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Figure S1.  
(A) Representative images of budding cells expressing GFP-Cdc42 in the ∆rdi1 background, 
cells in the WT background after treatment with 100 µM LatA, and cells in the ∆rdi1 
background treated with LatA. Scale bar is 2.0 µm. Removal of one of the two pathways does 
not result in loss of polarization, but removal of both pathways results in loss of polarity.  
(B) FRAP rates of Cdc42 in WT, Cdc42 in WT + LatA, Cdc42 in ∆rdi1, and the sum of all 
possible combinations of the rate of FRAP for Cdc42 in WT treated LatA, and Cdc42 in ∆rdi1. 
Box width is the standard error of the mean, whiskers represent the standard deviation. The rate 
of recovery of Cdc42 in WT is statistically indistinguishable from all combinations of summed 
rates of cells from the the individual pathways.  
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Supplemental Figure 1, related to Figure 1.  



 

 
 

 
 
Figure S2.  
(A) Examples of overlap of Bni1-GFP and Arc40-mCherry (actin patch marker) membrane 
distributions. A dual-color time-series was summed, average background was subtracted, and a 
linescan of the cell perimeter was plotted. Black lines in the plot represent the window area, as 
defined in the main text. Actin patches are highly polarized inside of the window area defined by 
Bni1, with a sharp slope at the window edge, justifying the window modeling approach used in 
the text.  
(B) Representation of parameters obtained from exponential fits of FRAP data. F0 and W0 are the 
initial amplitudes of the FRAP curves for the total membrane and window region, respectively, 
while F0 +F1 and W0 + W1 are the final amplitudes. See Experimental Procedures for information 
on parameter extraction from these values.  
 
 

Supplemental Figure 2, related to Figure 2.  



 

 
 
 
 
 

 
 
Figure S3.  
Protein distribution as (2*FWHM)/perimeter for Cdc42 in the conditions shown. See Figure 3 in 
the main text for details.  A Gaussian distribution was used to for calculating FWHM. Error bars 
are the standard error of the mean. Representative images are shown, scale bar is 2.0 µm.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplemental Figure 3, related to Figure 3.  



 

 
 
 
 
 

 
 
 
Figure S4.  
Values of the delivery parameter h, from the application of the modified model assuming no 
transport window (or a single transport window covering the entire cell surface) to non-polarized 
∆rdi1 cells treated with LatA (Cdc42 in ∆rdi1+LatA), compared to values of h from the model 
with a polarized delivery window. See section 2.5 of Supplemental information for description of 
the modified model. The larger area of delivery in the case of non-polarized cells leads to a 
reduction in h. Box width is the SEM; whiskers represent SD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplemental Figure 4, related to Figures 1 and 3.  



 

 
 
 

 
Figure S5.  
(A) A 3-dimensional plot of polarity (peak height over width) as a function of m (1/s) and h 
(1/(µm2*s) for a fixed value of n  (0.022 (1/s)). Locations on the plot for average rate of delivery 
(h) and internalization rate inside e the window  (m) values are shown for the conditions labeled. 
The plot emphasizes the general trend that polarity increases with reduction in the rate of 
internalization inside the delivery window (m).  
(B and C) Parameter space analysis. A polarized system is defined as one where the total 
membrane protein ranges from 30 to 55% of the total, the protein in the delivery window ranges 
from 12 to 30% of the total, and whose peak polarity falls in the range we observe 
experimentally including all conditions tested. Three values of membrane diffusion were used: 
0.36, 0.036, and 0.0036 µm2/sec are represented in red, blue, and green, respectively. A three 
dimensional plot is shown in B, while projections are shown in C. 

Supplemental Figure 5, related to Figure 6.  



 

 
 

 
 
Figure S6. 
(A) Relative expression level (in arbitrary units) of pCdc42-GFP-Cdc42 compared to pGAL1-
GFP-Cdc42Q61L after 1.5 to 2 hours of GAL induction, measured as the integrated fluorescence 
signal in individual cells. Results show that this induction time does not result in significant 
overexpression of Cdc42 vs. expression by the endogenous promoter. Blue error bars are the 
standard error of the mean, black bars represent the standard deviation.  

