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A general approach of the automated algorithms for derivation of amplitude equations for dy-
namical and distributed systems is presented. A brief description of the Mathematica functions
designed using this approach is given. Application of the functions is illustrated by several
examples dealing with dynamical and distributed systems.
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1. Introduction

Amplitude equations describe behavior of evolu-
tionary systems in the vicinity of threshold, or crit-
ical values of parameters that mark a point of qual-
itative change in behavior, like a transition from
a quiescent state to convection, or from rigid me-
chanical equilibrium to vibration, or from a homo-
geneous to patterned state of a material medium.
Near the criticality, the behavior of systems of dif-
ferent physical origin is described by representa-
tive equations belonging to one of the universal
classes that are determined by the character of the
transition.

A common procedure of derivation of amplitude
equations starts from a certain system of evolution
equations symmetric to spatial translations and ro-
tations and time translations; a necessary condition
is that it does not include explicit dependence on
spatial coordinates and time. This underlying sys-
tem may be, in the order of ascending complexity,
a dynamical system (autonomous ODEs), an au-
tonomous distributed system described by PDEs but
not restricted by boundary conditions, and a dis-
tributed system with vertical structure constrained
by boundary conditions along some spatial coordi-
nates but retaining translational symmetry in other
(unconstrained) directions. A solution that retains
all symmetries of the underlying system is called
a basic state. This state may become unstable to
infinitesimal pertubations in a certain parametric
domain. The instability may be connected with the

emergence of new solutions with a more complicated
spatiotemporal structure.

In dynamical systems, possible transitions are
bifurcation of multiple stationary states (monotonic
bifurcation) or transition to oscillatory behavior
(Hopf bifurcation). If the phase trajectory of the
dynamical system remains in the vicinity of the ba-
sic state even after the latter becomes unstable,
it can be replaced there by certain reduced equa-
tions called normal forms [Guckenheimer & Holmes,
1983; Hale & Koçak, 1991]. In distributed systems
there are two more possibilities: transition to a sta-
tionary pattern (Turing bifurcation) or to a wave
pattern (Hopf bifurcation at nonzero wavenumber).
Like normal forms of dynamical systems, amplitude
equations describe behavior in the vicinity of the
basic state; they may include, however, also differ-
ential terms describing spatial inhomogeneities on
an extended scale or spatial modulation of a pri-
mary pattern.

There is a number of celebrated “universal”
equations which have been extensively studied in
physical literature. The general structure of these
equations can be often predicted by symmetry con-
siderations. Some of them were first suggested as
models, others were derived as rational approxima-
tions in a certain physical context, and then discov-
ered again in apparently unrelated problems. Al-
though these equations, strictly speaking, may be
valid only in a very limited parametric domain, they
retain a variety of dynamic behavior due to a high
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parametric sensitivity in the vicinity of a transi-
tion point. Parametric boundaries between regions
of qualitatively different dynamic behavior can be
drawn as relations between coefficients of amplitude
equations or normal forms. If these coefficients, in
their turn, are expressed through measurable physi-
cal parameters, the boundaries can be mapped upon
the actual parameter space, and then further con-
tinued into a region where universal equations are
no longer valid quantitatively but still faithfully de-
scribe qualitative features of behavior of a complex
nonlinear system.

It is important therefore not only to be able
to predict a general form of amplitude equations or
normal forms appropriate to different kinds of bi-
furcations but to have at hand reliable tools for ac-
tual computation of their coefficients, starting with
specific underlying evolution equations. The appli-
cable algorithms, known as center manifold meth-
ods in mathematical literature [Guckenheimer &
Holmes, 1983; Hale & Koçak, 1991], or elimination
of “slaved” variables in physical literature [Haken,
1987], are well established, at least in standard
cases. Actual computations are, however, repetitive
and time-consuming, and have been carried out in
scientific literature on a case-to-case basis. Only
very rarely can they be done manually by anybody
lacking Leverrier’s patience. Application of mod-
ern computer algebra systems — first, REDUCE
and MACSYMA, and later, MAPLE and Mathe-
matica — is an obvious remedy. It is difficult to
estimate, to what extent they are used nowadays
for the study of specific bifurcation problems, as it
is not always explicitly acknowledged in resulting
publications. A case-to-case application is, how-
ever, still arduous and inefficient, compared to the
realization of a general algorithm.

A MACSYMA-based (not fully automated) al-
gorithm for derivation of normal forms of dynamical
systems has been written by Rand and Armbruster
[1987]. Another well-known bifurcation analysis
package AUTO by Doedel, as well as the algorithm
by Guckenheimer et al. [1997] for the analysis of
Hopf bifurcation, are restricted to numerical track-
ing of solutions of dynamical systems. No general
computer-aided algorithms have been suggested so
far, to the best of the authors’ knowledge, for the
analysis of bifurcations in distributed systems.

This tutorial review describes a Mathematica-
based automated algorithm for the derivation of
amplitude equations for both dynamical and dis-
tributed systems in either symbolic or numerical

form. The algorithm makes use of Mathematica
capabilities as a programming language [Wolfram,
1991, 1996] that allows to define special functions
carrying out complicated tasks in response to sim-
ple and well-defined inputs.

In the course of our work on this algorithm,
we arrived at the conclusion that computations are
most efficient, in terms of CPU time and computer
resourses, when any specific bifurcation problem is
approached as a part of a broader class of prob-
lems leading to an amplitude equation of the same
structure. Accordingly, all computations are car-
ried out in two stages. The general algorithm based
on multiscale bifurcation expansion is implemented
by the function BifurcationTheory. The input of
this function must be given in a generalized form,
without specifying particular nonlinear functions,
eigenvectors, etc. The inderlying system should be
defined as a single operator equation where vari-
ous vectors or arrays are denoted by symbols rather
than being specified explicitly. The output depends
therefore only on the type of the bifurcation, appli-
cable symmetries and the desired order of expan-
sion. It includes the amplitude equation and unre-
solved expressions for its coefficients, written in a
generalized symbolic form and containing unimple-
mented inverse operators.

The next stage is the actual computation im-
plemented by the function CalculateCoefficient.
It takes the necessary data for a specific system and
uses them in the output of BifurcationTheory to
produce either explicit symbolic expressions for co-
efficients or their numerical values. Thus, the pro-
gram works much in the way as an intelligent math-
ematician would: first preparing general formulae
and then working out a specific example. This gives
an order of magnitude acceleration compared to an
earlier version of our algorithm [Pismen et al., 1996]
where amplitude equations containing explicit ex-
pressions for coefficients were computed directly for
specific problems.

The paper is organized as follows. Although
one and the same internal algorithm works for
dynamic and distributed systems, we start, for
pedagogical reasons, with a detailed treatment
of dynamical systems in Sec. 2. First, the
general algorithm based on multiscale bifurca-
tion expansion is outlined, and then the function
BifurcationTheory designed to implement this al-
gorithm is introduced and applied to both mono-
tonic and Hopf bifurcations. This is followed by
specific examples.
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Starting from Sec. 3, we repeat the same scheme
for distributed systems. The general algorithm is
outlined in Sec. 3 for a problem written in the most
general nonlinear operator form. In Sec. 4, the func-
tion BifurcationTheory is applied to reaction–
diffusion problems, followed by specific examples of
computation of coefficients.

In Sec. 5, we consider along the same lines
some problems involving convection that cannot
be reduced to a reaction–diffusion form. Resonant
and algebraically degenerate cases are discussed in
Sec. 6. The primary cause of degeneracy in dis-
tributed systems with two unrestrained direction
is rotational symmetry that makes excitation of
stationary inhomogeneities or waves with different
directions of the wavenumber vector. Strong res-
onances may involve in such systems three wave-
forms in the case of a monotonic (Turing), and four
waveforms in the case of a wave (Hopf) bifurca-
tion. We shall also give an example of a paramet-
ric (“accidental”) degeneracy involving mixed Hopf
and Turing modes. The algorithm is applicable only
when the degeneracy is algebraic but not geometric.
The latter case requires essential modification of the
multiscale expansion procedure, and is outside the
scope of this communication.

2. Bifurcations of Dynamical Systems

2.1. Multiscale expansion

The standard general algorithm for derivation of
amplitude equations (normal forms) is based on
multiscale expansion of an underlying dynamical
system in the vicinity of a bifurcation point. Con-
sider a set of first-order ordinary differential equa-
tions in Rn:

du/dt = f(u, R) , (1)

where f(u; R) is a real-valued n-dimensional
vector-function of an n-dimensional array of dy-
namic variables u, that is also dependent on an
m-dimensional array of parameters R. We ex-
pand both variables and parameters in powers of
a dummy small parameter ε:

u = u0 + εu1 + ε2u2 + · · · ,
R = R0 + εR1 + ε2R2 + · · ·

(2)

Next, we introduce a hierarchy of time scales tk
rescaled by the factor εk, thereby replacing the func-
tion u(t) by a function of an array of rescaled time

variables. Accordingly, the time derivative is ex-
panded in a series of partial derivatives ∂k ≡ ∂/∂tk:

d

dt
= ∂0 + ε∂1 + ε2∂2 + · · · . (3)

Let u = u0(R0) be an equilibrium (a fixed
point) of the dynamical system (1), i.e. a zero of
the vector-function f(u; R) at a point R = R0 in
the parametric space. The function f(u; R) can be
expanded in the vicinity of u0, R0 in Taylor series
in both variables and parameters:

f(u; R) = fu(u− u0) +
1

2
fuu(u− u0)2

+
1

6
fuuu(u− u0)3 + · · · + fR(R−R0)

+ fuR(u− u0)(R−R0)

+
1

2
fuuR(u− u0)2(R−R0) + · · · .

(4)

The derivatives with respect to both variables and
parameters fu = ∂f/∂u, fuu = ∂2f/∂u2, fR =
∂f/∂R, fuR = ∂2f/∂u∂R, etc. are evaluated at
u = u0, R = R0.

Using Eqs. (2)–(4) in Eq. (1) yields in the first-
order

∂0u1 = fuu1 + fRR1 . (5)

The homogeneous linear equation

Lu1 ≡ (fu − ∂/∂t0)u1 = 0 (6)

obtained by setting in Eq. (5) R1 = 0 governs
the stability of the stationary state u = u0 to in-
finitesimal perturbations. The state is stable if all
eigenvalues of the Jacobi matrix fu have negative
real parts. This can be checked with the help of
the standard Mathematica function Eigenvalues.
Computation of all eigenvalues is, however, super-
fluous, since stability of a fixed point is determined
by the location in the complex plane of a leading
eigenvalue, i.e. with the largest real part. Generi-
cally, the real part of the leading eigenvalue vanishes
on a codimension one subspace of the parametric
space called a bifurcation manifold. The two types
of codimension one bifurcations that can be located
by local (linear) analysis are a monotonic bifurca-
tion where a real leading eigenvalue vanishes, and
a Hopf bifurcation where a leading pair of complex
conjugate eigenvalues is purely imaginary. Addi-
tional conditions may define bifurcation manifolds
of higher codimension.



