2λ
e−λ, λK3/2(λ)=

√

π

2λ
(1+λ)e−λ.(116)

We obtain

clm=

(

1 + λ+
λ2

3

)

√

3π

2
δl1 ((Ux + iUy) δm,−1

−(Ux − iUy)δm,1 +
√
2Uzδm0

)

. (117)

We find from Eq. (6) that the pressure is

p=
3

4r2

(

1+λ+
λ2

3

)

(

(Ux+iUy) sin θe
−iφ +(Ux−iUy)

× sin θ exp (iφ)+2Uz cos θ)=

(

1+λ+
λ2

3

)

3U ·r
2r3

, (118)

where we used P 1
1 (cos θ) = − sin θ. For finding the ve-

locity field it remains to obtain c̃rlm since c̃lm = 0 by
∫

u ·Φ∗
lmdΩ=0, see the last of Eqs. (20). We have from

Eq. (28) that

c̃rlm=−3
∫

u · Y ∗
lmdΩ

λK1/2(λ)
=
(

−
√
3 (Ux + iUy) δl1δm,−1

+
√
3(Ux − iUy)δl1δm,1 −

√
6Uzδl1δm0

) 2 exp(λ)√
λ

.(119)

We find using Eqs. (8) and (118) that the flow is given
by

u = us −∇
(

1+λ+
λ2

3

)

3U ·r
2λ2r3

, (120)
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where us is a solution of the vector Helmholtz equation
which according to Eqs. (18) and (116) is given by

us=

1
∑

m=−1

(

c̃r1mK3/2(λr)r̂Y1m

r3/2
(121)

− c̃
r
1mλr

1/2K1/2(λr)

2

(

1+
1

λr
+

1

(λr)2

)

∇Y1m
)

.

The dependence on the coefficients reduces to
∑1

m=−1 c̃
r
1mY1m as seen by rewriting the above as

us=
r̂

r2

√

π

2λ

(

1

λr
+1

)

e−λr
1
∑

m=−1

c̃r1mY1m (122)

−λ
1/2

2

√

π

2
e−λr

(

1+
1

λr
+

1

(λr)2

)

∇
1
∑

m=−1

c̃r1mY1m.

We find from Eqs. (26)-(28) that

c̃r1m
c1m

= − 6

λ2
(

3K3/2(λ)+λK1/2(λ)
)

= −
√

2

πλ

2 exp(λ)

1 + λ+λ2/3
. (123)

We conclude that

1
∑

m=−1

c̃r1mY1m = −
√

2

πλ

2 exp(λ)

1 + λ+λ2/3

1
∑

m=−1

c1mY1m

= −
√

2

πλ

2 exp(λ)r2p

1 + λ+λ2/3
= −

√

2

πλ
3 exp(λ)U ·r̂, (124)

where we used Eqs. (6) and (118). We obtain using the
above in Eq. (122) that

us=−
(

1

λr
+1

)

3 exp(λ(1 − r))(U ·r̂)r̂
r2λ

(125)

+
3 exp(λ(1 − r))

2

(

1+
1

λr
+

1

(λr)2

)

U−(U ·r̂)r̂
r

,

which can be rewritten as

us=
3 exp (−λ(r − 1))

2λ2
(126)

×
(

(1+λr) (U−3(U ·r̂)r̂)
r3

+
λ2 (U−(U ·r̂)r̂)

r

)

.

We conclude that the flow induced by an oscillating
sphere is given by l = 1 term of the series solution, sim-
ilarly to the counterpart problem for the steady Stokes
flow.

A Comparison with known solution

We compare the above with the solution brought in [1]
which can be written as (r̂ ≡ r/r)

u=
3

2λ2

(

1+λ+
λ2

3
+

1

λ2

(

eλ−1−λ−λ
2

3

)

∇2

)

(127)

×
(

(1− (1 + λr) exp(−λr)) 2(U · r̂)r̂
r3

+
(

(1+λr+(λr)2) exp(−λr)−1
) U−(U ·r̂)r̂

r3

)

.

