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for Multi-Phase Deep-Water Wavetrains

By I. L. Kliakhandler and B. Y. Rubinstein

A new formalism of spectral filtering for the description of the modulation
processes is proposed. The method allows one to study the classical problem
of multi-phase modulations in dispersive systems. In the present paper, deep-
water waves are considered. Spectral filtering results in a system of coupled
equations that describe the modulations of the carrier wave and its harmonics.
The formalism may find applications in a broad range of physical situations
with multi-phase dynamics.

1. Introduction

The present paper is devoted to the well-known problem of multi-phase
modulations of wave packets [1], where the wavetrain contains a few carrier
interacting frequencies. The introduced general theory of spectral filtering is
applied below to the deep-water wave motion.

The classical way to consider the multi-phase wavetrains is through the
averaged Lagrangians, though, as was pointed out by Whitham, “. . . even
in ordinary dynamics questions of the existence of quasi-periodic solutions
are difficult ones in a nonlinear case, involving the well-known problems of
small divisors, so there may be considerable difficulties hidden under the
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Figure 1. Schematic peaked spectra in multi-phase dynamics.

formalism” (p. 509). Ablowitz and Benney [2] developed the asymptotic theory
of multi-phase modulations for the nonlinear Klien–Gordon equation similar
to that of Whitham [1]; these ideas were developed further by Ablowitz [3, 4].

In the present study, a new approach to the study of multi-phase dynamics
is proposed. Flow parameters are assumed to have peaked spectra, with finite
support around each peak (Figure 1). It is assumed that during nonlinear
dynamics the spectra stay within finite support in Fourier space. Therefore, the
modulational dynamics around each peak may be decoupled from each other
by the introduction of spectral filters. These spectral filters retain the spectral
content of the signal near each peak unchanged, and discard everything else
(Figure 2). The decoupling results in a system of effectively computable
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Figure 2. Action of spectral filters.
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equations that govern the dynamics of modulations of the carrier wave and
its harmonics. The approach is applied to the deep-water wave modulations,
where the direct comparison of the stability of the Stokes waves with exact
stability computations is possible.

The idea of spectral filters is widely used in radiophysics, electrical
engineering, signal processing, speech and pattern recognition, numerical
simulations, and many other applied fields. However, as far as we are aware,
this is the first application of spectral filters to the derivation of the reduced
evolution equation in hydrodynamics.

2. New formalism: Peaked spectra and spectral filters

For simplicity, let us consider the case of infinitely deep water; generalization
to finite depth is straightforward. We start with the equations for the surface
displacement ζ (x, t) and velocity potential φ(x, z, t) of an inviscid and
incompressible fluid:

∂ζ

∂t
+ ∇⊥φ · ∇⊥ζ = ∂φ

∂z
,

∂φ

∂t
+ gζ + 1

2
(∇φ)2 = 0 at z = ζ, (1)

∇2φ = 0 for −∞ < z < ζ, (2)

∂φ

∂z
→ 0 at z → −∞. (3)

Here x = (x, y) is a horizontal position vector, z is the vertical position,
t is time, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the full gradient operator, whereas ∇⊥ =
(∂/∂x, ∂/∂y) is the gradient operator in the horizontal plane; g is the acceleration
due to gravity, which without loss of generality is taken to be 1 in the following.

Linear stability analysis of (1)–(3) with respect to the unperturbed system
η̄ = 0, φ̄ = 0 gives η = η̄ + be i(k·x−ωt), φ = φ̄ + aei(k·x−ωt), ω2 = |k |, where
k = (kx , ky) is the wavenumber, ω is the frequency. We assume that the flow
potential φ and surface elevation ζ have peaked spectra, like that shown in
Figure 1. Its precise meaning is defined below. The full exact solution of (2) for
potential φ with a peaked spectrum may be obtained by the Fourier integral

φ = φ0 + 1
2

(
φ1 + φ∗

1

) + 1
2

(
φ2 + φ∗

2

) + · · · , (4)

φn =
∫ ∞

−∞
an(λ, t)ei(nk 0+λ)·xe mn(λ)zdλ,

mn(λ) = |nk0 + λ| = ω2(nk 0 + λ). (5)