Supplemental Figure 6, related to Figure 7.  



 

(B-D) Results of application of the model to cells expressing WT Cdc42 and pGAL1-Gic2 upon 
overexpression with galactose for 2.5 hours.  
(B) Model parameters (black) and comparison to iFRAP measurements (red) are shown. 
Internalization rate m inside the window is reduced, while n remains unchanged. Box width is 
the standard error of the mean, whiskers represent the standard deviation.  
(C) Reduction in m relative to n for cells overexpressing Gic2 leads to a predicted steady-state 
distribution that is more pointed than for WT.   
(D) Example of the corresponding pointed morphology for cycling cells overexpressing Gic2. 
Scale bar is 2.0 µm.  
(E) Theoretical curves and Gc values for steady-state distributions using the h [1/(µm2

*s)] values 
shown. In all cases, m and n were set to 0.19 and 0.43 1/s, respectively (the values for WT 
Cdc42). This plot shows that for given m and n, differences in h only serves to change the 
amplitude of the distribution and Gc, not the shape.  
(F) Comparison of protein distribution width, calculated as shown in Fig. 3 of the main text, for 
Bni1-GFP in cells arrested with 75 µM mating pheromone. Representative images are shown for 
Bni1-GFP in ∆rdi1. Error bars represent the standard error of the mean. Scale bar is 2.0 µm.  
(G) Comparison of FRAP rates of Cdc42 in WT and ∆rdi1 backgrounds in cells arrested with 75 
µM α-factor for 1 to 1.5 hours. Box width is the standard error of the mean, whiskers represent 
the standard deviation.  
(H) Overlay of steady-state membrane Cdc42 distributions observed experimentally in individual 
cells and those as calculated from model parameters extracted from imaging and FRAP data of 
the same cells. A linescan was drawn around half the cell perimeter. The y-axis represents the 
protein abundance in arbitrary units, while the x-axis represents half the perimeter (assuming 
symmetry) in µm. Sharper distributions were observed for Cdc42 in pheromone arrested cells, 
consistent with the modeling results in Figure 7 of the main text.  Dots represent the 
experimental values, while smooth lines represent the model-calculated distributions.  
 



 

 
 
Figure S7.  
Application of the model for the cases where the internalization window size is smaller (scenario 
2) or larger (scenario 3) than the delivery window size (see section 2.4 of Supplemental 
Information). (B) Theoretical effect of differing size internalization and delivery windows for 
arbitrary, fixed values of m, n, and h (assuming for theoretical purposes that the values of these 
parameters do not change, just the sizes of windows). A smaller area of delivery had little change 
on the shape of the distribution (normalized curves are shown in B), making it slightly more 
narrow, but had a large effect on the strength of the distribution (C). A wide delivery window 
relative to internalization window led to a plateau-like distribution.  
 
 
 
 
 
 

Supplemental Figure 7, related to Figure 2 and 
Supplemental Text.  



 

 
 
 
 
 
 

RLY 
number Genotype Source 

2530 MATa    his3∆1;leu2∆0;met15∆0;ura3∆0 Huh et al.,  2003 
2544 MATa;   RGA1-GFP::HIS5  his3∆1;leu2∆0;met15∆0;ura3∆0 Huh et al.,  2003 

2667 
MATa    BAT2-GFP-mCHERRY::URA3 (6AA linker)   
his3∆1;leu2∆0;met15∆0;ura3∆0 Slaughter, et al. 2007 

2902 
MATa;   pRL369 (pCDC42-GFP-myc6-CDC42 / pRS306  URA3)  
his3∆1;leu2∆0;met15∆0;ura3∆0  

Wedlich-Soldner et al., 
2004 

3090 MATa;   BEM3-GFP::HIS5  his3∆1;leu2∆0;met15∆0;ura3∆0 Huh et al.,  2003 
3238 MATa;   BEM2-GFP::HIS5  his3∆1;leu2∆0;met15∆0;ura3∆0 Huh et al.,  2003 
3271 MATa;   ste50∆::KAN; STE11-GFP::URA3   his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3291 
MATa    bzz1∆::GFP:HIS5  bat2∆::mCHERRY::URA3  
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3366 
MATa;   pGAL1-GFP-myc6-CDC42Q61L CEN URA3   
his3∆1;leu2∆0;met15∆0;ura3∆0 