Computer Tools for Bifurcation Analysis 987

2.2. Monotonic bifurcation

2.2.1. Fold bifurcation

A monotonic bifurcation is also a bifurcation of
equilibria of the dynamical system (1). Setting u1

= const, i.e. ∂0u1 = 0, allows to find a shift of
the stationary solution due to small variations of
parameters

u1 = −f−1
u fRR1 . (7)

The n ×m array f−1
u fR is recognized as the para-

metric sensitivity matrix. Continuous dependence
on parameters can be used to construct a branch of
equilibria which terminates at a bifurcation point
R0.

On a monotonic bifurcation manifold, the ma-
trix fu has no inverse. This means that one can
neither construct a stationary solution at values of
parameters close to this point, nor characterize the
stability of the equilibrium in the linear approxi-
mation. The dynamics in the vicinity of the bifur-
cation manifold is governed by a nonlinear ampli-
tude equation to be obtained in higher orders of the
expansion.

Generically, the zero eigenvalue is nondegener-
ate. Let U be the corresponding eigenvector satis-
fying fuU = 0. Then

u1 = a(t1, t2, . . .)U (8)

is the solution of Eq. (6) that remains stationary
on the fast time scale t0. The amplitude a is so
far indeterminate, and can depend on slower time
scales.

The inhomogeneous equation (5) has solutions
constant on the rapid time scale, provided its inho-
mogeneity does not project on the eigenvector U.
This condition is

κ1 ≡ U†fRR1 = 0 , (9)

where U† is the eigenvector of the transposed matrix
fu
† = Transpose[fu] satisfying fu

†U† = 0; we as-
sume that the eigenvector is normalized: U†U = 1.
Equation (9) defines the tangent hyperplane to the
bifurcation manifold at the point R = R0.

Before writing up the second-order equation,
we require that the second-order deviation u2 re-
main constant on the rapid time scale (otherwise it
might outgrow u1 at long times). The dependence
upon slower time scales must be expressed exclu-
sively through the time dependence of the ampli-
tude a. Using Eq. (8), we write the second-order

equation as

fuu2 = ∂1aU− fRR2 − afuRUR1 −
1

2
a2fuuUU .

(10)
The solvability condition of this equation is

∂1a = κ2 + λ1a+ µ0a
2 . (11)

The parameters of Eq. (11) are

κ2 = U†fRR2 +
1

2
U†fRRR1R1 ,

λ1 = U†fuRUR1 ,

µ0 =
1

2
U†fuuUU .

(12)

The indices correspond to the scaling of respective
parametric deviations from the bifurcation point.
In a generic case, one can consider only parametric
deviations transverse to the bifurcation manifold,
and set R1 = 0 to satisfy Eq. (9); then λ1 = 0, and
generic equation for slow dynamics near the bifur-
cation manifold becomes

∂1a = κ2 + µ0a
2 . (13)

This equation can be also obtained by shifting the
amplitude in Eq. (11). On the one side of the bi-
furcation manifold, where κ2 has the sign oppo-
site to that of µ0, there are two stationary states
a = ±

√
−κ2/µ0. When viewed as a solution of

Eq. (13), one of them is stable, and the other, un-
stable. The stable solution corresponds to a stable
equilibrium of the original system Eq. (1), provided
the rest of eigenvalues of the matrix fu have nega-
tive real parts. On the other side of the bifurcation
manifold, where the signs κ2 and µ0 are the same,
there are no stationary states. The trajectory of
the dynamical system is deflected then to another
attractor, far removed from u0. Thus, the system
undergoes a first-order phase transition when the
bifurcation manifold is crossed. If the value of some
dynamic variable or other characteristic of the solu-
tion is drawn as a function of parameters, the bifu-
ration locus can be seen as the projection of a fold of
the solution manifold on the parametric plane; ac-
cordingly, the generic monotonic bifurcation is also
called a fold bifurcation.

2.2.2. Transcritical bifurcation

It may happen that the matrix fR as well the tensor
fRR vanish identically. This would be the case when
u0 is a “trivial” solution that remains constant at
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all values of parameters. Then Eq. (9) is satisfied
identically, and Eq. (11) reduces to

∂1a = λ1a+ µ0a
2 . (14)

This equation has two solutions, a = 0 and a =
−λ1/µ0, on both sides of the bifurcation manifold,
but the two solutions interchange stability when
this manifold is crossed. This bifurcation is called
transcritical.

2.2.3. Higher-order bifurcations

If µ0 = 0, the expansion should be continued to
the next order. The coefficient µ0 may vanish iden-
tically due to the symmetry of the original prob-
lem to inversion of u. Otherwise, it can be equal
to zero at certain values of the parameters of the
problem. Generally, the two conditions, Det[fu] = 0
and µ0 = 0 are satisfied simultaneously on a codi-
mension two manifold in the parametric space that
corresponds to a cusp singularity.

In order to continue the expansion, we restrict
parametric deviations in such a way that the depen-
dence on t1 be suppressed. Deviations transverse
to the bifurcation manifold have to be restricted
by the condition κ2 = 0, which is stronger than
Eq. (9). First-order parametric deviations R1 par-
allel to the bifurcation manifold, which are still al-
lowed by Eq. (9), should be now restricted by the
condition λ1 = 0. If the array R contains two pa-
rameters only, the conditions λ1 = 0 and κ1 = 0 im-
ply, in a nondegenerate case, that first-order para-
metric deviations should vanish identically. When
more parameters are available, parametric devia-
tions satisfying both these conditions are superflu-
ous, since they correspond just to gliding into a
closer vicinity of another point on the cusp bifur-
cation manifold in a higher-dimensional parametric
space. Further on, we shall set therefore R1 to zero
identically.

The dynamics unfolding on a still slower time
scale t2 should be determined from the third-order
equation

fuu3 = ∂2aU− fRR3 − afuRUR2

− afuuUu2 −
1

6
a3fuuuUUU . (15)

The second-order function u2 has to be found by
solving Eq. (10), now reduced to the form

fuu2 = −fRR2 −
1

2
a2fuuUU . (16)

Only the solution of the inhomogeneous equation,
which does not project on the eigenvector U, is rel-
evant. It can be expressed as

u2 = U
(2)
2 + a2U

(0)
2 . (17)

The solvability condition of Eq. (15) is obtained
then in the form

∂2a = κ3 + λ2a+ ν0a
3 , (18)

where

κ3 = U†fRR3 ,

λ2 = U†fuRUR2 + U†fuuUU
(2)
2 ,

ν0 =
1

6
U†fuuuUUU + U†fuuUU

(0)
2 . (19)

Equation (18) presents a parametric unfolding
of dynamics in the vicinity of a cusp bifurcation.
Three equilibria — two stable and one unstable —
exist in the cusped region

λ2 > 0 , |κ3| <
2λ3/2

33/2ν1/2
. (20)

Outside this region, there is a unique stable equilib-
rium. A second-order phase transition occurs when
the parameters change in such a way that λ2 crosses
zero. Other transitions occuring in the vicinity of
the cusp bifurcation are weakly first-order.

The condition ν0 = 0 defines a singular bifur-
cation manifold of codimension three. Again, it is
possible to fix parametric deviations to suppress the
dynamics on the scale t2, and obtain in the next
order a quartic equation that represents the unfold-
ing of the butterfly singularity. The procedure can
be continued further if a sufficient number of free
parameters is available. The unfolding of a codi-
mension q singularity is presented by a polynomial
of order q + 1:

∂qa =
q−1∑
p=0

σq−p+1a
p + σ0a

q+1 , (21)

where the parameters σk depend on parametric de-
viations proportional to εk.

2.3. Hopf bifurcation

At the Hopf bifurcation point the parametric de-
pendence of the stationary solution u = u0(R) re-
mains smooth; a linear correction can be obtained
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from the stationary equation (7), and higher cor-
rections from higher orders of the regular expansion
(4). In order to simplify derivations, we shall elim-
inate this trivial parametric dependence by trans-
forming to a new variable û = u − u0(R). The

resulting dynamic system, dû/dt = f̂(û, R) has the
same form as (1) but contains a modified vector-

function f̂(û, R) = f(û + u0, R). Since, by defini-
tion, u0 satisfies f(u0, R) = 0, û = 0 is a zero of

f̂(û, R). Now we can drop the hats over the symbols
and revert to the original form (1) while keeping in
mind that u = 0 is a stationary solution for all R
and, consequently, all derivatives fR, fRR, etc. com-
puted at u = 0 vanish.

At a Hopf bifurcation point the Jacobi matrix
fu has a pair of imaginary eigenvalues λ = ±iω0.
The first-order Eq. (6) has a nontrivial oscillatory
solution

u1 = a(t1, t2, . . .)Φ(t0) + c.c. ; Φ(t0) = eiω0t0U
(22)

with an arbitrary complex amplitude a(t1, t2, . . .)
dependent on slower time scales tk, k > 0; U is the
eigenvector of fu with the eigenvalue iω0:

fuU = iω0U . (23)

The function Φ(t0) and its complex conjugate
Φ∗(t0) are two eigenfunctions of the linear opera-
tor L, Eq. (6), with zero eigenvalue. The operator
L acts here in the space of 2π/ω0-periodic complex-
valued vector-functions with the scalar product de-
fined as

〈u, v〉 =
ω0

2π

∫ 2π/ω0

0
u∗(t) · v(t)dt . (24)

The eigenfunctions of the adjoint operator L† =
fu
† + ∂/∂t0 are

Φ†(t0) = e−iω0t0U†

and its complex conjugate; U† is the eigenvector of
fu
† with the eigenvalue iω0.

The second-order equation can be written in
the form

Lu2 = ∂1u1 −
1

2
fuuu1u1 − fuRu1R1 . (25)

The inhomogeinity of this equation contains both
the principal harmonic, eiω0t0 , contributed by the
linear terms ∂1u1 and fuRu1R1, and terms with

zero and double frequency stemming from the
quadratic term 1/2fuuu1u1. The scalar prod-
ucts of the latter terms with the eigenfunctions
Φ†(t0), Φ†∗(t0) vanish, and the solvability condition
of Eq. (25) is obtained in the form:

∂1a = λ1a , (26)

where λ1 is given by Eq. (12) (note that this pa-
rameter is now complex).

Equation (26) has a nontrivial stationary solu-
tion only if the real part of λ1 vanishes. This con-
dition defines a hyperplane in the parametric space
tangential to the Hopf bifurcation manifold. The
imaginary part of λ1 gives a frequency shift along
the bifurcation manifold. In order to eliminate the
tangential shift, we set as before R1 = 0. Then
Eq. (26) reduces to ∂1a = 0, so that the ampli-
tude may evolve only on a still slower scale t2. The
second-order function u2 has to be found by solving
Eq. (25), now reduced to the form

Lu2 = −1

2
(a2e2iω0t0fuuUU + |a|2fuuUU∗ + c.c) .