Here k 0 = (kx0, ky0) is the carrier wavevector, λ = (λ, µ) is the horizontal
wave vector. We assume that all an(λ, t) have finite support in Fourier
space around 0, i.e., an ≡ 0 for |λ| > � > 0. Here � corresponds to half
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of the typical spectral width of potential components. As a result, the full
spectrum of φ is assumed to have a number of separated peaks around nk 0 for
n = 0, 1, 2, . . . , as shown in the stylized Figure 1. The function mn(λ) plays
an important role in the following, being the essential kernel component in the
convolution integrals.

We express the surface displacement ζ (x, t) as a sum of Fourier integrals:

ζ = ζ0 + 1

2

(
ζ1 + ζ ∗

1

) + 1

2
(ζ2 + ζ ∗

2 ) + · · · , ζn =
∫ ∞

−∞
bn(λ, t)ei(nk 0+λ)·x dλ.

(6)

All bn are also assumed to have finite support in the Fourier space around 0,
i.e., bn ≡ 0 for |λ| > � > 0. Therefore, the full spectrum of ζ is also peaked
around nk 0 for n = 0, 1, 2, . . . .

We make an important assumption, that during nonlinear interaction all
modes ζn and φn preserve finite support in Fourier space. This assumption is
critical for further derivation.

To use spectral filters effectively, a few additional operations are introduced.

1. The value of the potential components on the zeroth level �n(x, t) =
φn(x, z = 0, t). From (4) it follows that

�n(x, t) =
∫ ∞

−∞
an(λ, t)ei(nk 0+λ)·x dλ. (7)

If �n(x, t) is known, the corresponding φn(x, z, t) could be easily found,

an(λ, t) =
∫ ∞

−∞
�n(y, t)e−i(nk 0+λ)·y d y,

φn(x, z, t) = 1

4π2

∫ ∞

−∞
an(λ, t)ei(nk 0+λ)·xemn(λ)z dλ. (8)

In the following derivation, the connection between �n and φn will be exploited.
2. The linear convolution operator L[�, f ] which is

L[�, f ] ≡ 1

4π2

∫ ∞

−∞

∫ ∞

−∞
�(λ)eiλ·(x−y) f (y, t) d y dλ. (9)

In other words, the action of L[�, f ] consists of taking the Fourier transform
of f (x, t), multiplying the λth Fourier coefficient ˆf (λ) on �(λ), and taking the
inverse Fourier transform. In particular, L[1, f ] ≡ f , and L[�, Ae ikx] =
A�(k)e ikx, A = const. If �(λ) is a polynomial of (iλ), the action of L[�, f ]
may be recast as a usual differentiation operator. As a result, taking the Taylor
expansion of � in the power series of (iλ), one recovers the “long-wavelength”
expansions.
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3. The spectral filters Fn[�, ·], whose action in Fourier space is

F [�, f̂ (λ, t)] =
{

0, |λ − nko| ≥ �,

ˆf (λ, t), |λ − nko| < �.
(10)

Here � is half of the spectral width of the filter. We assume that � < |k 0|/2,
so the spectral “windows” of Fn and Fn+1 do not overlap. The usual
Fourier–Galerkin expansions may be considered as spectral filtering with
“infinitely narrow” spectral windows. Loosely speaking, the action of filter Fn

on the Fourier coefficients ˆf (λ, t) consists in retaining only the modes around
nk 0, and discarding the rest of the spectrum (Figures 1 and 2). To illustrate the
action of the spectral filters, consider the action of Fn on the full surface
elevation ζ ,

Fn[�, ζ ] = Fn

[
�, ζ0 + 1

2

(
ζ1 + ζ ∗

1

) + 1
2

(
ζ2 + ζ ∗

2

)] = ζn, (11)

since all ζn are supposed to have finite support within 2� in the Fourier space.
It was assumed that the spectra of the flow potential and surface elevation
remain in finite spectral support during evolution; hence, the spectral filters
may effectively be used to decouple the dynamics around the harmonics nk 0.