Wedlich-Soldner et al., 
2004 

3368 
MATa;   pGAL1-GFP-myc6-CDC42D57Y CEN URA3   
his3∆1;leu2∆0;met15∆0;ura3∆0 

Wedlich-Soldner et al., 
2004 

3425 
MATa;   pGAL1-GFP-myc6-CDC42R66E CEN URA3   
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3488 
MATa;   ∆rdi::LEU2  pRL369 (pCDC42-GFP-myc6-CDC42 / pRS306  URA3)   
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3503 
MATa;   pGAL1-GFP-myc6-CDC42D57Y CEN URA3  RDI1-mCHERRY::HIS5 
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3550 
MATa;   pGAL1-GFP-myc6-CDC42Q61L CEN URA3  RDI1-mCHERRY::HIS5 
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3557 
MATa;   pGAL1-GFP-myc6-CDC42C188S CEN URA3  RDI1-mCHERRY::HIS5 
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3559 MATa;   ∆rdi::LEU2  his3∆1;leu2∆0;met15∆0;ura3∆0 This study 
3619 MATa;  CDC24-GFP::HIS5  his3∆1;leu2∆0;met15∆0;ura3∆0 Huh et al.,  2003 

3748 
MATa;   BNI1-GFP::HIS5  ARC40-mCHERRY::URA3  
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3759 
MATa ;   pRL369 (pCDC42-GFP-myc6-CDC42 / prs306  URA3)   BNI1-
mCHERRY::HIS5 his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3812 
MATa;   BNI1-GFP::HIS5   BEM2-mCHERRY::URA3  
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3884 
MATa ;  ∆rdi::LEU2    pGAL1-GFP-myc6-CDC42D57Y  CEN URA3  
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3885 
MATa ;  ∆rdi::LEU2    pGAL1-GFP-myc6-CDC42Q61L CEN URA3  
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3901 
MATa ;  BEM3-GFP::HIS5   BEM2-mCHERRY::URA3  
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

3908 
MATa;   ∆bem2::KAN  ∆bem3::mCHERRY::HIS5    pGAL1-GFP-myc6-CDC42 
CEN URA his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4025 
MATa;  ∆arp3::HIS5  PDW25 (arp3-2ts :: LEU2)    pGAL1-GFP-myc6-CDC42-
R66E CEN URA his3∆200;leu2−3;lys2-801,ura3-52 

Winter et al., 1997 
(arp3-2) 

4045 
MATa;  ∆arp3::HIS5  PDW25 (arp3-2ts in LEU2)   pGAL1-GFP-myc6-CDC42  
CEN URA his3∆200;leu2−3;lys2-801;ura3-52 

Winter et al., 1997 
(arp3-2) 

4095 MATa ; ∆rdi::LEU2    BNI1-GFP::HIS5  his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4096 
MATa;   pGAL1-myc6-GFP-CDC42Q61L CEN URA3     BNI1-mCHERRY::HIS5 
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4308 
MATa;   pRL369 (pCDC42-GFP-myc6-CDC42 / pRS306  URA3)  RDI1-
mCHERRY::HIS5 his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4358 
MATa;   pRL369 (pCDC42-GFP-myc6-CDC42 / pRS306  URA3)  RDI1-
mCHERRY::HIS5 pGAL1-Gic2 CEN LEU2   his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4368 
MATa;   ∆rdi::LEU2   BNI1-GFP::HIS5   BEM2-mCHERRY::URA3  
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4404 MATa;   pRL369 (pCDC42-GFP-myc6-CDC42R66E / pRS306  URA3)  RDI1- This study 