(27)
The solution of this equation is

u2 = −1

2
[|a|2fu−1fuuUU∗

+ a2e2iω0t0(fu − 2iω0)−1fuuUU + c.c.] . (28)

In the third-order,

Lu3 = ∂2u1 − fuRu1R2

− fuuu1u2 −
1

6
fuuuu1u1u1 . (29)

The amplitude equation is obtained as the solvabil-
ity condition of this equation. Only the part of the
inhomogeinity containing the principal harmonic
contributes to the solvability condition, which takes
the form

∂2a = λ2a+ ν0|a|2a , (30)

where λ2, ν0 are defined as

λ2 = U†fuRUR2 ,

ν0 =
1

2
U†fuuuUUU∗ −U†fuuU(fu

−1fuuUU∗)

− 1

2
U†fuuU∗((fu − 2iω0)−1fuuUU) .

(31)
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The expansion has to be continued to higher orders,
after readjusting the scaling of parametric devia-
tions, if the real part of ν0 vanishes.

2.4. Automated generation
of normal forms

The procedure of derivation of a sequence of ampli-
tude equations described in the preceding section is
implemented by the function BifurcationTheory.

BifurcationTheory[operatoreqn, u, R, t, {U,
U†}, amp, coef, eps, order, freq, options] derives
a set of amplitude equations for a dynamical system
of ordinary differential equations written in an op-
erator form.

BifurcationTheory has the following argu-
ments:

• operatoreqn denotes an operator equation de-
scribing the problem;
• u denotes a array of variables;
• R denotes a array of bifurcation parameters;
• t denotes a time variable;
• U and U† stand for the normal mode eigenvectors;
• amp is an amplitude of the normal mode appear-

ing in the linear solution;
• coef denotes the name of coefficients of the re-

sulting amplitude equations;
• eps denotes the small parameter of the problem

(ε);
• order is the highest order of the expansion; if it

is higher than the codimension of the bifurcation
manifold, corrections to the principal (lowest or-
der) amplitude equation are produced;
• freq denotes the frequency of the arising limit

cycle (for monotonic bifurcations it can be
dropped).

The differentiation operator ∂/∂t used in the
operator equation operatoreqn is represented by
the symbols Nabla[t]. Action of this operator on
functional expressions is denoted by the symbol ∗∗
— alias to NonCommutativeMultiply.

The function BifurcationTheory admits the
option ScalarProduct specifying a pure function
for scalar product used in solvability condition. The
default value is ScalarProduct -> Dot.

As it is discussed in the preceeding section the
function automatically shifts the basic solution in
the process of derivation of the normal forms for
Hopf bifurcation. As for monotonic bifurcations
there is no shift with only one exception. In case of

transcritical monotonic bifurcation, where the ba-
sic state solution remains constant at all values of
parameter, the shift of the solution is admissible.
This case needs an application of another option
Transcritical -> True which forces the function
to make a shift in monotonic case. The default value
of this option is Transcritical -> False.

As an example of usage of the function
BifurcationTheory, we consider the Hopf bifur-
cation. Unfortunately, the version 2.2.2 of Mathe-
matica used in development of the package has no
perfect typesetting abilities of the version 3.0. As a
result the output of the function is very lengthy and
is difficult to understand for inexperienced users.
We present the Mathematica output only once and
further we will use the standard textbook notation.

The original dynamical problem in the standard
notation has a form:

ut = f(u, R) . (32)

Hence the first argument operatoreqn will take a
form: f[u,R] − Nabla[t]**u == 0 and the func-
tion BifurcationTheory is used as follows:

dynoscbif = BifurcationTheory[
f[u, R] − Nabla[t]**u == 0, u, R, t, {U,
Ut}, a, c, eps, 2, w].

The result produced by the function can be pre-
sented as a set of two amplitude equations describ-
ing the slow dynamics of the amplitude a at the
time scales ti = εit0, (i = 1, 2) [cf. Eqs. (26) and
(30)]:

{a(1,0)[t[1], t[2]] == a[t[1], t[2]] c[2,
2][R[1]] / c[2, 1],
a(0,1)[t[1], t[2]] ==
a[t[1], t[2]]2 Conjugate[a[t[1], t[2]]]
c[3, 2] / c[3, 1] +
a[t[1], t[2]] c[3, 3][R[1], R[2]] / c[3,
1]},

or in the usual notation:

∂1a =
c2, 2(R1)

c2, 1
a ,

∂2a =
c3, 2
c3, 1
|a|2a+

c3, 3(R1, R2)

c3, 1
a . (33)

The coefficients cij of the amplitude equations are
generated separately and, hence, can be calculated
and simplified separately. The coefficients c2, 1 =

c3, 1 = UU† determine the normalization of the
eigenvectors.
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The coefficient in Eq. (26) λ1 = c2, 2(R1)/c2, 1.
Formulae for calculation of coefficients c are given
by the set of the replacement rules:

{c[2, 1] -> Ut . U,
c[2, 2][R[1]] -> Ut . f(1,1)[u, R] . U .
R[1]}.

The second equation is a well-known Landau equa-
tion, and the coefficient at the nonlinear term ν0 =
c3, 2/c3, 1 is called the Landau coefficient. The sign
of this coefficient determines the type of the bifurca-
tion — the subcritical one with unstable limit cycle
coefficient arises if the real part of the coefficient is
positive, and the supercritical otherwise. The un-
normalized Landau coefficient c3,2 is produced by
the function in the following form:

c[3, 2] -> -Ut . f(2,0)[u, R] . U .
LinearSolve[f(1,0)[u, R], f(2,0)[u, R] .
DiracConjugate[U] . U] -
Ut . f(2,0)[u, R] . DiracConjugate[U] .
LinearSolve[-2 I w IdentityTensor[2] +
f(1,0)[u, R],
f(2,0)[u, R] . U . U] / 2 +
Ut . f(3,0)[u, R] . DiracConjugate[U] . U .
U / 2,

and can be written in the standard notation as:

c3, 2 = −U†fuuUR(fu)fuuUŨ

− U†fuuŨR(−2iwI + fu)fuuUU/2

− U†fuuuUUŨ/2 , (34)

where I denotes the identity matrix, which
corresponds to the IdentityTensor[2] (ten-
sor of the rank 2) generated by the function
BifurcationTheory. The R(m) denotes the re-
solvent matrix of the matrix m — if the matrix is
regular, resolvent coincides with the inverse matrix,
otherwise, resovent is constructed using the spec-
trum of the original matrix m. A special function
Resolvent[matrix] is designed for the construc-
tion of the resolvent of a singular matrix.

Finally the linear term coefficient in the Lan-
dau equation depends on parametric deviations of
the first- and second-order:

c3, 3(R1, R2)

= (U†R(−iwI+fu)fuRUR1)(U†fuRUR1)/(U†U)

+ U†fuRUR2−U†fuRR(−iwI+fu)fuRUR1R1

+ U†fuRRUR1R1/2 . (35)

It can be easily seen that the condition R1 = 0
reduces the above general expression to linear coef-
ficient λ2 in (31) depending on R2 only.

The case of a monotonic bifurcation is more
complicated, the resulting formulae are more cum-
bersome, and we present the results of the Math-
ematica calculations in the standard notation. It
must be noted that it has been indicated in the
previous section that the first-order parametric de-
viation R1 is automatically set to zero.

The set of two amplitude equations describing
the slow dynamics of the amplitude a now takes a
form:

∂1a =
c2, 2
c2, 1

a2 +
c2, 3(R2)

c2, 1
,

∂2a =
c3, 2
c3,, 1

a3 +
c3, 3(R2)

c3, 1
a+

c3, 4(R3)

c3, 1
.

(36)

Now the nontrivial amplitude equation appears
already at the first time scale t1. It contains
quadratic in amplitude term with unnormalized co-
efficient given by:

c2, 2 = U†fuuUU/2 , (37)

and corresponds to µ0 in (12); the coefficient c2, 3
coincides with κ2 in (12).

The equation at the slower time scale gives cor-
rections to the principal equation. Its Landau coef-
ficient can be cast as follows:

c3, 2 = (U†R(fu)fuuUU)(U†fuuUU)/(2U†U)

− U†fuuUR(fu)fuuUU/2

+ U†fuuuUUU/6 . (38)

The linear term coefficient is given as:

c3, 3(R2)

= U†fuRUR2

+ (U†R(fu)fuuUU)(U†fuRUR2)/(U†U)

− U†fuuUR(fu)fRR2 .

(39)

Finally the free term in the equation coincides with
κ3 in (19).
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2.5. Computation of coefficients

2.5.1. Function CalculateCoefficient

In order to perform the calculation of the coeffi-
cient of the amplitude equations describing slow
dynamics in the vicinity of a bifurcation point of
a particular problem it is needed to specify val-
ues of all elements in the output of the function
BifurcationTheory, substitute them into the for-
mulae and carry out required simplifications. The
last two steps of this procedure is performed auto-
matically by the function CalculateCoefficient.

CalculateCoefficient[coefrule, urule,
Rrule, freqrule, funcrules, eigenrules,
addrules] performs calculation of the rule for the
coefficient of the amplitude equations provided by
the function BifurcationTheory using the rules
specifying the required data.

CalculateCoefficient has the following argu-
ments:

• coefrule denotes a rule for the coefficient of the
amplitude equations produced by the function
BifurcationTheory;
• urule specifies the names of the state vector com-

ponents with their critical values at the bifurca-
tion point;
• Rrule specifies the names of the bifurcation pa-

rameter vector components with their critical val-
ues at the bifurcation point;
• freqrule specifies the values, wavenumber and

frequency at the bifurcation point;
• funcrules denotes an array of rules specifying

all functional and constant objects (array, matri-
ces, tensors, etc.) appearing in the output of the
function BifurcationTheory;
• eigenrules denotes an array of rules specifying

values of the eigenvectors of the problem;
• addrules denotes an array of additional rules

needed for calculations (for example, restrictions
on the parametric deviations); this argument can
be dropped.

The function CalculateCoefficient has the
only option ComplexTheory specifying the names
of the state vector components assumed to be
complex-valued. The default value of the option
is ComplexTheory -> None. Example of the usage
in presented in Appendix A.

2.5.2. Lorenz model

The well-known Lorenz system [Lorenz, 1963], that
has been originally suggested as a qualitative model

of cellular convection, exhibits rich dynamic behav-
ior including periodic and chaotic motion. It also
possesses a monotonic bifurcation that corresponds
to a primary transition from the quiescent state to
convection. In usual notation, the Lorenz system is
written as

dx/dt = −σ(x− y) ,

dy/dt = x(R − z)− y ,

dz/dt = −bz + xy .

The linear analysis made with Mathematica
which is presented in the Appendix A locates the
bifurcation point at x = y = z = 0 and R = 1;
the eigenvectors are U = {1, 1, 0} and U† =
{1/σ, 1, 0}. Calculations of the coefficients per-
formed in Appendix A shows that the lowest-order
equation is trivial – ∂1a = 0. The Landau equation
has the form:

∂2a =
σ

1 + σ
(−a3/b+ aR2) .

The result proves that the bifurcation is always
supercritical at physical (positive) values of the
parameters.