In the context of deep-water waves, it is convenient to decouple the
modulations around the leading carrier wave and its harmonics. In the general
case, spectral filters may be applied to various components of the spectra, not
necessarily to the harmonics of the leading carrier wave.

4. The procedure of finding z-derivatives of the potential components. For
example, let us find ∂φ1/∂z on the zeroth level; we will need this and similar
quantities in subsequent analysis. From (4) it follows that

∂φ1

∂z

∣∣∣∣
z=0

=
∫ ∞

−∞
m1a1(λ, t)ei(k 0+λ)·x dλ ≡ L[m1, �1]. (12)

5. The conventional procedure for the evaluation of the two boundary
conditions (1) which are given on the unknown fluid interface ζ (x, t) through
values of all variables at the zeroth level z = 0. For the first-order expansion,
we have in unfold form

∂φ

∂t
+ gζ + 1

2

(
φ2

x + φ2
y + φ2

z

) + φt zζ + (φxφxz + φyφyz + φzφzz)ζ

+ 1

2
φt zzζ

2 = 0 on z = 0, (13)

ζt − φz + ζxφx + ζyφy − φzzζ + ζxφxzζ + ζyφyzζ

− 1
2φzzzζ

2 = 0 on z = 0. (14)
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The whole technique works as follows, using the operations introduced
above. The expressions for the flow potential and surface elevation from (4) and
(6) are substituted in the boundary conditions on the zeroth level (13) and (14).
The z-derivatives of the potential components are found like in (12) through
the action of the operator L. The action of the spectral filters on the boundary
conditions (13) and (14) allows one to decouple the modulational dynamics
near each peak. The decoupling results in a system of two-dimensional
equations that govern the dynamics of the surface modulations of the carrier
wave and its harmonics.

Let us consider the simplest case which is prompted by the classical Stokes
solution. For the Stokes solution, all φi and ζi , except φ0, are just harmonics,
i.e., φ and ζ have discrete spectra, and the mean surface elevation ζ0 is usually
set to zero. Let us introduce parameter ε, which will measure the amplitude of
the first harmonics for surface elevation. We include the variations of φ0 and
ζ0 into the model, and use Stokes scalings as

φ1 ∼ ζ1 ∼ ε, φ0 ∼ ε2, ζ0 ∼ ε2, φ2 ∼ ζ2 ∼ ε2. (15)

We retain the terms up to third order in ε in (13) and (14), and apply the
spectral filters to (13) and (14) near the zeroth, first, and second mode. The final
set of six coupled equations for ζ0, ζ1, ζ2 and �0, �1, �2 will include the
terms of various orders; we do not separate them. The result is

∂�0

∂t
+ ζ0 + 1

4
∇φ∗

1 · ∇φ1 + 1

4
L[m1, �1]L

[
m−1, �

∗
1

] + ζ1

4
L

[
m−1,

∂�∗
1

∂t

]

− ζ ∗
1

4
L

[
m1,

∂�1

∂t

]
= 0, (16)

∂ζ0

∂t
− L[m0, �0] − ζ1

4
L

[
m2

−1, �
∗
1

] − ζ ∗

4
L

[
m2

1, �1
] + 1

4
∇ζ1 · ∇�∗

1

+ 1

4
∇ζ ∗

1 · ∇�1 = 0, (17)

∂�2

∂t
+ ζ2 + 1

4
∇φ1 · ∇φ1 + 1

4
L2[m1, �1] + ζ1

2
L

[
m1,

∂�1

∂t

]
= 0, (18)

∂ζ2

∂t
− L[m2, �2] − ζ1

2
L

[
m2

1, �1
] + 1

2
∇ζ1 · ∇�1 = 0, (19)

∂ζ1

∂t
− L[m1, �1] − ζ1L

[
m2

0, �0
] − ζ2

2
L

[
m2

−1, �
∗
1

] − ζ0L
[
m2

1, �1
]

− ζ ∗
1

2
L

[
m2

2, �2
] − ζ 2

1

8
L

[
m3

−1, �
∗
1

] − ζ ∗
1 ζ1

4
L

[
m3

1, �1
] + ∇ζ1 · ∇�0
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+ ∇ζ0 · ∇�1 + 1