We remark that [1] has a typo of multiplicative factor λ.
We observe that Laplacian of terms that do not contain
the exponential factors is proportional to

∇2 3r̂ir̂k − δik
r3

= ∇2∇i∇k
1

r
= 0. (128)

The Laplacian of the exponential terms is proportional
to

eλr∇2e−λr

(

(1+λr)
U−3(U ·r̂)r̂

r3
+(λr)2

U−(U ·r̂)r̂
r3

)

=

(

λ2 − 2λ

r

)(

(1+λr)
U−3(U ·r̂)r̂

r3
+(λr)2

U−(U ·r̂)r̂
r3

)

−2λ∂r

(

(1+λr)
U−3(U ·r̂)r̂

r3
+(λr)2

U−(U ·r̂)r̂
r3

)

+∇2

(

(1+λr)
U−3(U ·r̂)r̂

r3
+(λr)2

U−(U ·r̂)r̂
r3

)

. (129)

We find taking the derivatives

eλr∇2e−λr

(

(1+λr)
U−3(U ·r̂)r̂

r3
+(λr)2

U−(U ·r̂)r̂
r3

)

=

(

λ2 − 2λ

r

)(

(1+λr)
U−3(U ·r̂)r̂

r3
+(λr)2

U−(U ·r̂)r̂
r3

)

+2λ

(

(3+2λr)
U−3(U ·r̂)r̂

r4
+(λr)2

U−(U ·r̂)r̂
r4

)

−4λ (U−3(U ·r̂)r̂)
r4

− 2λ2
U−3(U ·r̂)r̂

r3

=
λ2(1+λr) (U−3(U ·r̂)r̂)

r3
+
λ4 (U−(U ·r̂)r̂)

r
. (130)

We find collecting the terms that

u=
3

2λ2

(

1+λ+
λ2

3

)(

(1− (1 + λr) exp(−λr)) 2(U · r̂)r̂
r3

+
(

(1+λr+(λr)2) exp(−λr)−1
) U−(U ·r̂)r̂

r3

)

+
3

2λ2

(

eλ−1−λ−λ
2

3

)

e−λr

×
(

(1+λr) (U−3(U ·r̂)r̂)
r3

+
λ2 (U−(U ·r̂)r̂)

r

)

=
3

2λ2

(

1+λ+
λ2

3

)

3(U · r̂)r̂ −U

r3
+

3 exp (−λ(r − 1))

2λ2

×
(

(1+λr) (U−3(U ·r̂)r̂)
r3

+
λ2 (U−(U ·r̂)r̂)

r

)

. (131)
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It is seen that the final formula is rather simple and u(r =
1) = U is readily checked. We can write the solution
given by Eq. (131) in the form given by Eq. (8)

u = us −
∇p
λ2
, p = −3

2

(

1+λ+
λ2

3

)

(U · ∇)
1

r
, (132)

where us is a solution of the Helmholtz equation which
can be readily seen to agree with Eq. (126). We conclude
that the solution by the series and the ordinary solutions
agree.
We remark that the solution can also be written in

concise form which can be inferred from [30, 40]

u = (U · ∇)∇ψ −U∇2ψ,

ψ =
3

2λ2r

(

1+λ+
λ2

3
− exp(λ(1− r))

)

. (133)

that can be readily confirmed to agree with other forms.
This form expresses the solution via a single scalar func-
tion ψ of the radial variable similarly to [3]. We have

us =
(

U∇2 − (U · ∇)∇
) 3 exp(λ(1 − r))

2λ2r
. (134)

Appendix D OSCILLATORY ROTATIONS OF

THE SPHERE

In this Appendix the details of the calculations for the
oscillatory rotations of the sphere, considered in subsec-
tion VC, are provided. It is readily seen that

∫

sin θ cosφY ∗
lmdΩ = π(δm,1 − δm,−1)

√

(2l + 1)

4πl(l+ 1)

×
∫

P 1
l (cos θ) sin

2 θdθ,

∫

cos θY ∗
lmdΩ=2

√

π

3
δl1δm0,

where we have used

Yl1 =

√

(2l + 1)

4πl(l+ 1)
P 1
l (cos θ) exp (iφ) = −Y ∗

l,−1.(135)