Table S1. Yeast strains used in this study  



 

mCHERRY::HIS5 his3∆1;leu2∆0;met15∆0;ura3∆0 

4409 
MATa;   pGAL1-GFP-myc6-CDC42Q61L,T35A CEN URA3   
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4425 
MATa;   ∆rdi::LEU2   pGAL1-GFP-myc6-CDC42Q61L,T35A CEN URA3   
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4426 
MATa;   pGAL1-GFP-myc6-CDC42D57Y,T35A CEN URA3   
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

4427 
MATa;   ∆rdi::LEU2  pGAL1-GFP-myc6-CDC42D57Y,T35A CEN URA3   
his3∆1;leu2∆0;met15∆0;ura3∆0 This study 

 
 
 
 

1  Description of the model 
1.1  Basic model 
 Consider a model of Cdc42 protein dynamics on the surface of a polarized yeast cell. 

The previous model (Marco et al., 2007) discussed the simplest case of one circular transport 
window on the cell surface. This model can be written in plane geometry in a form:   

 ,)(1= cFhfnfmfD
t
f χχχ +−−−∆

∂
∂  (S1) 

 where ),,( trf φ  denotes the surface (membrane) density of Cdc42 protein, D  is the membrane 
diffusion coefficient, m  and n  are the internalization (protein removal) rate inside and outside 
the transport window, respectively. The restoration transfer rate inside the window is denoted by 
h , and cF  is the cytoplasmic (intracellular) total amount of the protein. The spatially dependent 
function χ  is equal to 1 inside the transport window, and is zero outside it. The Laplacian in the 
polar coordinates },{ φr  reads  

 .11= 2

2

2 φ∂
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⎠
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⎜
⎝
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∂
∂

∂
∂∆ f

rr
fr

rr
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The total amount totalF  of the protein in the cell remains constant   

 .==),(= constFFtrdrfFF cSctotal ++ ∫  (S2) 

The dimensions of the parameters are: 
1.=][=][,1/=][,1/=][=][,/=][,1/=][ 222 χµµµ cFsmhsnmsmDmf ⋅  

It should be emphasized that we apply the equation (S1) for description of a polarized 
protein experiencing dynamic equilibrium at steady state, not during initial stages of polarity 
establishment. 

 
1.2  Non-dimensional version 
 It is helpful to make the model equation non-dimensional. To perform this task we 

introduce the following scales:   
    • Protein amount scale totalF  (total protein amount)  
    • Length scale 0r  (characteristic window size)  
    • Time scale Drt /= 2

00   
 Using these scales we have a set of new variables we can define as follows:  
 ./=,/=,/=,/= 2

000 totaltotalcc FfrgFFGrruttτ  
Substituting these relations into the equations (1) and (2) we have   

 ,)(1= 22 BgNgMgg χχχ
τ

+−−−∆
∂
∂  (S3) 

 where DhrGBDnrNDmrM c /=,=,/=,/= 4
0

2
0

22
0

2 γγ . The conservation condition (S2) reads   

 1.==),( mcSc GGudugG ++ ∫ τ  (S4) 

 



 

As the yeast cell shape can be approximated by a sphere, we need to justify the 
replacement of the spherical geometry by the plane geometry. We performed a comparison of 
numerical solutions of the problem (S3) in both coordinate systems. The computation showed 
that the obtained distributions are very close one to the other (not shown). Taking into account 
the noise of the experimental data, we conclude that usage of the plane geometry model is 
justified. 

 
2  Steady state solution 
As we are examining the relationship of dynamic parameters that lead to the observed 

distribution of Cdc42 at steady state and not at intial polarity establishment, we restrict ourself to 
computation of the steady state solution )(ug  satisfying the equation:   

 0.=)(122 BgNgMg χχχ +−−−∆  (S5) 
 

2.1  One window, one pathway 
Assuming the radial symmetry of the problem we rewrite equation (S5) as a set of two 

equations in two regions - region 1 (inside the transport circular window) and region 2  (outside 
it) [see Fig.2 in main text]. As we choose the radius of the window to be a length scale 0r , the 
nondimensional window size is equal to one. The solutions in each region are marked by 
corresponding subscript.   