2
∇ζ2 · ∇�∗

1 + 1

2
∇ζ ∗

1 · ∇�2 + ζ1

4
∇ζ1 · ∇L

[
m−1, �

∗
1

]
+ ζ1

4
∇ζ ∗

1 · ∇L[m1, �1] + ζ1

4
∇ζ ∗

1 · ∇L[m1, �1] = 0, (20)

∂�1

∂t
+ ζ1 + L[m0, �0]L[m1, �1] + 1

2
L[m2, �2]L

[
m−1, �

∗
1

]
+ ζ1

4
L[m1, �1]L

[
m2

−1, �
∗
1

] + ζ1

4
L
[
m−1, �

∗
1

]
L

[
m2

1, �1
]

+ ζ ∗
1

4
L[m1, �1]L

[
m2

1, �1
] + ∇�0 · ∇�1 + 1

2
∇�∗

1 · ∇�2

+ ζ1

4
∇�1 · L

[
m−1, ∇�∗

1

] + ζ1

4
∇�∗

1 · L[m1, ∇�1]

+ ζ ∗
1

4
∇�1 · L[m1, ∇�1] + ζ1L

[
m0,

∂�0

∂t

]
+ ζ ∗

1

2
L

[
m2,

∂�2

∂t

]

+ ζ2

2
L

[
m−1,

∂�∗
1

∂t

]
+ ζ0L

[
m1,

∂�1

∂t

]
+ ζ 2

1

8
L

[
m2

−1,
∂�∗

1

∂t

]

+ ζ1ζ
∗
1

4
L

[
m2

1,
∂�1

∂t

]
= 0. (21)

The structure of Equations (16)–(21) is quite simple. Let us first consider
Equation (16), which is extracted from Equation (14) by the application of
spectral filter near the zeroth mode. We see that the sum of the indices of ζi

and φi in each product term is exactly 0: the first term is ∂�0
∂t , the second term

is ζ0, the third term is 1
4∇φ∗

1 · ∇φ1, which gives −1 + 1 = 0, the fourth term is
1
4 L[m1, �1]L[m−1, �

∗
1], which gives 1 − 1 = 0 (note that the action of the

operator L changes the spectral content of the function, but does not shift
it), etc. In each equation, the sum of the indices in each term is a constant.
Operator L appears in Equations (16)–(21) as a result of taking z-derivatives
(see (12)).

Equations (16)–(21) are effectively computable. All operations, including
the taking of operator L, may be effectively performed by fast Fourier transform
in a time proportional to N log N , where N is a number of gridpoints. In
contrast to that, the computations of the Fourier convolutions in the integral
Zakharov equation require computational time proportional to N 2 (for quartet
interactions), and to N 3 for quintet interactions.

3. Stokes waves

To obtain a solution of (16)–(21) in the form of classical Stokes waves,
consider the case when ζ and φ have discrete spectra. We take axis x as being
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Figure 3. Comparison of discrete-modes solution of various approximations with exact (up
to fourth order) Stokes solution.

along the waves, and normalize all wavevectors on the wavenumber of the
leading first mode of the Stokes solution; mean elevation is assumed to be
zeroth. This results in

ζ S
0 = 0, ζ S

1 = b1ei(x−ωt), ζ S
2 = b2e2i(x−ωt), �S

0 = a0t,

�S
1 = a1ei(x−ωt), �S

2 = a2e2i(x−ωt). (22)

Substitution of (22) in (16)–(21) gives a set of algebraic equations for ω as a
function of the amplitude of the first harmonics of the surface elevation b1.
The results of the numerical solution of the equations are shown in Figure 3 as
the “first-order approximation scaled.” The origin of the other curves will be
explained later.

Up to the fourth order in b1, the exact Stokes solution reads [5]

ω = [
1 + b2

1 + 5
4 b4

1

] 1
2 . (23)

As may be seen from Figure 3, the difference between the discrete-spectrum
solution of (16)–(21) and the Stokes solution is of fourth order in the steepness
of the waves. The latter is consistent with the corresponding first-order
expansion of (1), leading to (16)–(21).