2.5.3. Brusselator model

The next example is a well-known Brusselator
model of chemical oscillations [Nicolis & Prigogine,
1977]:

dz/dt = a− (1 + b)z + uz2 ,

du/dt = bz − uz2 .

The real variables u, z denote concentrations of the
“activator” and “inhibitor” species. The unique
stationary solution z = a, u = b/a bifurcates into
the limit cycle at b = 1 + a2. Calculations can be
made only after elimination of the parametric de-
pendence of the basic solution made by the shifting
of the basic solution to zero. The shifted system
has the following form:

dz/dt = a2u− z + bz + 2auz + bz2/a+ uz2 ,

du/dt = −a2u− bz − 2auz − bz2/a− uz2 .

The linear analysis of the problem is presented in
Appendix B. The eigenvectors at the Hopf bifur-
cation point are U = {a/(i − a), 1} and U† =
{(i + a)/a, 1}.



Computer Tools for Bifurcation Analysis 993

The calculation produces the following results
for the coefficients in the first equation from (33):

c2, 1 =
2

1 + ia
;

c2, 2(R1) =
b1

1 + ia
. (40)

Setting b1 = 0 one can proceed to the next
order:

c3, 1 =
2

1 + ia
;

c3, 2 =
4− 6ia− 7a2 − 3ia3 + 4a4

3ia(1 + a2)(1 + ia)
;

c3, 3(R1, R2) =
b2

1 + ia
. (41)

The Landau coefficient at the nonlinear term
finally takes a form

4− 6ia− 7a2 − 3ia3 + 4a4

6ia(1 + a2)
;

it is easy to see that its real part simplifies to
−(1 + 1/2a2)/(1 + a2), and is negative definite,
hence, the bifurcation is always supercritical.

2.5.4. Exothermic reaction in
a stirred tank reactor

The following example involves somewhat heavier
computations, and necessitates the use of implicit
functions. Consider a dynamical system describing
an exotermic reaction in a continuous stirred tank
reactor [Uppal et al., 1974; Pismen, 1986]:

dx/dt = (1− x)ey −mx ,
g dy/dt = h(1− x)ey −my .

(42)

The variables x, y denote the conversion and dimen-
sionless temperature, respectively; h is the exother-
micity parameter, m is the dimensionless flow rate,
and g is the thermal capacitance factor that equals
to unity in an adiabatic reactor and decreases with
intensified cooling. This model exhibits both mono-
tonic and Hopf bifurcations. Equilibria of Eq. (42)
do not depend on the parameter g, so conditions of
a monotonic bifurcation can depend on two inde-
pendent parameters m, h only; the maximal codi-
mension is two (a cusp point).

Monotonic bifurcation. Consider first a bifur-
cation manifold of codimension one (a fold line)

for a simplified model with g = 1. We localize
this bifurcation as before — the bifurcation locus
parametrized by the stationary value ys of the vari-
able y can be found with the help of the standard
Mathematica function Solve. This parametrization
is advantageous, since if one of the actual param-
eters h or m was used, either two or no solutions
were obtained in different parametric domains, and
the form of the solution was more complicated. The
manifold is given as:

x = 1− 1

ys
, m =

eys

ys − 1
, h =

y2
s

ys − 1
.

The admissible values of ys are restricted by the
condition ys > 1. The eigenvectors of the prob-
lem can be written as U = {(−1 + ys)/y

2
s , 1} and

U† = {−ys, 1}. The calculation process is similar
to that of the preceding subsections with only ex-
ception — the bifurcation parameters vector now
has two components h and m. The lowest-order
amplitude equation takes a form:

∂1a =
eys(2− ys)
2(ys − 1)

a2 + eysh2 − ysm2 . (43)

One can proceed further in order to find correc-
tions (parametric deviations of the third-order are
set to zero):

∂2a =
eys(3− 2ys)

6(ys − 1)
a3

+

(
eys(2− 2ys + y2

s)

2y2
s

h2 −m2

)
a . (44)

Cusp point. The loci of fold bifurcation in the
parametric plane h, m, drawn as a parametric plot,
are shown in Fig. 1. The two branches join with
a common tangent at the cusp point. In the vicin-
ity of this point, the applicable amplitude equation
will include a restriction on deviations of both pa-
rameters that specify the direction of this common
tangent. It can be easily seen that the quadratic
term in the lowest-order Eq. (43) vanishes at ys = 2
where the cusp point is located. The equation be-
comes trivial at h2 = 2m2/e

2. This relation defines
a direction in the parametric space along which the
second-order deviation is made. The next order de-
viation must be orthogonal to this direction. In the



994 L. M. Pismen & B. Y. Rubinstein

5 6 7 8 9 10 11
m

3.25

3.5

3.75

4.25

4.5

4.75

5

h

0.4

0.5

0.6

Fig. 1. Loci of fold and Hopf bifurcation in the parametric plane h, m. The three Hopf curves correspond to g = 0.4, 0.5
and 0.6. Solid gray lines show the supercritical, and dashed lines, the subcritical bifurcation. Outside the cusped region, the
unique stationary state suffers oscillatory instability within the loop of the Hopf bifurcation locus. Within the cusped region,
there are three stationary states, of which two, lying on the upper and lower folds of the solution manifold, may be stable.
The solutions on the upper fold are unstable below the Hopf bifurcation line.

vicinity of this point the Landau equation is cast
into (m3 is set to zero):

∂2a = −e
2

6
a3 +m2a+ e2h3 . (45)

Hopf bifurcation. The dynamical system (42) can
also undergo a Hopf bifurcation. In the operator
form it can be written as:

G(R)ut = f(u) , (46)

where G(R) denotes a capacitance matrix.
The function BifurcationTheory called for

this type of the problem produces the set (33) of
the amplitude equations (at the Hopf bifurcation
point) with the following formulae for the coeffi-
cients of the first amplitude equation:

c2, 1 = U†GU ;

c2, 2(R1) = −iwU†GRUR1 . (47)

The Landau coefficient in the second equation is
given by (35) with the only replacement of the iden-
tity matrix I by the capacitance matrix G. Expres-
sion for the coefficient c3, 3(R1, R2) of the linear
term is not shown due to its complexity.

We start the computations from the determina-
tion of the Hopf bifurcation manifold. It contains

stationary points of the system at which a matrix
fu−iwG is singular (w denotes the frequency of the
limit cycle). The manifold is given by the following
set of equations:

ey(h− y)−my = 0 ,

ey(g + y − h) +m(1 + g) = 0 .

These equations are solved to express the values
of the parameters m and h through the station-
ary value y = y0 and the remaining parameter
g = g0; y0, g0 are thus chosen to parameterize the
2D Hopf bifurcation manifold in the 3D parametric
space:

h = y0 +
g0y0

y0 − g0 − 1
,

m =
g0e

y0

y0 − g0 − 1
.

The loci of Hopf bifurcation in the parametric plane
h, m at several chosen values of g are shown in
Fig. 1. Outside the cusped region, the unique sta-
tionary state suffers oscillatory instability within
the loop of the Hopf curve (this is possible at
g < 1/2 only). Within the cusped region, the solu-
tions on the upper fold are unstable below the Hopf
bifurcation line. The solutions at the lower fold
can also suffer oscillatory instability at lower values
of g.
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Now it is possible to compute the frequency
w = ey0

√
y0 − g0y0 − 1/(1 + g0− y0) and the eigen-

vectors:

U =

{
g(1 − y0 − i

√
y0 − g0y0 − 1 )

y0(y0 − 1)
, 1

}
;

U† =

{
(y0 − 1)

g0(1− y0 + i
√
y0 − g0y0 − 1 )

1 + g0 − y0
, 1

}
.

(48)

As it was done above, one can choose the para-
metric deviation of the first-order in such a way as
to make the first amplitude equation trivial. Then
the Landau coefficient in the second equation can
be presented after normalization as:

c3, 2/c3, 1 = (y0 − g0y0 − 1)3/2(iy0 − i

−
√
y0 − g0y0 − 1 )−1ey0/12

× (12 − 24g0 − 24y0 + 40g0y0 − 4g2
0y0

+ 14y2
0 − 21g0y

2
0 + 4g2

0y
2
0 − 2y3

0 + 2g0y
3
0

+ i
√
y0 − g0y0 − 1(−12 + 24g0 + 15y0

− 25g0y0 − 2g2
0y0 − 5y2

0 + 8g0y
2
0)) .

(49)

First, we take note that only a part of the para-
metric plane y0, g0 above the thick solid curve in
Fig. 2 is actually available, since the condition of
positive oscillation frequency requires

y0 − g0y0 − 1 > 0 . (50)

Within this region, the limit cycle is stable (the bi-
furcation is supercritical ) if the real part of the coef-
ficient at the nonlinear term is negative. Extracting
the real part from (49) brings this condition to the
form

3g0 + 2g2
0 + 2y0 − 4g0y0 − 2g2

0y0 − y2
0 + 2g0y

2
0 − 1

4(y0 − 1− g0)(y0 − g0y0 − 1)

< 0 . (51)

Noting that the denominator of the above fraction
is positive whenever the inequality (50) is verified,
one can determine the stability boundary by equat-
ing the numerator in (51) to zero, and combining
the result with (50). The stability boundary in the
plane (g0, y0), separating the regions of subcriti-
cal and supercritical bifurcation is shown in Fig. 2;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
g0

0.5

1

1.5
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2.5
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3.5

4

y0

sub

sub

super

Fig. 2. The stability boundary in the plane (g0, y0), sepa-
rating the regions of subcritical and supercritical Hopf bifur-
cation. The unphysical part of the curve below the boundary
of positive frequency is shown by a dashed line. The solid
circle at g0 = 0.5, y0 = 2 marks the double zero point.

the unphysical part of the curve dipping below the
boundary of positive frequency is shown by a dashed
line. The region of subcritical bifurcations consists
of two disconnected parts, of which the lower one
lies within the region of unique stationary states
and on the lower fold of the solution manifold, and
the upper one, on the upper fold in the region of
multiple solutions.

3. General Algorithm
for Distributed Systems

3.1. Introduction

The main point of our approach can be formulated
as follows. An algorithm applicable to the nonlin-
ear analysis of a number of representative realistic
problems must be as general as possible, i.e. it must
be designed for classes of problems (say, dynamical
problems, or reaction–diffusion type problems), or
even better, it should embrace all problems which
can be solved using standard methods of bifurcation
expansion.

It is clear that the generalization from particu-
lar problems to some class of such problems can be
performed using an operator form of the problem.
For example, all reaction–diffusion type problems
can be presented in the following operator form:

G(R)
∂

∂t
u(r, t) = D(R)(∇ · ∇)u(r, t)

+ f(u(r, t), R) , (52)



996 L. M. Pismen & B. Y. Rubinstein

where ∂/∂t denotes the time differentiation opera-
tor, ∇ stands for the operator of differentiation over
the spatial variable r; f, u, R are arrays of func-
tions, variables and bifurcation parameters of the
problem. G(R) and D(R) denote capacitance and
diffusion matrix respectively, which can depend on
the bifurcation parameters.