 0,=1
2

1 BgMg +−∆  (S6) 
 0,=2

2
2 gNg −∆  (S7) 

 where  
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The functions )(ugi  satisfy the following boundary conditions (BC)   
 0.=)(lim,=(1),=(1)0,=(0)' 2211 ugGgGgg

u ∞→
 (S8) 

 The first condition means that there is no flux of protein at the center of the window, the last BC 
requires that the membrane protein density vanishes far from the window. The two other 
conditions say that the solutions on both sides of the window boundary should be equal one to 
the other and to some (undefined) value G . This value is found from the additional matching 
condition at 1=u  which requires that also the first derivatives of the solutions should be equal 
on both sides of the window boundary:   

 (1).'=(1)' 21 gg  (S9) 
 The solution of the equation (S6,S7) reads   
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 where )(uIk  and )(uKk  denote the modified Bessel functions of the first and second kind, 
respectively. Substitution of these solutions into the matching condition (S9) leads to the relation  
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from which the value of G  is found as   

 .
)(
)(

)(
)(

)(
)(=),(),,(=

1

0

1

0

1

0

1
2

−

⎥
⎦

⎤
⎢
⎣

⎡
+

NK
NNK

MI
MMI

MI
MMINMPNMP

M
BG  (S12) 

 Thus the formulae (S10,S11) and (S12) completely desribe the radial distribution of the 
membrane protein. 

It is worth mentioning that the above method of solution also enables us to find the 
relative amount of cytoplasmic protein in the steady state regime (note that in the previous work 



 

both membrane distribution and cytoplasmic protein amount were computed as a solution of the 
time dependent problem). To compute cG  we find the total amount mG  of the membrane protein 
by integrating the solutions in the respective regions   
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 Now using the condition (S4) we obtain   
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 from which the value of cG  is computed easily. Comparing the computed value to that of 
experiment, one can verify the validity of the suggested model on a cell by cell basis (main text, 
Fig.3). 

 
 
2.2  One window, two pathways 
Consider a slight extension of the above problem assuming that there exist two 

independent pathways with different transfer rates acting inside the same window (see Fig. 2, 
main text). Denote the transfer rates of i -th ( 1,2=i ) process with distribution ig  as ii NM ,  and 

ih . The equation (S5) is changed into the set of two equations for ig :   
 0,=)(1 1

2
1

2
11 cGgNgMg χγχχ +−−−∆  (S15) 

 0,=)(1 2
2
2

2
22 cGgNgMg χγχχ +−−−∆  (S16) 

 where 21= ggg + . It is easy to see that this system leads to (S5), so that its solution is given by 
formulae (S10,S11) and (S12) with   

 .=)(=,=,= 21
2
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2
cc GGBNNNMMM γγγ +++  (S17) 

 
 
2.3  Two concentric windows, two pathways 
The next extension of the basic model leads to the consideration where there are two 

concentric windows of the (normalized) radii 1<0u  and 1. This case is described by the 
following system where iχ  is equal to 1 inside the i -th process window and 0 outside. 

  
 0,=)(1 111

2
11

2
11 cGgNgMg γχχχ +−−−∆  (S18) 

 0,=)(1 222
2
22

2
22 cGgNgMg γχχχ +−−−∆  (S19) 

 
We can assume without loss of generality that in the smaller window of radius 0u  both 

pathways are employed, while in the ring 10 ≤≤ uu  only the second pathway ( 2=i ) survives. 
Thus we consider a problem in three regions: the first one is the inner circle ( 00 uu ≤≤ ), the 
second region coincides with the outer ring ( 10 ≤≤ uu ), and the third one is outside of the larger 
circle ( u≤1 ) (see Fig. 2, main text). Writing down the equations in each region we arrive at the 
system:   

 0,=)()( 211
2
2

2
11 cGgMMg γγ +++−∆  (S20) 

 0,=)( 22
2
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2
22 cGgNMg γ++−∆  (S21) 

 0,=)( 3
2
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2
13 gNNg +−∆  (S22) 

 subject to the following BC  
 0.=)(lim,=(1)=(1),=)(=)(0,=(0)' 3232102011 ugGggGugugg

u ∞→
 

The values 1G  and 2G  are determined from two matching conditions  
 (1).'=(1)'),('=)(' 320201 ggugug  