4. Stability of Stokes waves, scalings, and expansions

The benchmark test of the validity for the new approach is the stability of the
Stokes waves. The linear stability of the two-dimensional NLS equation shows



Spectral Filtering Formalism and Its Application 213

that the NLS model has a leakage of energy to high-wavenumber modes, with
uniform maximal growth rate in whole, stretched to infinity, instability domains
[6]. Many papers are devoted to the improvement of the NLS equation, beginning
with the work by Dysthe [7]; see also the paper by Trulsen and Dysthe [8]
with many references. These approaches substantially diminished the energy
leakage to the high-wavenumber modes, but did not eliminate it completely.

Typically, the generalization of the NLS equation for a wider bandwidth
is done by multiple-scales asymptotic expansions, adding an ever-increasing
number of linear dispersive and nonlinear terms in the style of a power series
expansion. This approach eventually becomes unattractive due to the lengthy
expressions and the poor convergence properties outside some spectral “radius
of convergence.” Trulsen et al. [9] introduced a new approach based on the
exact representation of the linear dispersive term. This method successfully
eliminated the energy leakage, and captured well the quartet instability regions
compared to the exact computations by McLean [10].

The remarkable exact computation of the stability of the Stokes waves by
McLean [10] revealed the complex structure of the instability regions. One
of the most important conclusions is that in addition to the conventional
four-waves (quartet) resonances lying near “figure 8” of Phillips [11], there are
five-waves (quintet) resonances which become important for steeper waves.
Quintet interactions are not, however, captured by the NLS-based and Trulsen
et al. [9] approaches.

The linear stability of the Stokes waves (22) is investigated assuming their
small perturbations:

(�0, ζ0) = (A0, B0)e i(λx+µy−�t) + c.c., (24)

(�1, �2, ζ1, ζ2) = (
�S

1 , �S
2 , ζ S

1 , ζ S
2

) [
1 + (A1, A2, B1, B2)e i(λx+µy−�t)

] + c.c.

(25)

Here (λ, µ) are the components of the modulational wavevector; λ is parallel
to the carrier Stokes components, and µ lies in the orthogonal direction to the
carrier components.

The instabilities identified by McLean [10] lie (at least, for small steepnesses)
near the curves given by the linear stability analysis of the small-amplitude
waves. If the amplitudes of the disturbance harmonics are numbered in an
ascending order, the instability curves may be divided into two classes as

Class I

[(λ + m)2 + µ2]
1
4 + [(λ − m)2 + µ2]

1
4 = 2m, (26)

Class II

[(λ + m)2 + µ2]
1
4 + [(λ − m − 1)2 + µ2]

1
4 = 2m + 1. (27)
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Figure 4. Resonance curves of class I and class II for m = 1 from (26) and (27).
Conventionally, only one of the curves is shown, which is denoted by a thick line. For
the lowest quartet interactions (four-waves resonance), this is the “figure 8.” For quintet
interactions (five-waves resonance), this is the large, right-shifted curve. All four-waves
resonance curves may be obtained as a shift of the thick-line curve in the horizontal direction
on an integer; the same is true for five-waves resonance curves.

Here m is an integer. The resonance curve for the first class for m = 1 gives
the well-known “figure 8” of Phillips [11]. The resonance curve of class II
describes quintet interactions. As was already mentioned by McLean [10],
there is a degeneracy in his choice of perturbation wavevectors; the shift of the
perturbation wavevectors on a whole number of the Stokes carrier wavevectors
would just shift the stability diagram. As a result, McLean [10] has shown only
the instability diagrams lying near one branch of the resonance curves given
by (26) and (27). Taking into account all possible resonances, we conclude
that the whole set of instability curves lies near the curves given by (26) and
(27), and their shifts (Figure 4). This consideration gives an indication of the
structure of the stability diagram considered below.

Substitution of (24) and (25) into (16)–(21) results in an eigenvalue problem
for � as a function of λ and µ, which was solved numerically. This eigenvalue
problem was very extensively studied in a broad range of λ and µ, and for
various steepnesses of the Stokes waves. The key element of the numerical
procedure is that a large domain in the (λ, µ) plane was “brushed” in search of
the instability domains. We have chosen a small increment step equal to 0.001
for λ and µ independently, and have checked each point in the (λ, µ) domain
using such a small increment in values λ and µ. This was done to capture
all possible instability domains, and to compare the results of such stability
analysis with computations by McLean [10].