In its turn problem (52) appears to be a par-
ticular case of most general problem which can be
written as

F(∇, ∂/∂t, u(r, t, R), R) = 0 , (53)

where F can also include a set of boundary condi-
tions imposed on the solution u(r, t, R).

3.2. Linear analysis and
dispersion relation

The general standard algorithm for derivation of
amplitude equations starts from the linear analy-
sis of an underlying distributed system in the vicin-
ity of a basic state. We assume also that for each
value R the system admits a stationary spatially
homogeneous solution u0(R), which is called ba-
sic state. Typically the basic state becomes un-
stable in a certain domain of the parametric space,
and this instability is usually connected with the
bifurcations of new solutions with a more compli-
cated spatiotemporal structure. We construct so-
lutions of the original problem (53) in the form
u = u0(R) + ũ(r, t, R), where ũ is a small distur-
bance of the basic state. Substituting the solution
in (53) one arrives in the linear approximation in ũ
to the following:

L(∇, ∂/∂t, u0(R), R)ũ = 0 , (54)

where L is a linear operator (Frechet derivative)
calculated at the point u = u0 acting on small dis-
turbance ũ. Further on, we shall consider normal
disturbances of the form:

ũ(r, t, R) = A(k, R) exp(σt+ ikr) . (55)

The growth rate σ is generally a complex number.
For normal disturbances the evolution equation (54)
is reduced to the eigenvalue problem:

L(ik, σ, u0(R), R)A = 0 , (56)

which usually determines a countable set of
branches of dispersion relation between growth
rates σn and the wavenumber k = |k|. We assume

that the instability is generated by eigenmodes with
the growth rates σj(k, R) = σjr(k, R) + iωj(k, R).
The conditions σjr(k, R) = 0 determine instability
boundaries which are called neutral stability curves.
The minima of all functions σjr(k, R) are reached
at the same value R = R0 and at (possibly various)
values k = kjc.

If ωj(kjc, R0) = 0, the corresponding insta-
bility is called stationary (monotonous); otherwise,
there is an oscillatory (wavy) instability. In each
of these cases, two possibilities arise depending
on the wavenumber critical value: Either the in-
stability arises near a nonzero wavenumber kjc
(short-wavelength instability), or the instability do-
main is localized around kjc = 0 (long-wavelength
instability).

The linear analysis procedure also includes de-

termination of eigenvectors Uj , U†j of the linear
problem (56) verifying the equation LUj = 0 and

its adjoint counterpart L†U†j = 0 needed for fur-
ther calculations. Setting aside most complicated
cases of double and triple bifurcation points we,
however, permit simple degenerate cases, when each
instability mode is characterized by a unique set of
wavevector and frequency values.

A general solution ul of the linear problem (54)
can be written as a superposition of several normal
modes with jth mode characterized by its scalar
amplitude aj, particular values of the wavevector
kj , time frequency ωj , eigenvector of the mode Uj

and its order of smallness dj :

ul = εd0a0U0 +
N∑
j=1

εdj (ajUj exp(ikjr0 + iωjt0)

+ a∗jŨj exp(−ikjr0 − iωjt0)) , (57)

where ∗ denotes an operation of the complex con-
jugation and ˜ denotes an operation of Dirac con-
jugation, which in the case of real vector function
F is reduced to the standard complex conjugation.
The coefficient a0 6= 0 if monotonic long-scale mode
characterized by the zero value of the wavenumber
and time frequency is permitted. Each mode gives
rise to a corresponding solvability condition which
determines a slow spatiotemporal dynamics of the
mode’s amplitude using the consequent orders of
the multiscale expansion of the problem.

3.3. Multiscale expansion

In order to simplify derivations, we shall eliminate
trivial parametric dependence of the basic state by
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transforming to a new variable û = u−u0(R). The
resulting system, F(∇, ∂/∂t, û+u0, R) = 0 has the
same form as (53) but contains a modified operator

F̂(∇, ∂/∂t, û, R) = F(∇, ∂/∂t, û + u0, R). Since,
by definition, u0 satisfies F(∇, ∂/∂t, u0, R) = 0,

û = 0 is a zero of F̂(∇, ∂/∂t, û, R). Now we can
drop the hats over the symbols and revert to the
original form (53) while keeping in mind that u = 0
is a stationary solution for all R and, consequently,
all derivatives FR, FRR, etc. computed at u = 0
vanish.

We use the expansions (2) for variables and pa-
rameters and introduce a hierarchy of time scales
tk, thus replacing the function u by a function of
an array of rescaled time variables. Accordingly,
the time derivative is expanded as in (3). The spa-
tial derivative is expanded similarly:

∇ = ∇0 + εα∇1 , (58)

where α denotes the spatial scaling which depends
on a particular problem; for the sake of simplicity,
we shall use only positive integer values of α. Sub-
stituting expansions (2) and (3) and (58) into the
original problem (53) and expanding in ε, one ar-
rives at a set of equations for different orders of ε.

In the lowest-order we reproduce the equation
F(∇0, ∂0, u0, R0) = 0 determining the basic solu-
tion computed at the critical values of bifurcation
parameters. In the next order the linear problem
(54) is reproduced in the following form:

Fu(∇0, ∂0, u0, R0)u1 = 0 . (59)

The solution u1 consists of normal modes with
dj = 1.

In the consequent orders one arrives at the
equations of the form:

Fu(∇0, ∂0, u0, R0)un = gn , (60)

where gn denotes the nth order inhomogeinity vec-
tor. A set of solvability conditions for each of the
normal modes appearing in the linear solution (57)
will define slow spatiotemporal dynamics of the am-
plitude of each mode. It can be shown that only
part of the inhomogeinity gn which projects on
the principal harmonic of a certain mode will con-
tribute to the corresponding solvability condition.
Denoting the scalar product by angle brackets and
the projection operator on the harmonic exp(iβ)
as P(·, exp(iβ)), one can write the solvability con-
dition for jth normal mode in the nth order as

follows:

〈U†j , P(gn, e
ikjr0+iωjt0)〉 = 0 , (61)

where U†j denotes the eigenvector of the adjoint lin-

ear problem L†U†j = 0 corresponding to the jth
mode.

The linear inhomogeneous problem (60) must
be solved with respect to un provided solvability
conditions (61) are satisfied. To this particular so-
lution of (60) one must add a linear solution term
of the corresponding order of smallness. The com-
bined solution is used for the calculations of the
next order inhomogeinity gn+1.

In the second-order the vector of inhomogeinity
g2 can be represented in the form:

g2 = −1

2
Fuu(∇0, ∂0, u0, R0)u1u1

− FuR(∇0, ∂0, u0, R0)u1R1

− δα, 1Fu∇(∇0, ∂0, u0, R0)∇1u1

− Fu ∂
∂t

(∇0, ∂0, u0, R0)∂1u1 , (62)

where the Kronecker symbol δα, β = 0 at α 6= β
and δα, α = 1. The resulting set of the conditions in
the second-order is resolved further with respect to
the derivative of the amplitudes ∂1aj. This result
presents the set of the amplitude equations of the
second-order and in its turn is used for derivation
of the amplitude equations in the next orders.

The final result is the set of the amplitude equa-
tions written in most general form which is valid for
the combination of the normal modes in (57) and
specified value of the spatial variable scaling expo-
nent α. This set further can be “projected” onto
a particular class of the problems to produce a re-
quired formula. These formulae are applicable to
any problem from the selected class. In order to
make actual calculations for a particular problem
one must determine the values of the wavevectors,
frequency, eigenvectors, etc. and substitute them
into the abovementioned formulae.

3.4. Function BifurcationTheory

The function BifurcationTheory used for deriva-
tion of the normal forms for dynamical systems
can be applied with some additions to distributed
systems.
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If it is required to derive the normal form for
a single mode arising at a bifurcation point of the
distributed system, one may use the call

BifurcationTheory[operatoreqn, u, R, t,
{r, dim}, spatscale, {U, U†},
amp, coef, eps, order, wavenumber, freq,
opts].

Here r denotes a spatial variable (that can be a
vector); dim is the space dimension and spatscale

denotes an array consisting of the name of the spa-
tial variable and its (integer) scaling exponent α.
Finally, wavenumber must be set equal to zero for
a long-scale instability and to some symbol in the
short-scale case. In the latter case the wavevector
needed for the calculations is generated automat-
ically. The differentiation operators ∂/∂t and ∇
used in the operator equation operatoreqn are rep-
resented by the symbols Nabla[t] and Nabla[r],
respectively.

A more complicated form must be used in a case
when there is an angular degeneracy of the normal
modes, namely, when the different modes have the
same values of their parameters but the wavevectors
with equal lengths have different directions. It is ra-
tional to specify the mode data using the angular
measurment for the wavevectors —

BifurcationTheory[operatoreqn, u, R, t,
{r, dim}, spatscale, {U, U†},
amps, coef, eps, order, wavenumber, freq,
ampout, opts],

where amps consists of the pairs {aj , βj} with βj
denoting an angle between the wavevector of the
jth mode aj and some selected direction. If the
argument ampout specifying the names of the am-
plitudes for which equations must be generated is
omitted, equations for first amplitude only from the
array amps would be produced.

The most general form of the function is used
for algebraically degenerated cases:

BifurcationTheory[operatoreqn, u, R, t,
{r, dim}, spatscale, amps,

coef, eps, order, ampout, options]

derives a set of amplitude equations for a dis-
tributed system of partial differential equations
written in an operator form. Here amps is an array
of elements specifying the normal modes appearing
in the linear solution (57). Each item of amps is
an array of six elements in the following order —
amplitude of the mode (aj), mode wavevector (kj),

time frequency (ωj), eigenvector (Uj), eigenvector

of the adjoint problem (U†j), and order of smallness
of the normal mode (dj). ampout again denotes an
array of the amplitude names for which the ampli-
tude equations must be generated.

4. Amplitude Equations for
Reaction–Diffusion Problems

4.1. Long-scale instabilities

In this and the next subsections we present the re-
sult of derivation of the amplitude equations for
reaction–diffusion problem (52) with capacitance
matrix G equal to identity matrix I and diffusivity
matrix D which does not depend on the bifurcation
parameters.

We start from the case where the instability do-
main is localized around kc = 0 restricting ourselves
to nondegenerated nonresonant cases.

The operator equation corresponding to the
problem may be written as:

DD.(Nabla[r] . Nabla[r])∗∗u + f[u, R] -

Nabla[t]∗∗u == 0

where DD denotes the diffusivity matrix. Opera-
tor Nabla[r] is assumed to be vectorial, hence the
scalar Laplacian is written as scalar product of two
differential operators. The function is called as
follows:

BifurcationTheory[

DD.(Nabla[r].Nabla[r])**u + f[u,R] -

Nabla[t]**u == 0,

u, R, t, {r,2},{r,1},{U,Ut}, a, c, eps, 2,

0, 0]

Unfortunately, the version 2.2.2 of Mathematica
used in development of the package has no per-
fect typesetting abilities like the version 3.0. As
a result the output of the function is very lengthy
and is difficult to understand for the inexperienced
user. Here and further, we present output produced
by the function BifurcationTheory using standard
textbook notation.