The solution of equation (S20) reads   
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 with parameters given by (S17). It is easy to show that in the region 2 the solution can be 
presented as   

 ),()(=)( 020122 MuKCMuIC
M
Bug ++  (S24) 

 where   
 .=,= 2

2
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2
2

2
cGBNMM γ+  (S25) 

 and the integration constants 21, CC  are obtained from the conditions  

 .=)()(,=)()( 20201210020012 GMKCMIC
M
BGMuKCMuIC

M
B ++++  

The explicit expressions for the constants are cumbersome and are not presented here but are 
available upon request. Finally, the solution in the outer region is similar to (S11)   
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 Using the matching conditions we determine the values 1G  and 2G . Then the total membrane 
protein amount is computed as   
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 Substitution of the obtained expression into the conservation relation 1=cm GG +  gives us the 
total intracellular protein cG . 

 
2.4  Two concentric windows, one pathway 
It is also possible to use the subset of equations (S20-S22) to consider the possibility of a 

single recycling mechanism in the case when the return flow area is not equal to the window of 
internalization. When the return flow area is larger in size than the window of internalization we 
use the following set of parameters in equations (S20-S22)  

 0,=,=,=0,=,=0,= 212121 γγγNNNMMM  
and when the return flow area is smaller in size than the window of internalization we use the 
following set  

 .=0,=0,=,=0,=,= 212121 γγγNNNMMM  
Supplemental Fig. 7 shows the characteristic effect on the distribution for theoretical values in 
both these cases. While the model can in general be applied to these cases, we limit our 
experimental examination of Cdc42 dynamics to the possibilities outlined in subsections 2.1, 2.2, 
and 2.3. 

 
2.5  No window (uniform membrane distribution) 
Consider a degenerate case of uniformly distributed membrane protein. It is described by 

the equation   
 0,=2

cGgM γ+−  (S28) 
 where g  is the uniform protein density. Denoting the membrane surface area by S  we obtain 

SgGm =  and find SgGG mc −− 1=1= . Thus, the membrane steady-state density g  satisfies the 
equation )(1=2 SggM −γ  and we find   

 .= 2 SM
g

γ
γ
+

 (S29) 

 
3  Parameters estimate 
The dimensional parameters required for the solution of the problem and calculation of 

the Cdc42 steady state membrane distribution are the diffusion coefficient D , internalization 
rates m , inside, and n , outside, of the transport window, and the membrane protein restoration 
rate h . All parameters except the diffusion coefficient are found from the combination of FRAP 



 

and steady-state imaging experiments as described below. The value of D  of 0.036  µm 2 /s is 
used as published (Marco et al., 2007). As the FRAP process is essentially non-stationary we use 
equation (S1) as a starting point and use time dependent FRAP data along with imaging to 
determine model parameters, which are converted into nondimensional units and used to 
calculate the steady state distributions.  

 
3.1  Computation of model parameters 
Integrating the local membrane protein density ),( trf  over the membrane surface we 

obtain the total membrane protein ),(=)( trdrftF
S∫  as a function of time. Similarily we find the 

total amount )(tW  inside the window ),(=)( trdrftW
w∫ . 

With the premise that the Cdc42 distribution is controlled by a flux balance characterized 
by equation (S1) and that local surface diffusion does not affect the total amount of membrane 
protein )(tF , then after integration of (S1) the following must be true   

 ,)(=)( chAFWFnmWtF +−−−′  (S30) 
   

 ,= FFF ctotal +  (S31) 
 where A  is the window area. Note that we do not have an independent equation describing the 
dynamics of W . 