We observe that the definition of Pm
l implies

∫

√

1− x2P 1
l (x)dx = −

∫

(1− x2)P ′
l (x)dx

= −2

∫

xPl(x)dx = −4δl1
3
, (136)

which gives
∫

sin θ cosφY ∗
lmdΩ =

√

2π

3
δl1(δm,−1 − δm,1),

∫

sin θ sinφY ∗
lmdΩ = i

√

2π

3
δl1(δm,−1 + δm,1). (137)

We conclude from the above and Eq. (20) that

−K3/2(λ)c̃lm =

∫

Y ∗
lmωrdΩ=

√

2π

3
(ωx + iωy) δl1δm,−1

−
√

2π

3
(ωx − iωy)δl1δm,1 + 2

√

π

3
ωzδl1δm0. (138)

This gives on using Eq. (18) and the definition of Φ in
Eq. (9) that

u=−K3/2(λr)

K3/2(λ)

√

2π

3r
r×∇ ((ωx + iωy)Y1,−1 (139)

−(ωx − iωy)Y11 +
√
2ωzY10

)

.

We find by using the definitions of Y1m and Y1,−1 = −Y ∗
11

that the expression in brackets equals ω · r̂. Finally using
the definition of K3/2(λ) in Eq. (116) we obtain Eq. (68).

Appendix E FORCE AND TORQUE VIA THE

EXPANSION COEFFICIENTS

In this Appendix, we provide the formulae for the force
and the torque on the sphere similar to those for the
general solution of steady Stokes equations [1].

A Difference from steady Stokes equations

For steady Stokes equations, that express the condition
of zero total force on any volume of inertialess fluid, the
force on the sphere of any radius is the same. This is
because the total force on the volume enclosed by any
two spheres vanishes. This leads to the possibility of
finding the force from asymptotic behavior of the flow
on an infinitely remote sphere. Thus the general series
solutions of the Stokes equations provide the force as a
single coefficient of the series that provides the leading
order term at large distances. Similar fact holds for the
torque [1].
In the case of the unsteady flow the situation is some-

what different and we have for the force F that the fluid
exerts on interior of the unit sphere

Fi =

∫

r=1

σirdS =

∫

x=R

σirdS −
∫

1<r<R

∇kσikdV

=

∫

r=R

σirdS − λ2
∫

1<r<R

uidV. (140)

where the stress tensor σik, defined in Eq. (63), obeys
∇kσik = λ2ui. The last, volume term, is proportional to
the frequency and absent for steady Stokes flows.

B Force and torque from reciprocal theorem

We can circumvent the direct calculation by using re-
ciprocal theorem [1] similarly to [32]. We observe that
for any dual flow obeying λ2v̂i = ∇kσ̂ik and incompress-
ibility condition we have the Lorentz identity

v̂i
∂σik
∂xk

=ui
∂σ̂ik
∂xk

,
∂(v̂iσik)

∂xk
=
∂(uiσ̂ik)

∂xk
. (141)

Here σ̂ik is the stress tensor of the dual flow defined sim-
ilarly to Eq. (63). We use as the dual flow the oscillating
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sphere solution considered in Sec. V. We find by integra-
tion of the above identity over the sphere exterior that

U

∫

r=1

σr̂dS = −
∫

r=1

u · 3(1 + λ)U + λ2(U · r̂)r̂
2

dS,

where we used Eq. (64). This equation must hold for any
U providing us with a simple formula for the force

F = −3(1 + λ)

2

∫

r=1

udS − λ2

2

∫

r=1

(u · r̂)r̂dS. (142)

We conclude that the most general dependence of the
force on λ is parabolic. The parabola has only two
free coefficients, F = λ2F1 + (1+λ)F2 where Fi are
frequency-independent and given by low moments of ve-
locity field. This is the same dependence on λ as for
oscillating sphere, see Eq. (65). The only difference is
that there are six free coefficients in the force and not
three. The interpretation of the terms and their form in
time domain are the same as for the oscillating sphere
problem, see e.g. [1, 3].
We can similarly obtain the torque. We use as the dual

flow the oscillatory rotation of the sphere considered in
the previous section. We have

∫

r=1

σr̂ ·(ω×r̂) dS=−
∫

r=1

u·(ω×r̂)

(

3+
λ2

1+λ

)

dS,

where we used Eq. (69). We find the torque T by de-
manding that this equation holds for any ω

T =−8πωeff − 8πωeffλ
2

3(1 + λ)
, (143)

where we introduced the effective angular velocity ωeff

as

ωeff ≡
3

8π

∫

r=1

r̂×udS, (144)

so that the torque formula looks as that for oscillating
rotations of a rigid sphere, see Eq. (70). Thus the torque
on the sphere generated by a general surface flow can be
described as resulting from rigid sphere rotations.