The result produced by the function coincides
with that of the monotonic bifurcation of the dy-
namical system (36) with the only exception — the
Landau equation is converted into the Ginzburg–
Landau equation with an additional diffusional
term of the form:

U†DU

U†U
(∇1∇1)a . (63)
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Now we turn to the case of the Hopf bifurca-
tion for the same problem. The last argument of the
function BifurcationTheory denoting the limit cy-
cle frequency now is set to w rather than zero:

BifurcationTheory[

DD.(Nabla[r].Nabla[r])**u + f[u,R] -

Nabla[t]**u == 0,

u, R, t, {r,2},{r,1},{U,Ut}, a, c, eps, 2,

0, w]

As in the previous case the resulting set of equa-
tions is given by (33) with the addition of the same
diffusional term.

4.2. Turing bifurcation

Short-scale instabilities are characterized by a
nonzero value of the wavenumber; hence, several
modes with different directions of the wavevector
are permitted.

This case is characterized by the nonzero value
of the wavenumber and zero frequency, what is re-
flected in the function is called:

BifurcationTheory[

DD.(Nabla[r].Nabla[r])**u + f[u,R] -

Nabla[t]**u == 0,

u, R, t, {r,2},{r,1},{U,Ut},
{{a1,0}, {a2, alpha}}, c, eps, 2, k, 0]

It corresponds to the case of two normal modes with
a wavenumber equal to k — a wavevector k1 of the
first mode a1 is directed along the x-axis in a plane
(the dimension of spatial variable is set equal to
2); the wavevector k2 of the second mode a2 makes
the angle α with k1. We assume that this angle is
not equal to π/3 or 2π/3 in order to make these
two modes nonresonant. The argument specifying
names of the amplitudes for output is omitted, so
the equations for amplitude a1 are only generated
by default.

The result may be written as:

∂1a1 =
c2, 1, 1
c2, 2

(ik1∇1)a1+
c2, 3(R1)

c2, 2
a1 ,

∂2a1 =
c3, 4
c3, 3
|a2|2a1+

c3, 5
c3, 3
|a1|2a1

+
c3, 6(R1, R2)

c3, 3
a1+

c3, 1, 1
c3, 3

(∇1∇1)a1

+
c3, 1, 2
c3, 3

(ik1∇1)2a1+
c3, 2, 1(R1)

c3, 3
(ik1∇1)a1 .

(64)

The coefficients c2, 2 = c3, 3 = U†U determine
a normalization of the eigenvectors.

For the first time scale t1 we have a linear equa-
tion. Its linear term coefficient is proportional to
the first-order deviation of the bifurcation param-
eter vector and is given by (26). The differential
term has a coefficient of the form

c2, 1, 1 = 2U†DU . (65)

Choosing the parametric deviation R1 one may set
the real part of the linear term coefficient equal to
zero; then the resulting equation will admit a trav-
eling wave solution.

The Ginzburg–Landau equation at the slower
time scale is most interesting. It contains two non-
linear terms describing interaction between the two
modes as well as the self-interaction of the principal
mode a1. Interaction coefficient c3, 4 of two modes
depends on the angle α between their wavevectors
and is calculated using the formula:

c3, 4 = −U†fuuUR(fu)fuuUŨ

− U†fuuUR(fu − 2k2D(1− cosα))fuuUŨ

− U†fuuŨR(fu − 2k2D(1 + cosα))fuuUU

+ U†fuuuUUŨ . (66)

The self-interaction coefficient c3, 5 may be
found as half of the value of c3, 4 calculated at α = 0:

c3, 5 = −U†fuuUR(fu)fuuUŨ

− U†fuuŨR(fu − 4k2D)fuuUU/2

+ U†fuuuUUŨ/2 . (67)

The linear term coefficient is supplied by (63)
with replacement of R(fu− iwI) by R(−k2D + fu).

There are three diffusional terms in the
Ginzburg–Landau equation; one is given by (63),
another term coefficient c3, 2, 1 depends on the para-
metric deviation of the first-order and usually
can be removed by the appropriate choice of this
deviation:

c3, 2, 1(R1)

= 2(U†R(−k2D+fu)fuRUR1)(U†DU)/(U†U)

− 2U†DR(−k2D+fu)fuRUR1

+ 2(U†R(−k2D+fu)DU)(U†fuRUR1)/(U†U)

+ 2U†fuRR(−k2D+fu)DUR1 . (68)
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The coefficient c3, 1, 2 independent of the para-
metric deviation has the following form:

c3, 1, 2 = 4(U†R(−k2D + fu)DU)(U†DU)/(U†U)

− 4U†DR(−k2D + fu)DU . (69)

4.2.1. Hopf bifurcation

Now we turn to the case of the Hopf bifurcation for
the same problem. The resulting set of equations
is given by (65) with slightly changed formulae for
the coefficients in the Ginzburg–Landau equation.

The modes interaction coefficient c3, 4 is calcu-
lated as shown in (66) with the only replacement of
R(fu−2k2D(1+cosα)) byR(fu−2k2D(1+cosα)−
2iwI), where I stands for the identity matrix. Sim-
ilarly, in the expression (67) for the self-interaction
coefficient one must replaceR(fu−4k2D) byR(fu−
4k2D− 2iwI).

The linear term coefficient again is supplied by
(39) with the replacement ofR(fu) byR(fu−k2D−
iwI).

The diffusional coefficient c3, 2, 1 depending on
the parametric deviation is found as (69) with the
replacement of R(fu− k2D) by R(fu− k2D− iwI).
The same replacement is valid for another diffu-
sional coefficient c3, 1, 2.

In order to perform calculation of the coeffi-
cients of the amplitude equations describing slow
dynamics in the vicinity of a bifurcation point of
a particular problem, values of all elements of the
output of the function BifurcationTheory need to
be specified, substitute them into the formulae and
make a simplification if needed. In this section we
illustrate the usage of the above results using two
simple models.

4.3. Brusselator model

The first example is a well-known Brusselator model
[Nicolis & Prigogine, 1977] of chemical oscillations:

∂z/∂t = a− (1 + b)z + uz2 + (∇∇)z ,

∂u/∂t = bz − uz2 + d(∇∇)u .

The variables u, z denote concentrations of the “ac-
tivator” and “inhibitor” species. This system al-
ways has a unique stationary homogeneous solution
z = a, u = b/a. The dispersion relation is found as
follows:

a2 + a2k2 + dk2 − bdk2 + dk4

+ iw(1 + a2 − b+ k2 + dk2)− w2 = 0

Now we can trace two possibilities — the first is for
monotonic bifurcation with frequency w = 0 and
the second for Hopf bifurcation with nonzero w.

4.3.1. Monotonic bifurcation

We start from the determination of the bifurcation
curve describing a dependence of the bifurcation pa-
rameter b on the wavenumber k and then we find the
minimum of this curve bcm = (1 + a/

√
d)2 reached

at kcm = (a2/d)1/4.
It can be seen that the monotonic bifurca-

tion corresponds to the short-scale instability. The
eigenvectors of the problem can be found as:

U =

{
ad

a+
√
d
, 1

}
;

U† =

{
a+
√
d

a
, 1

}
.

(70)

Calculation of the coeffcients of amplitude
equations (65) shows that the coefficient c211 of the
linear differential term in the first equation is equal
to zero identically, the linear term is proportional
to the bifurcation parameter deviation b1:

∂1a1 = − d
√
db1

(a+
√
d)(1− d)

a1 .

Setting b1 = 0 we can trivialize the above equation.
In the next order equation some of the coeffi-

cients vanish: c3, 2, 1(0) = 0; c3, 1, 1 = 0. The coeffi-
cient of the only nonzero diffusional term in (65) is
given by:

c3, 1, 2 =
4d2

a(a+
√
d)
,

the linear term coefficient is proportional to second-
order parametric deviation:

c3, 6(R2) = − d
√
db2

a+
√
d
.

The dependence of the modes interaction coefficient
on α is provided by:

c3, 4 =
2d2

a(a+
√
d)2(4 cos2 α− 1)2

× (−8a3 + 7a2
√
d+ 18ad − 8d

√
d

+ 2a2
√
d(−2 cos 2α+ cos 4α)

+ 4ad(4 cos 2α+ cos 4α)) .

(71)
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It can be easily seen that this coefficient di-
verges at cosα = ±1/2, i.e. at α = π/3, 2π/3. The
reason of the divergence is the existence of the res-
onance between the two modes, and for proper de-
scription one needs to incorporate the third mode
with a wavevector k3 such that k1 + k2 + k3 = 0.
The resonant cases are considered below. Finally
we present the self-interaction coefficient:

c3, 5 =
d2

9a(a+
√
d)2

(−8a3 +5a2
√
d+38ad−8d

√
d) .

(72)

4.3.2. Oscillatory bifurcation

The minimum of the bifurcation curve bco = 1 + a2

is found at kco = 0, which means that the oscilla-
tory bifurcation with frequency of the limit cycle is
w = a that corresponds to the long-scale instability.
The eigenvectors of the problem can be found as:

U =

{
− a

a− i , 1

}
;

U† =

{
a+ i

a
, 1

}
. (73)

The calculation produces Eqs. (33) with co-
efficients given by (40) and (42) with the addi-
tional diffusional term with coefficient equal to
((d+ 1) + ia(d − 1))/2.

It can also be noted here that by equating the
critical values of the bifurcation parameter b for
monotonic and oscillatory cases it is possible to find
the critical value ac = 2

√
d/(d− 1) at which the bi-

furcation is degenerate, i.e. both Hopf and Turing
modes are permitted. This degenerate case will be
described below.

4.4. Two-level laser model

The simple model of a two-level laser [Coullet et al.,
1989] describes the dynamics of the electric field in-
teracting with an active media. The model equa-
tions are the following:

At = ia(∇∇)A+ σ(P −A) ,

Pt = (1 + iΩ)P − (R− n)A , (74)

nt = −bn+ 1/2(A∗P +AP ∗) .

The variables A, P, n denote complex amplitude
of the electrical field, complex media polariza-
tion density and real atomic population inversion,
respectively.

This model exhibits short-scale oscillatory in-
stability in the vicinity of the basic nonlasing solu-
tion A0 = P0 = n0 = 0. It must be noted that in
order to make calculations one need to complete the
system (75) with complex conjugation of first two
equations for A∗, P ∗. As a result the state vector
{A, A∗, P, P ∗, n} appears to have five components
instead of the original three.

4.4.1. Oscillatory bifurcation

The bifurcation curve has a form:

R = 1 +

(
Ω− ak2

1 + σ

)2

. (75)

The lowest minimum (for positive a and Ω)
of this curve lies at kc =

√
Ω/a and it equals to

R0 = 1, the critical frequency wc = Ω. The eigen-
vectors of the problem are given by:

U = {0, 1, 0, 1, 0} ; U† =

{
0,

1

σ
, 0, 1, 0

}
.