As the bleaching is applied to the surface only (mainly in the region of the transport 
window) the dynamics of both F  and W  are described by exponential saturation   

 ).(1=)(),(1=)( 1010
tt eWWtWeFFtF βα −− −+−+  (S32) 

 From the conservation of the total cell protein (S31) it follows that  
 ).(1=)(=)( 10

t
totaltotalc eFFFtFFtF α−−−−−  

We estimate the values α,,,,, 1010 WWFFFtotal  and β  from the experimental data, by simple 
extraction from independent, single exponential fits to )(tF  and )(tW  (Supplemental Fig. 2B). 
Substituting (S32) with the estimated values into (S30) we obtain the condition for the 
determination of the parameters hnm ,,  (using a linear regression method)   

 )],(1)[()](1)[(= 10101
tt

total
t eWWnmeFFAhnAhFeF βααα −−− −+−−−++−  (S33) 

 obtained for time moments t . 
From simple algebraic rearrangements of (S33) it is possible to obtain several conditions 

on the parameter values. Consider first a possibility when βα ≠ . As the condition (S33) must 
hold for any time t , rearrangements and grouping of time-dependent and time-independent terms 
in (S33) implies the following relations  

 .=0,=)(,= 10 nmFFAhFAhn total +−+ αα  
The last equality corresponds to a particular case when the internalization rates inside and 
outside the window are equal. While this is certainly possible, there is no justification for 
limiting our consideration to this scenario. To the contrary, ample evidence exists to suggest that 
endocytic machinery is highly polarized, and thus at least for endocytic internalization, we 
anticipate nm > . 

Therefore, in the general case, to consider nm ≠ , it is nesessary that βα =  and we 
obtain two conditions   

 .)()(=0,=))(())(( 1111010 WnmFAhnFWWnmFFAhnAhFtotal −+++−−++− α  (S34) 
 

With 3 unknowns and 2 conditions at this point we cannot yet compute all three 
parameters nm,  and h , and we need a third condition. For a given value of nm/  ratio we find 
the parameters nm,  and h ; then compute the nondimensional values NM ,  and γ . We find the 
distributions )(1 ug  for the window region and )(2 ug  for the outside region, and compare the 
experimentally measured ratio FW/  of window to total membrane fluorescence to the following 
calculation:   
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 This equation represents the third condition, the relation between the dimensional FW ,  and 
nondimensional mw GG ,  quantities, where mG  is defined in (S13) and wG  denotes the scaled total 
protein inside the window. We use an iterative procedure to fit the ratio nm/  value to obtain the 
experimental value of the FW/  ratio known from the experimental image. This iteration allows 
for a unique solution of h , m , and n  for each cell. 

In the case of a uniform membrane distribution (applied here to +∆ 1rdi  Lat A), the 
computation of model parameters is a much simplified case of the situation described above. 
Equation (S30) simplifies to   

 ).(=)( FFAhmFtF total −+−′  (S36) 
 Using )(1)( 10

teFFtF α−−+= , we obtain tFeF αα −′ = , which leads to the modified form of 
equation (33)   

 )).(1)((= 10
t

total
t eFFFAhmAhFFe ααα −− −−++−  (S37) 

 Parameters, including the time constant α , are obtained as explained above and as shown in  
Supplemental Fig. 2B, with the exception that there is only one region considered (there is no 
inside/outside window). Since equation (S37) must hold for all times t , we group time-
dependent and time-independent terms to find the relations   

 ),(=,= 10 FFAhFAhm total ++ αα  (S38) 
 from which it is follows that   

 .)(= 10

totalAF
FFh +α  (S39) 

 

4  3D correction 
The functions F  and W  in the main text describe the protein amount over the total cell 

surface, while the measurements are made using a confocal microscope, so that only a portion of 
the total protein amount is detected. This means that the experimental data expF  should be scaled 
up by a coefficient 1r  to give the actual amount expexp WrWFrF 11 =,= . The same reasoning is 
applied to the computation of the cytosol actual value of )(== 22

expexp
total

exp
cc FFrFrF − . 

 
    
 
 
 
 
 
 

 
 
 

The above pictures describe the computation of 2r  (left) and 1r  (right) correction coefficient 
respectively. 

As the cytosol protein distribution is assumed to be uniform, one can compute 2r  as a 
ratio of volume /32= 3RVR π  of a semisphere of radius R  to the volume )/3(3= 22 hRhVh −π  of 
the spherical slice of the height Rh <  (where h2  is the width of the confocal slice)  

 ./=;
)(3

2=/= 22 RhVVr hR δ
δδ −

 

The value of µ1.5=2h m for our system was found from a z -stack series of sub-diffraction 
beads. Comparison of h  to R  gives the value of 1.66=2r  for the cytosol. 