C Integrals’ calculation

The above integral formulas for the force and the
torque can be written in terms of the coefficients of the
expansion in the VSH. This is done by inserting into the
integrals the series expansion for u. The calculation de-
mands integrals of the VSH over the sphere. We consider

∫

YlmdΩ= x̂

∫

sin θ cosφYlmdΩ+ŷ

∫

sin θ sinφYlmdΩ

+ẑ

∫

cos θYlmdΩ. (145)

where we projected Ylm = r̂Ylm on the Cartesian unit
vectors. We find using Eqs. (138) that

∫

YlmdΩ=δl1

√

2π

3
(x̂(δm,−1−δm,1)−iŷ(δm,−1+δm,1)

+ẑ
√
2δm0

)

, (146)

This formula allows to find the first term in Eq. (140).
It is readily seen from the general soluton that at large
distances, considered in detail later,

p =
m=1
∑

m=−1

c1mY1m(θ, φ)

r2
+O(1/r3), (147)

and velocity is of order 1/r3. Thus the integral of the
surface traction over the surface of the sphere at infinity is
fully determined by the pressure. The viscous component
of the stress does not contribute in contrast with the
steady Stokes equations. We have

lim
R→∞

∫

x=R

σirdS = −
m=1
∑

m=−1

c1m

∫

r̂Y1m(θ, φ)dΩ

= −
√

2π

3

m=1
∑

m=−1

(x̂(c1,−1 − c11)−iŷ(c1,−1 + c11)

+ẑ
√
2c10

)

, (148)

where we used Eq. (146) with r̂Y1m = Y1m. We consider
the remaining integrals

∫

ΨlmdΩ= x̂

∫

x̂ ·ΨlmdΩ+ŷ

∫

ŷ ·ΨlmdΩ

+ẑ

∫

ẑ ·ΨlmdΩ, (149)

and similar integrals for Φlm. Performing calculations
similar to those that led to Eq. (146) we obtain

∫

ΨlmdΩ=2δl1

√

2π

3
(x̂(δm,−1 − δm,1)−iŷ(δm,−1 + δm,1)

+ẑ
√
2δm0

)

= 2

∫

YlmdΩ,

∫

ΦlmdΩ= 0. (150)

For finding the torque, given by Eq. (143), we must cal-
culate

∫

r=1

r̂×ΨlmdS= x̂

∫

(sin θ sinφẑ − cos θŷ) ·ΨlmdΩ

+ŷ

∫

(cos θx̂− sin θ cosφẑ) ·ΨlmdΩ

+ẑ

∫

(sin θ cosφŷ − sin θ sinφx̂) ·ΨlmdΩ, (151)
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and similar integral for Φlm. We find calculating the
integrals

∫

r=1

r̂×ΦlmdS=−2δl1

√

2π

3
(x̂(δm,−1 − δm,1)

−iŷ(δm,−1 + δm,1) + ẑ
√
2δm0

)

= −2

∫

r=1

YlmdS,

∫

r=1

r̂×YlmdS=

∫

r=1

r̂×ΨlmdS=0. (152)

Finally for finding the force and the torque via the expan-
sion coefficients we introduce the series representation for
u into Eqs. (142) and (143) and perform term-by-term
integration using the formulas above.

D Force via expansion coefficients

We obtain by setting r = 1 in Eq. (19) and using
Eq. (116) that inserting u into Eqs. (142) gives

F =−
√

2π

3

(

x̂(c1,−1−c11)−iŷ(c1,−1+c11)+ẑ
√
2c10

)

+π(1+λ)

√

λ

3
e−λ

(

x̂(c̃r1,−1− c̃r11)−iŷ(c̃r1,−1+ c̃
r
11)

+ẑ
√
2c̃r10

)

. (153)

It is seen from Eq. (146) that the first line of the above
equation equals to the force due to the pressure compo-
nent’s of the stress, −

∫

r=1
pr̂dΩ, cf. subsection VIII C.