(76)

In this case one does not need to shift the basic
solution because it does not depend on the pa-
rameters of the problem. For the calculation of
the coefficients of the amplitude equations in this
case one needs additional preparatory step due to
the complex nature of the original problem. In the
formulae for the coefficients for short-scale insta-
bilities one may find the notion Ũ denoting the
so-called Dirac conjugated eigenvector U. These
vectors present particular values of the state vec-
tor, which in our case has two complex conjugated
variable components. The construction of the vec-
tor Ũ out of U may be written symbolically in the
form:

Ũ = G(U∗) , (77)

where ∗ denotes usual complex conjugation and
G is an operation of mutual interchange of the vec-
tor components corresponding to the complex con-
jugated variables. In our case the complex conju-
gated variables A, A∗ have to be the first positions
in the state vector, while P, P ∗ are at the next
two places. As a result the vector Ũ is constructed
as:

Ũ = {1, 0, 1, 0, 0} .

The lowest-order equation for one of two ex-
cited modes with amplitudes a1, a2 and wavevectors
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k1,k2 is written as:

∂1a1 = 2a(k1∇1)a1 +
σa1R1

1 + σ
, (78)

and may be simplified by setting R1 = 0.
It appears that the term describing the mode–

mode interaction in the Ginzburg–Landau equation
in our case does not depend on the value of the angle
between mode wavevectors and is given by c3, 4 =
−2/b; the self-interaction coefficient c3, 5 = −1/b.
Two out of three diffusional coefficients in the sec-
ond amplitude equation are not zeros:

c3, 1, 1 = − ia
σ

; c3, 1, 2 = − 4a2

(1 + σ)(1 + σ − iΩ)
.

(79)

Finally the amplitude equation may be written in
the form:

∂2a1 = − σ

b(1 + σ)
(2|a2|2 + |a1|2)a1

− 4a2

(1 + σ)(1 + σ − iΩ)
(k1∇1)2a1

− ia

1 + σ
(∇1∇1)a1 +

σR2

(1 + σ)
a1 . (80)

5. Amplitude Equations for
Convective Problems

5.1. Convective instabilities

The convective problems are characterized by the
presence of the additional convective term in
Eq. (52) and can be written in the following form
[Rovinsky & Menzinger, 1992, 1993]:

∂

∂t
u(r, t) = D(∇ · ∇)u(r, t) + εV(n · ∇)u(r, t)

+ f(u(r, t), R) , (81)

where n denotes a constant vector determining the
direction of flow and the matrix V sets the veloc-
ities values; it is assumed that the velocities are
of the order ε. Then for the Turing instability
one must call the function BifurcationTheory as
follows:

BifurcationTheory[

DD.(Nabla[r].Nabla[r])**u + f[u,R] +

eps V.({1,0}.Nabla[r])**u -

Nabla[t]**u == 0,

u, R, t, {r,2},{r,1},{U,Ut},
{{a1,0}, {a2, alpha}}, c, eps, 2, k, 0]

Here the velocity direction is chosen parallel to the
x-axis. Note that the small parameter of expansion
eps in this case appears explicitly in the operator
equation describing the problem. The result pro-
duced may be written as:

∂1a1 =
c2, 1, 1
c2, 2

(ik1∇1)a1 +
c2, 3
c2, 2

a1 +
c2, 3(R1)

c2, 2
a1 ,

∂2a1 =
c3, 4
c3, 3
|a2|2a1 +

c3, 5
c3, 3
|a1|2a1 +

c3, 6
c3, 3

a1

+
c3, 6(R1, R2)

c3, 3
a1 +

c3, 1, 1
c3, 3

(∇1∇1)a1

+
c3, 1, 2
c3, 3

(ik1∇1)2a1 +
c3, 2, 1
c3, 3

(ik1∇1)a1

+
c3, 2, 1(R1)

c3, 3
(ik1∇1)a1 +

c3, 2, 2
c3, 3

(n∇1)a1 .

(82)

It can be noted that the set of equations is very
similar to Eq. (65) with the addition of some terms.
Here we write the expressions for the coefficients
which are changed or added comparing with coef-
ficients of (65). The additional linear term in the
first equation is due to the velocity matrix V and
its coefficient is given by:

c2, 3 = ikU†VU .

Similarly, there are two linear terms in the second
equation, their coefficients now depend on V:

c3, 6 = k2U†VR(fu − k2D)VU− k2(U†VR(fu − k2D)VU)(U†VU)/(U†U) ,

c3, 6(R1, R2) = (U†R(fu − k2D)fuRUR1)(U†fuRUR1)/(U†U) + U†fuRUR2

− U†fuRR(fu − k2D)fuRUR1R1 + U†fuRRUR1R1/2

− ikU†VR(fu − k2D)fuRUR1 + ik(U†VR(fu − k2D)fuRUR1)(U†VU)/(U†U)

+ ik(U†VR(fu − k2D)VU)(U†fuRUR1)/(U†U)− ikU†fuRR(fu − k2D)VUR1 .

(83)
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There is also additional differential term with the coefficient given by:

c3, 2, 1 = 2ik(U†R(−k2D + fu)VU)(U†DU)/(U†U)− 2ikU†DR(−k2D + fu)VU

+ 2ik(U†R(−k2D + fu)DU)(U†VU)/(U†U)− 2ikU†VR(−k2D + fu)DU . (84)

The long-scale Hopf instability case is solved by following lines:

BifurcationTheory[
DD.(Nabla[r].Nabla[r])**u + f[u,R] +
eps V.({1,0}.Nabla[r])**u- Nabla[t]**u == 0,
u, R, t, {r,2},{r,1},{U,Ut}, a, c, eps, 2, 0, w]

The resulting Ginzburg–Landau equation reads:

∂2a =
c3, 4
c3, 3
|a|2a+

c3, 5(R1,R2)

c3,3
a+

c3, 1, 1
c3, 3

(∇1∇1)a+
c3, 2, 1
c3, 3

(n∇1)a . (85)

Here are the coefficients of the equation:

c3, 3 = U†U ,

c3, 4 = U†fuuuUUŨ/2−U†fuuUR(fu)fuuUŨ

− U†fuuŨR(fu − 2iwI)fuuUU/2 ,

c3, 1, 1 = U†DU ,

c3, 2, 1 = U†VU . (86)

The linear term coefficient c3, 5(R1) is given by
Eq. (36).

6. Resonant and Degenerate Cases

In this section we review the most difficult cases of
bifurcation analysis — resonant and algebraically
degenrate bifurcations of distributed systems. We
consider the three-mode resonance in the reaction–
diffusion problem and demonstrate the ability of the
function BifurcationTheory to cope with degener-
ate case of simultaneous existence of the Hopf and
Turing bifurcations. A simple example of calcula-
tion of the amplitude equation coefficients for Brus-
selator model is presented. Some nontrivial exam-
ples of usage the function BifurcationTheory for
description of resonant patterns in nonlinear optics
are found in [Rubinstein & Pismen, 1997, 1998].

6.1. Three-wave resonance in
turing bifurcation

The short-scale instabilities can demonstrate reso-
nance of normal modes, i.e. resonance of their fre-

quencies wj and wavevectors kj :∑
j

wj = 0;

∑
j

kj = 0 . (87)

The maximal number of the resonant modes is not
limited, the minimal is equal to three. The sim-
plest resonant situation arises with three monotonic
modes with the wavevectors kj satisfying the con-
dition: k1 + k2 + k3 = 0, i.e. the angle between the
adjacent modes is 2π/3. If two out of these three
modes are chosen, calculations show that the coef-
ficient of the modes interaction term given by (66)
diverges [cf. Eq. (72)], and, hence, the third mode
must be incorporated in order to describe the reso-
nance properly.

6.1.1. General results

The function BifurcationTheory enables to gen-
erate the normal forms for resonances, in this case
the values of the angles specifying the directions of
the wavevectors must be set explicitly:

BifurcationTheory[

DD.(Nabla[r].Nabla[r])**u + f[u,R] -

Nabla[t]**u == 0,

u, R, t, {r,2},{r,1},{U,Ut},
{{a1,0}, {a2, 2 Pi/3}, {a3, 4 Pi/3}}, c,

eps, 2, k, 0]

Here we present the results produced by the func-
tion BifurcationTheory for the three modes reso-
nance. These formulae may appear helpful for cal-
culations even “by hand”.
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The normal forms for the amplitude a1 is given by (54) with additional resonant terms:

∂1a1 =
c2, 1, 1
c2, 2

(ik1∇1)a1 +
c2, 4(R1)

c2, 2
a1 +

c2, 3
c2, 2

a∗2a
∗
3 ,

∂2a1 =
c3, 7
c3, 5
|a3|2a1 +

c3, 9
c3, 5
|a2|2a1 +

c3, 11

c3, 5
|a1|2a1 +

c3, 6(R1)

c3, 5
a∗2a
∗
3 +

c3, 12(R1, R2)

c3, 5
a1

+
c3, 1, 1
c3, 5

(∇1∇1)a1 +
c3, 1, 2
c3,5

(ik1∇1)2a1 +
c3, 4, 1(R1)

c3, 5
(ik1∇1)a1 +

c3, 2, 1
c3, 5

a∗2(ik1∇1)a∗3

− c3, 2, 2
c3, 5

a∗2(ik3∇1)a∗3 +
c3, 3, 1
c3, 5

a∗3(ik1∇1)a∗2 −
c3, 3, 2
c3, 5

a∗3(ik2∇1)a∗2 .

(88)

Below there are formulae for the coefficients of
the resonant terms. The quadratic term a∗2a

∗
3 ap-

pearing in the equation at the first time scale has
the coefficient given by:

c2, 3 = U†fuuŨŨ . (89)

The Ginzburg–Landau equation contains three
cubic terms — the self-interaction term does not
change upon the addition of the third wave; two

terms describing interaction of the principal har-
monic with the two others have equal coeffcients
c3, 7 = c3, 9 given by (66) with an additional term:

2(Ũ†fuuUU)(U†fuuR(fu − k2D)ŨŨ)/(Ũ†Ũ) .

(90)

There is a quadratic term a∗2a
∗
3 in the Ginzburg–

Landau equation for which the coefficient is given
by:

c3, 6(R1) = U†fuuRŨŨR1 + (U†fuuŨŨ)(U†R(fu − k2D)fuRUR1)/(U†U)

+ 4(Ũ†fuRŨR1)(U†R(fu − k2D)fuuŨŨ)/(Ũ†Ũ)− 3U†fuuŨR(fu − k2D)fuRŨR1 . (91)

There are also four differential second-order terms in the equation; their coefficients are given below.

c3, 2, 1 = c3, 3, 1 = 2(U†fuuŨŨ)(U†R(fu − k2D)DU)/(U†U)−U†DR(fu − k2D)fuuŨŨ , (92)

c3, 2, 2 = c3, 3, 2 = 4(Ũ†DŨ)(U†R(fu − k2D)fuuŨŨ)/(Ũ†Ũ)− 2U†fuuŨR(fu − k2D)fuRDŨ . (93)

6.1.2. Calculations for brusselator model

The calculation of the above coefficients made with
the help of the function CalculateCoefficient
produces the following results. The coefficient of the
resonant quadratic term in the lower-order equation
is found as:

c2, 3 =
2d
√
d(
√
d− a)√

d+ a
.