The results of the solution of the eigenvalue problem for steepness 0.1 are
shown on Figure 5. It should be noted that McLean [10] employed steepness
0.1 based on half the crest-to-trough height of the wave, while the results
for Equations (16)–(21) are for steepness 0.1 based on the first harmonic
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Figure 5. Comparison of the stability analysis based on spectral-filter equations, with exact
computation by McLean [9]. Here the steepness is equal to 0.1, and (λ, µ) are the components
of the modulational wavevector; λ is parallel to the carrier Stokes components, µ is in
orthogonal direction to the carrier components.

amplitude. The difference between these two steepnesses is very small in the
present case and can be neglected.

First, compare the results of the McLean instability diagram (Figure 5(a)),
the instability diagram for Equations (16)–(21) (Figure 5(b)), and the diagram
of all possible resonances in Figure 4. As was mentioned previously, results by
McLean [10] show ony one branch of resonances, close to the solid lines in
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Figure 4. It is seen that Equations (16)–(21) capture quite well both quartet
and quintet resonances given by McLean, and show vestiges of additional
resonances similar to those in Figure 4. Since the quintet instabilities are very
weak and the domain of the quintet resonances is very thin far from λ = 0.5
[10], it was impossible to identify them numerically; as a result, the lines of
the quintet resonances do not reach the horizontal axis.

As may be seen from a comparison of Figures 4 and 5(b), Equations (16)–
(21) somewhat misrepresent the resonances additional to those of McLean. To
capture them better, scalings (15) were omitted, and Equations (13) and (14)
were filtered without any a priori assumptions about the order of all terms. Such
an approach results in many new terms additional to those in Equations (16)–
(21), which are not presented here. For instance, additional terms will include
products such as ( ∂φ0

∂x )2,
∂φ2

∂y
∂φ0

∂y , etc. Results of the stability analysis of those
extended equations are shown in Figure 5(c). It is remarkable that all the
features of McLean’s [10] diagrams are very well reproduced, together
with capturing all the resonances, compared with Figure 4. Hence, even a
simple first-order unscaled expansion allows one to model multi-resonance
modulations. To compare various approximations, many additional simulations
were undertaken. Note that Equations (13) and (14) were obtained from (1)
using a first-order expansion. In additional simulations, Equations (1) were
expanded to second and third orders, with and without scaling (15). Some of the
results are shown in Figures 3 and 5(d)–(f ). Both expansions improve slightly
the first-order approximation, but they include many terms and are probably not
practical.

In order to clarify the origin of the various instability regions, additional
numerical study of the filtered equations was accomplished. The zeroth
component of surface elevation ζ0 and flow potential φ0 were set to zero in all
equations, and the remaining equations for φ1, φ2, ζ1, ζ2 were investigated.
The results of the equations obtained from first-order expansion of boundary
conditions without scalings are shown in Figure 6. It is very interesting that
the canonic McLean [10] instability diagram is very well reproduced without
additional instability regions.

It is interesting that the already first-order unscaled filtered equations capture
the delicate features of McLean diagrams even for bandwidths bigger than 0.5,
i.e., in the case where, formally speaking, the initial assumption of isolated
spectral contents near different carrier harmonics is violated. Nevertheless, the
extensive investigation of the stability of the Stokes waves does not reveal
any singularity for λ ≥ 0.5, and reproduces results of McLean [10] very well
in the whole range of wavenumbers where the instability has been found,
up to values of λ = 3. All the above leads one to believe that the proposed
spectral filtering approach may be used for deciphering multi-phase dynamics
in dispersive systems.
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Figure 6. Stability diagram of Stokes waves for truncated filtered equations of the first-order
expansion of boundary conditions without scalings of the harmonics.