 

Assuming for simplicity that the membrane protein is distributed evenly over the surface, 
and noting that the thickness of the confocal slice Rh 0.4≈  we find an estimate for maximum 

2.5/=1 ≈hRr . The actual value must be lower, as Cdc42 is polarized. For a spherical cell that is 
symmetric around the polar cap, a linescan, starting at the cap center, around the perimeter in any 
orientation represents the membrane distribution. We fit a linescan around the perimeter of our 
cells, as in the orientation shown in Fig. 4B, and integrated the region that corresponds to inside 
the center confocal slice, based on our knowledge of the size of our confocal slice. The ratio of 
this integral to the integral of the total linescan is a very close approximation of the relative 
amount of membrane Cdc42 inside the center confocal slice. 
 

Analysis of the parameter space of Cdc42 dynamics 

 To explore the relationship of all model parameters to polarity in general, we searched 
parameter space for combinations of m, n, and h that would satisfy specified requirements for a 
polarized system at three values of Df: 0.36, 0.036, and 0.0036 µm2/sec.  The criteria that we 
specified for the observed polarized system included Gc values within the experimentally 
observed range (45 to 70%), and Cdc42 relative abundance in the delivery window from 12 to 
30% of the total. As a third criterion, polarity was confined to the range observed experimentally. 
The three-dimensional parameter-space plot is shown in Supplemental Fig. 5B, while projections 
are shown in Supplemental Fig. 5C.  For Df values that are either as observed for prenylated 
proteins in yeast (0.036 µm2/sec) (Marco et al., 2007) or 10 fold slower, the allowable ranges of 
m, n, and h were clustered. Allowable values of internalization rate inside the window (m) and 
rate of delivery (h) at slow membrane diffusion rates reside in a linear range: for a given Df  and 
n, an increase in m can be balanced by an increase in h. For a polarized system, this simply 
suggests that if internalization rate is increased, the system can remain polarized by an increased 
rate of delivery. In fact, we observe this experimentally for Cdc42Q61L in ∆rdi1, WT Cdc42 in 
∆rdi1, and WT Cdc42 + LatA. In these three cases, while n is similar, m and h vary. However, 
the ratio of h/m is within 3 fold of each other, and in fact the difference in the ratio of h/m in 
these cases explains the differences in polarity observed in main text Fig. 7A.  However, at a 
membrane diffusion rate 10 fold higher than that observed for Cdc42, the relationship between 
internalization rate inside the window (m) and rate of delivery (h) is not as limited, as h must be 
higher to balance also the increased rate of diffusion away from the site of deposition.  

In contrast, a linear relationship is not observed between rate of delivery (h) and 
internalization rate outside the window (n), or between n and m. Instead, box-like ranges of 
allowed values are observed. In addition, at low diffusion rates, for fixed m, or fixed h, a small 
range of n values are allowed. This suggest that if n represents a basal internalization rate of 
Cdc42 outside the delivery window, its allowable values are mostly independent of h and m but 
instead are more constrained by the rate of membrane diffusion.  
 With the acknowledgement that the criteria here are set up using observed parameters of 
Cdc42 polarization and are only applicable for a system of size and shape similar to yeast, it is 
still interesting to observe the differences in parameter values needed to satisfy a polarized 
system in the case of rapid membrane diffusion. This is notable because, while a value of 0.036 
µm2/sec has been measured for the prenylated protein Cdc42 (Marco et al., 2007) and 0.0036 
µm2/sec is in line with diffusion of transmembrane proteins in yeast (Ries and Schwille, 2006; 
Valdez-Taubas and Pelham, 2003), membrane diffusion in mammalian system is predicted to be 
much faster (Ries et al., 2009; Semrau and Schmidt, 2007). The parameter space analysis here 
suggests that in order to maintain a polarized state based on these criteria in the presence of more 
rapid membrane diffusion, vastly different dynamic parameters are needed.  
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