Thus the last two lines describe the viscous component’s
contribution to the force.
The correspondence to the results holding in the limit

of the steady Stokes flow, λ → 0, is seen by observing
that Eq. (23) gives

c̃rlm≃− l+ 1

λ2Kl+1/2(λ)
clm + o (λ) . (154)

We find from Eq. (153) and (116) that

F ≃−
√
6π
(

x̂(c1,−1−c11)−iŷ(c1,−1+c11)+ẑ
√
2c10

)

.

This equation agrees with the formula implied by Lamb’s
solution of the steady Stokes equations, see e.g. [1, 2],
which is

F = −4π∇
(

r

m=1
∑

m=−1

c1mYlm(θ, φ)

)

= −
√
6π

×
(

x̂(c1,−1 − c11)−iŷ(c1,−1 + c11) + ẑ
√
2c10

)

, (155)

where we used the identity.

m=1
∑

m=−1

c1mYlm(θ, φ) =

√

3

4π
c10 cos θ −

√

3

8π
sin θ

× ((c11 − c1,−1) cosφ+ i(c11 + c1,−1) sinφ) . (156)

Returning to the general case, Eq. (153) does not make
it obvious that the force dependence on λ (see Eq (142))
is parabolic since it involves λ−dependent coefficients.
We rewrite the force via the frequency-independent coef-
ficients b1m and d1m defined in Eq. (81). We observe by
using the definition of K1/2(λ) in Eq. (28) that

c̃r1m=eλ
√

2

πλ
(d1m−3b1m) . (157)

Similarly using Eq. (80) and the definition of P1(x) in
Eq.(15) we have

c1m=
λ2b1m + (1+λ) (3b1m − d1m)

2
. (158)

We find Eq. (89) by using the above equations in
Eq. (153).

E Torque via expansion coefficients

The torque is found by inserting the expansion of u in
the VSH into Eq. (143) and making term-by-term inte-
gration. This gives

T =6

(

1+λ+
λ2

3

)

π√
3λ3

e−λ (x̂(c̃1,−1 − c̃11)

−iŷ(c̃1,−1 + c̃11) + ẑ
√
2c̃10

)

. (159)

It is readily seen that in the zero-frequency limit the
above reproduces the result for the steady Stokes flow
[1]. We remark that it is useful to employ in the demon-
stration that

∫

u ·Φ∗
1mdΩ=2c̃1mK3/2(λ) ∼ 2c̃1m

√

π

2λ3
.

The general λ−dependence of the torque is obtained
by observing that the usage of K3/2(x) = (1 +

1/x) exp(−x)
√

π/(2x) in Eq. (27) gives

c̃1m=− exp(λ)

2(1 + λ)

√

2λ3

π

∫

r=1

Y ∗
1m(∇×u)rdΩ. (160)

The usage of this equation in Eq. (159) reproduces
Eq. (143) with

ωeff =
1

4

√

3

2π

(

x̂(e−1 − e1)− iŷ(e−1 + e1) + ẑ
√
2e0

)

,

em ≡
∫

r=1

Y ∗
1m(∇×u)rdΩ. (161)

which provides explicit form of ωeff in Eq. (144) via
projections on Ylm.
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Appendix F AXIALLY SYMMETRIC CASE

In this Appendix we provide the details for the con-
sideration of the axially symmetric case in Sec. VII. We
observe using Eq. (25) and integration over φ that in the
axially symmetric case

1
√

π(2l + 1)

∫

Y ∗
l0∇s ·udΩ = 2

∫

Pl(cos θ)u sin θdθ

+

∫

Pl(cos θ)∂θ(sin θv)dθ. (162)

Performing integration by parts in the last term and us-
ing ∂θ [Pl(cos θ)] = P 1

l (cos θ) we find

1
√

π(2l + 1)

∫

Y ∗
l0∇s ·udΩ = 2

∫

Pl(cos θ)u sin θdθ

−
∫

P 1
l (cos θ)v sin θdθ. (163)

The use of this formula in Eq. (26) gives

cl0=
λ
√

π(2l + 1)Pl(λ
−1)

(l+1)Pl−1(λ−1)

∫ 1

−1

P 1
l (x)v(x)dx (164)