The modes interaction coefficients are equal to:

c3, 7 =c3, 9 =
d2

a(
√
d+ a)3(d− 1)2

×(−3a4+8a2d+6a4d+d2−20a2d2

−3a4d2+6d3+16a2d3−3d4+2a
√
d

×(2a2+d−2a2d−6d2+d3)) .

The coefficients of the second-order differential
terms are:

c3, 2, 1 = c3, 3, 1 =
4d2

a(
√
d+ a)2(d− 1)

× (d+ a2d− a2 − ad
√
d) ,

c3, 2, 2 = c3, 3, 2 =
4d3

a(
√
d+ a)2(1− d)

× (−1 + ad
√
d) .

Finally the quadratic term coefficient in the
Ginzburg–Landau equation takes the form:

c3, 6(R1) =
2d2
√
db1

a(
√
d+ a)3(d− 1)2

(2a2 − a2d− a2d2

− 3d+
√
d(ad2 + 3ad− a)) .
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6.2. Four-wave resonance in
oscillatory instability

A more complicated case of the resonance arises
for short-scale oscillatory instability. The simplest
waves configuration contains four waves with equal
frequencies w and the wavevectors making the fol-
lowing angles with the x-axis: 0, α, π, π+α. In this
case the Ginzburg–Landau equation in addition to
the terms describing two-modes interaction, a term
pertaining to interaction of three modes will also
appear:

∂1a1 =
c2, 1, 1
c2, 2

(ik1∇1)a1+
c2, 3(R1)

c2, 2
a1 ,

∂2a1 =
c3, 4
c3, 3
|a4|2a1+

c3, 6
c3, 3
|a3|2a1+

c3, 7
c3, 3
|a2|2a1

+
c3, 8
c3, 3
|a1|2a1+

c3, 5
c3, 3

a2a4a
∗
3

+
c3, 9(R1, R2)

c3, 3
a1+

c3, 1, 1
c3, 3

(∇1∇1)a1

+
c3, 1, 2
c3, 3

(ik1∇1)2a1+
c3, 2, 1(R1)

c3, 3
(ik1∇1)a1 .

(94)

The interaction coefficient c3, 7 between two modes
a1 and a2 with corresponding wavevectors k1, k2

making the angle α is given by expression:

c3, 7 = −U†fuuUR(fu)fuuUŨ

− U†fuuUR(fu − 2k2D(1− cosα))fuuUŨ

− U†fuuŨR(fu − 2k2D(1 + cosα)

− 2iwI)fuuUU + U†fuuuUUŨ . (95)

The expressions for coefficients c3, 6, c3, 4 can be pro-
duced out of the above by the replacements α→ π
and α → π + α, respectively. The self-interaction
coefficient c3, 8 is found as half of the value of c3, 7
at α = 0.

Finally, we present the expression for the three-
modes interaction coefficient:

c3, 5 = −U†fuuUR(fu − 2k2D(1 + cosα))fuuUŨ

− U†fuuŨR(fu − 2iwI)fuuUU

− U†fuuUR(fu − 2k2D(1− cosα))fuuUŨ

+ U†fuuuUUŨ . (96)

The calculation of the coeffcients using the
above results for the model of two-level laser shows
that the interaction coefficients are independent of
the value of the angle α: c3, 4 = c3, 5 = c3, 6 =
c3, 7 = −1/b; the self-interaction coefficient c3, 8 =
−1/(2b).

6.3. Algebraic degeneracy —
Hopf–Turing bifurcation

Here we present an example of usage of the function
BifurcationTheory for analysis of algebraically de-
generated cases. Consider a situation where both
Hopf and Turing bifurcations are permitted simul-
taneously. It may occur if the minima of the bi-
furcation curves for long-scale oscillatory (klo =
0, w = wlo 6= 0) and for short-scale monotonic
(k = ksm 6= 0, wsm = 0) bifurcations are at the
same level.

The function is called as follows:

BifurcationTheory[
DD.(Nabla[r].Nabla[r])**u + f[u,R] -
Nabla[t]**u == 0,
u, R, t, {r,2}, {r,2}, {{a1,{k,0},0,U,Ut,
3},
{a2,{0,0},w,V,Vt,2}}, c, eps, 5, {a1,a2}]

Here U,Ut denote the eigenvectors corresponding to
the Turing mode (its amplitude a1 is of the third-
order of smallness); V,Vt correspond to the Hopf
mode with second-order amplitude a2. Scaling ex-
ponent in (58) α = 2. The last argument of the
function shows that the normal forms are produced
for both modes.

The resulting equations are:

∂3a1 =
c6, 2(R3)

c6, 1
a1 ,

∂4a2 =
c6, 4
c6, 3
|a2|2a2 +

c6, 5(R2, R4)

c6, 3
a2

+
c6, 1, 1
c6, 3

(∇1∇1)a2 .

(97)

The normalization coefficients are given by:

c6, 1 = U†U ,

c6, 3 = V†V .

The linear term coefficient c6, 2(R3) of the Turing
mode is found as:

c6, 2(R3) = U†fuRUR3 .
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The coefficients in the normal form for the Hopf
mode are given by Eqs. (35), (36) and (63) with
replacements U† → V†, U → V, R2 → R4, R1 →
R2.
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Appendix

Appendices contain the auxillary material showing
usage of Mathematica for localization of the basic
states and subsequent linear analysis of systems un-
der investigation. Some examples of calculation of
the coefficients of amplitude equations for particu-
lar systems are presented.

A. Linear Analysis and Amplitude
Equations for Lorenz Model

We start with defining an array f containing the
right-hand sides of the above equations:

In[2]:=
Lorenz = {-sigma x + sigma y, RR x - x z -
y, x y - b z};

Here x, y, z denote the components of the vec-
tor u and RR stands for the bifurcation parameter
R. The bifurcation point of the problem is deter-
mined as a point where the Jacobian matrix is sin-
gular. We find the Jacobian matrix of the problem
Lorenzmatr and then write a set of equations de-
termining bifurcation points:

In[3]:=
Lorenzmatr = Outer[D,Lorenz,{x,y,z}];
Lorenzbifcond =
Join[Thread[Lorenz == 0],{Det[Lorenzmatr]
== 0}]
Out[3]=
{-(sigma x) + sigma y == 0,
RR x - y - x z == 0, x y - b z == 0,
-(b sigma) + b RR sigma - sigma x2 -
sigma x y - b sigma z == 0}

We choose RR as the bifurcation parameter, and
solve the above equations with respect to x, y, z,
RR:

In[4]:=
Lorenzbp = First[Solve[Lorenzbifcond,
{x,y,z,RR}]]
Out[4]=
{RR -> 1, z -> 0, y -> 0, x -> 0}

Now it is possible to calculate the eigenvectors
of the problem.
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In[5]:=
LorenzU = First[NullSpace[Lorenzmatr /.

Lorenzbp]];
LorenzUt = First[NullSpace[Transpose

[Lorenzmatr /.
Lorenzbp]]];

Also a set of replacement rules required for cal-
culation is specified:

In[6]:=
LorenzrU = {U -> LorenzU, Ut -> LorenzUt};
LorenzrfuR = {f[u,R] -> Lorenz};
Lorenzru = u -> {{x,0},{y,0},{z,0}};
LorenzrR = R -> {{RR, 1}};
rt1 = R[n ] :> Through[{RR}[n]];

The first of the above rules replaces the eigen-
vector variables used in the formulae by their cor-
responding values; the next make the same for the
nonlinear function f[u,R]. Next two rules specify
the state vector variables and the bifurcation pa-
rameter with the corresponding critical values. The
last rule is needed for description of the parametric
deviations. Here the normalization constant is cal-
culated using the function CalculateCoefficient:

In[8]:=
rulenorm1 = CalculateCoefficient

[Part[dynmonbif,3],

Lorenzru,LorenzrR,{w -> 0},LorenzrfuR,
LorenzrU]
Out[8]=
c[2, 1] -> 1 + 1 / sigma

The quadratic term coefficient (37) appears
to vanish due to an inversion symmetry of the
Lorenz system, the free term coefficient is calculated
similarly:

In[9]:=
{rulequadr1,rulefree1} =
CalculateCoefficient[Part[dynmonbif,
{4,5}],
Lorenzru,LorenzrR,{w -> 0},LorenzrfuR,
LorenzrU]
Out[9]=
{c[2, 2] -> 0, c[2, 3][{RR[2]}] -> 0}
Now substituting the above results into the lowest-
order amplitude equation one arrives to the follow-
ing trivial result:

In[10]:=
ampeq1 = Part[dynmonbif,1] /. rt1 /.
{rulenorm1, rulequadr1, rulefree1}
Out[10]=
a(1,0)[t[1], t[2]] == 0

One can proceed to the next order; the main point
is the calculation of the Landau coefficient of the
leading term:

In[11]:=
rulecube2 =
CalculateCoefficient[Part[dynmonbif,7],
Lorenzru,LorenzrR,{w -> 0},LorenzrfuR,
LorenzrU]
Out[11]=
c[3, 2] -> - 1 / b

The linear term actually depends only on the
second-order parametric deviation: c34(R2) = R2,
while the free term vanishes.

B. Linear Analysis for
Brusselator Model

We define the array Brusselator containing the
r.h.s. of the system, find the basic solution and
shift it to zero:

In[12]:=
Brusselatororig = {a - (1 + b) z + u z^2,
b z - u z^2};
Brusselatorbasic = First[
Solve[Thread[Brusselatororig == 0],z,u]];
Brusselator =
Map[Expand, Brusselatororig /.
u -> u+b/a, z->z+a]

At a Hopf bifurcation point the trace of the Jaco-
bian matrix is zero:

In[13]:=
Brusselatormatr = Outer[D,Brusselator,
{z,u}];
Brusselatorbifcond = Join[Thread
[Brusselator == 0],
{(Transpose[Brusselatormatr,{1,1}] /.List
-> Plus) == 0}];
Brusselatorbp = First[Solve
[Brusselatorbifcond,{z,u,b}]]
Out[13]=
{b -> 1 + a2, u -> 0, z -> 0}

Now we need to determine the frequency of the
limit cycle arising at the bifurcation point at which
the characteristic polynomial of the Jacobian ma-
trix equal to zero:

In[14]:=
Brusselatormatrbp =
Simplify[Brusselatormatr /.
Brusselatorbp];
Brusselatoreqw = CharacteristicPolynomial[
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Brusselatormatrbp,x] == 0 /. x -> I w;
Brusselatorw = Last[Solve
[Brusselatoreqw,w]]
Out[14]=
{w -> a}

Now it is possible to calculate the eigenvectors
of the problem.

In[15]:=
BrusselatorU = First[NullSpace

[Brusselatormatrbp -

I w IdentityMatrix[2] /. Brusselatorw]];
BrusselatorUt = First[NullSpace[Transpose

[Brusselatormatrbp -

I w IdentityMatrix[2] /. Brusselatorw]]];