As a result, the method unifies and extends a few well-known expansion
methods: (i) description in terms of discrete modes, where the spectrum is
assumed to be a sum of a few delta-functions; (ii) approach of single-mode
modulation, where the spectrum is narrow and concentrated near the carrier
frequency, and (iii) one-dimensional three-wave interaction technique in optics,
where the spectrum is assumed to be narrow-banded near a few carrier
frequencies [12]. In the context of the water waves, the equations given by
the method may be considered as an alternative to the well-known integral
Zakharov equation.

For steep waves, the instability diagram of Stokes waves undergoes a few
consecutive changes. First, the instability region detaches from the origin; i.e.,
very long two-dimensional disturbances parallel to sufficiently steep Stokes
waves are stable. For steeper waves, the instability region detaches from the
λ-axis; i.e., any pure two-dimensional disturbances parallel to the Stokes
waves are stable. This means that only three-dimensional disturbances may
destabilize very steep Stokes waves. Preliminary computations show that
Equations (16)–(21) do not reproduce these qualitative changes of the stability
diagram appearing for very steep Stokes waves (for steepnesses larger than 0.3,
not shown here). It looks as if a three-modes representation of the whole wavy
spectra is too restricting for such a case. It would be interesting to investigate
how to capture the qualitative change of the stability diagram found by McLean
[10] for steep waves in the framework of the spectral filtering approach. It is
necessary to mention, however, that real ocean waves usually have a very
moderate steepness (of order 0.1), so Equations (16)–(21) are expected to
work well for the real sea-waves problems.

It is very instructive to consider the difference in the derivation of the
Zakharov integral equation with spectrally filtered equations. To make the
comparison, we will use a more straightforward derivation of the Zakharov
integral equation given by Yuen and Lake [6] than the original derivation by
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Zakharov [13]. The key difference is that the ZI equation uses exact boundary
conditions instead of their evaluation on the zeroth level as in (13) and (14).
The solution of the Laplace equation for the flow potential may be obtained by
the Fourier integral, where the Fourier integral contains the term e|k|z (as in
(5); see [6], p. 112. To evaluate the term at a moving free surface z = ζ (x, t),
Zakharov expanded the term in the power series of |k|ζ . The expansion appears
in the Fourier integral, and results in double and triple convolution integrals in
the ZI equation. In contrast to that, spectral filtering takes into account the
Fourier integrals for the solution of the Laplace equation in their exact form,
whereas the boundary conditions at the unknown free surface are approximated
by their expansion near the zeroth level. The latter allows one to avoid the
appearance of double and triple convolution integrals as in the ZI equation and
to obtain computable equations; at the same time, it produces equations with
many terms as in Equations (16)–(21). The higher order expansion for the
boundary conditions is used, the more terms spectral filtering produces; the
number of terms grows rapidly with an increase in the order of expansion.

Note that the outlined procedure allows one to tailor (i) the order of
expansion for boundary conditions (1) (third order in (13) and (14)), (ii) the
order of various terms as in (15) and their retention, and (iii) the bandwidth of
the modes by attribution of some power of ε to mi in the operator L. This
might allow one to ascertain the effectiveness of various asymptotic techniques.
Specifically, it provides an opportunity to understand how nonlinearity and
bandwidth resolution should be tailored to give the best results and what is
the impact of higher order nonlinearities. It would also be very interesting to
accomplish full numerical simulations of the derived filtered equations.

5. Conclusion

A new spectral filtering approach for deep-water waves is presented. Spectral
filters are widely used in many applied fields, such as electrical engineering,
speech and pattern recognition, etc. However, as far as we are aware, this is the
first application of spectral filters to the derivation of the reduced evolution
equation in hydrodynamics.

The proposed spectral filtering allows one to decouple modulations near
different carrier harmonics by retention of the spectral content of the waves
near those harmonics, and discarding everything else. As a result of the
filtering, new equations describing modulations of the carrier harmonics are
derived. The essential component of the new equations is that they are
effectively computable. The stability analysis of the new equations shows that
they reproduce stability diagrams of McLean [10] very well, even for the
simplest first-order expansion of the boundary conditions. It is expected that
spectral filtering will find applications in a broad range of hydrodynamical
situations, both conservative and dissipative.
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