+
λ
(

lPl(λ
−1)+λPl−1(λ

−1)
)
√

π(2l+1)

(l+1)Pl−1(λ−1)

∫ 1

−1

Pl(x)u(x)dx.

where u(x), v(x) are defined as u(θ = arccosx) and v(θ =
arccosx), respectively. We obtain Eq. (78) for Dl from
the definition. For finding Fl we use

c̃rl0=

√

2λ

π

exp (λ)

Pl(λ−1)

(
∫

uY ∗
l0dΩ− (l+1)cl0

λ2

)

. (165)

see Eqs. (23) and (16). We find

c̃rl0=− exp (λ)

Pl−1(λ−1)

√

2(2l+ 1)

λ

(
∫ 1

−1

P 1
l (x)v(x)dx

+l

∫ 1

−1

Pl(x)u(x)dx

)

. (166)

We find using the above relations in Eq. (28) that

c̃rlm=
√

π(2l + 1)

∫

Y ∗
lm∇s ·udΩ− l

∫ 1

−1
Pl(x)u(x)dx

λPl−1(λ−1)
.(167)

thus

clm=
λ
(

lKl+1/2(λ)+λKl−1/2(λ)
)

(l+1)Kl−1/2(λ)

∫

u·Y ∗
lmdΩ

+
λKl+1/2(λ)

(l+1)Kl−1/2(λ)

∫

u·Ψ∗
lmdΩ=

λ2

l+1

∫

u·Y ∗
lmdΩ

−λ
2Kl+1/2(λ)c̃

r
lm

l+1
. (168)

We compare the general, not assuming any symmetry,
solution given by Eq. (104) with solution of Rao [19] for

axially symmetric flow. For solutions vanishing at infinity
it is given via the streamfunction ψ is

ψ=

∞
∑

l=1

(

Dl(λ)

rl
+Fl(λ)r

1/2Kl+1/2(λr)

)
∫ cos θ

−1

Pl(x)dx,

where the coefficients Dl and Fl are determined by the
boundary conditions. The flow is given by,

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
,

which gives,
The radial component of Eq. (104) is,

u0r=

∞
∑

l=1

l
∑

m=−l

(

c̃rlmKl+1/2(λr)

r3/2
+

l + 1

λ2rl+2

)

clmYlm, (169)

where we used Eq. (9). In the axially symmetric case
only the terms with m = 0 are non-vanishing giving

u0r= (170)
∞
∑

l=1

(

c̃rl0Kl+1/2(λr)

r3/2
+

l+ 1

λ2rl+2

)

cl0

√

2l + 1

4π
Pl(cos θ).

This agrees with the solution given by Eq. (76) in the
axially symmetric case if we identify

Dl(λ) = − (l + 1)cl0
λ2

√

2l+ 1

4π
,

Fl(λ) = −c̃rl0cl0
√

2l + 1

4π
. (171)

We check the remaining component of the velocity,

uθ =
∞
∑

l=1

(

lDl(λ)

rl+2
−Fl(λ)

r

d
(

r1/2Kl+1/2(λr)
)

dr

)

1

sin θ

∫ cos θ

−1

Pl(x)dx (172)

We use the identity [36],
∫ cos θ

−1

Pl(x)
dx

sin θ
=

∫ 1

−1

Pl(x)
dx

sin θ
−
∫ 1

cos θ

Pl(x)
dx

sin θ

=
∂θPl(cos θ)

l(l + 1)
. (173)

where we used
∫ 1

−1 Pl(x)dx = 0 for l > 0. Thus we can
write,

uθ =

∞
∑

l=1

(

lDl(λ)

rl+2
−Fl(λ)

r

d
(

r1/2Kl+1/2(λr)
)

dr

)

∂θPl(cos θ)

l(l+ 1)
. (174)

The polar component of Eq. (104) in the axially symmet-
ric case is,

u0θ=
∞
∑

l=1

(

c̃rl0
l(l+ 1)r

d
(

r1/2Kl+1/2(λr)
)

dr
− 1

λ2rl+2

)

cl0

√

2l + 1

4π
∂θPl(cos θ), (175)
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where we used Eq. (9). This agrees with Rao’s solution using Eq. (171) completing the proof.


