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Abstract
The regular and chaotic motion of the magnetization vector in the uniaxial ferromagnet is

investigated. The various configurations of the external magnetic field applied to the magnet
are considered. Numerical ’results are presented and different types of the dynamics are
discussed.

1 Introduction

In recent years chaotic motion in deterministic nonlinear systems is getting continuous attention.
It is evident today that chaotic behaviour is not an exceptional phenomenon and is widely spread
in nature. Chaotic motion in the above-mentioned sense is discovered in biological, chemical,
physical and other systems (see refs. [1]-[3]). Although chaotic behaviour is typical for highly
nonlinear dynamical systems, usually it is impossible to obtain the corresponding analytical
solutions of the dynamical equations, so that the most effective approach for investigations in
this field is the numerical analysis of the simple nonlinear models. Now it is realized that low-
dimensional models (with discrete or continuous time scale) are an important laboratory for
nonlinear studies. In our opinion phenomenological models of magnetic media are appropriate
for study of the chaotic dynamics. Various types of nonlinear behaviour as magnetic resonance,
spin wave parametric generation, soliton motion, etc. have been studied intensively. However,
as we know, routes to chaos and chaotic dynamics (including Feigenbaum period doubling,
intermittency and so on) were not observed experimentally and investigated theoretically.

In this paper we shall study the magnetization dynamics in a ferromagnet using the Landau-
Lifshitz equation [4] (LL model). We restrict our consideration to the spatially homogeneous
case and so neglect the spin wave excitation process and other spatio-temporal phenomena.
Of course, it may be incorrect in some real physical situations when the magnetization devia-
tion from the initial equilibrium state is not small and the homogeneous rotation is unstable.
However, we think that in any case it is important to study qualitative pecularities of dynam-
ics for the simplest and fundamental physical models such as the homogeneous LL model of
a ferromagnet. Moreover, we can hope that our approach also gives a proper description for
some experimentally realized situations. For example, we can indicate at least one case when
homogeneous rotation (without the magnetization breaking and the domain creation) was ob-
served experimentally in a system being far from the equilibrium state; this is the impulse
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remagnetization of the thin magnetic films (TMF) [5]-[10]. This phenomenon and also the
local remagnetization of the film are interesting in view of practical applications of the TMF
in the magneto-optical memory units (see ref. [11]). In the present paper we focus on the LL
model for a ferromagnet with uniaxial anisotropy. Note that our results may be valid also for
ferrimagnets and weak ferromagnets.

2 Equations of motion

We consider a spatially homogeneous evolution of the magnetization in a ferromagnet using the
Landau-Lifshitz equation with the Hilbert dissipation term [12]:

dM/dt = −γ[M×Heff] + αM−1
s [M× dM× /dt]. (1)

In this equation γ is the gyromagnetic constant and a the relaxation parameter; M =
∑3

i=1 Miei

is the magnetization vector (|M| = Ms is conserved); vectors ei, i = 1, 2, 3, compose the
orthonormal basis in space. In the uniaxial anisotropy case Heff = H(t) − βM3e3 where
H(t) = H0 + Hrf(t) is the external time dependent magnetic field and β is the anisotropy
parameter (we consider an easy axis case β < 0). Eq. 1 can be rewritten in the form:

dmi

dτ
=

1
1 + α2



qi + α

3∑

j,k=1

εijkmjqk



 , i = 1, 2, 3 (2)

where

qi =
3∑

j,k=1

εijk(δj3mjmk + mjhk),

εijk is the unit antisymmetric tensor; δik is the Kronecker delta symbol; m = M/Ms, |m| =
1,h(t) = h0 + hrf(t) = H/βMs, τ = ω0t and ω0 = γβMs. In this paper we investigate the
magnetization behaviour in the long-time asymptotics (i.e., when the initial conditions are
forgotten) supposing that the external magnetic field is of the order βMs. We analyse several
configurations in space:

(i) h0 = e3h0 lies along the anisotropy axis e3 and hrf = e1hrf cosωτ lies in the orthogonal
(e1, e2) plane; here h0 and hrf are the time-independent amplitudes;

(ii) hrf = e3hrf cosωτ lies along the anisotropy axis and h0 = e1h0 lies in the orthogonal
(e1, e2) plane;

(iii) the magnetization is driven by the pulsing magnetic field hrf = e1hpa(τ) having the
rectangular pulse form; this field lies in the (e1, e2) plane and has the amplitude hpa where
hpa À βMs, (anisotropy of light plane type).

The habitual conclusion getting from the linear FMR theory consists in the statement that
both linearly oscillating and rotating magnetic fields cause almost identical resonant phenom-
ena. Note that in our highly nonlinear case this statement is wrong. Taking into account the
time dependence of the coefficient in (2) and the conservation law |M| = Ms, we can deduce
that in general the system under investigation has 3/2 degrees of freedom. However, if the
driving field rotates in the (e1, e2) plane: h1 + ih2 = h+eiωτ (h+ is constant), the equations of
motion (2) takes the form

dm+

dτ
− iωm+ =

1
1 + α2

[i(1 + iαm3)((h3 −m3)m+ −m3h+)−
αm+(m+h− −m−h+)/2] (3a)
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Figure 1: Bifurcation diagram for the case (i) for h0 = 0. The points on the horizontal show
χ(τN ) for τN = Nτrf, N = 1, 2, 3, . . . and for fixed hrf values.

dm+

dτ
=

1
2(1 + α2)

[α(h3 −m3)m+m− + im−h+(1 + iαm3) + c.c.] (3b)

in the rotating frame (here m+ = (m1 + im2)e−iωτ ,m− = (m+)∗, h− = (h+)∗). Coefficients in
(3) are time-independent and so we deal now with the nonlinear system having only one degree
of freedom. It is well-known that in this case the dynamical stochastization is impossible. In
this paper we will investigate more closely a general situation.

For any case (i)-(iii) one can integrate the eqs. (2) using numerical procedures, but in the
case (iii) it is more convenient to employ the analytical formulae. Let

m1(τ) = cosχ(τ) cos ψ(τ) = sin θ(τ),
m2(τ) = cosχ(τ) sin ψ(τ) = cos θ(τ) sinφ(τ), (4)
m3(τ) = sinχ(τ) = cos θ(τ) cos φ(τ).

Using angular variables defined by (4) we can integrate the eqs. (2) straightforwardly. It is easy
to find that

(a) during the action of the external field (neglecting the anisotropy effects) the result of
integration may be expressed as

sin θ(τ + τp) =
tanh η + sin θ(τ)
1 + tanh η sin θ(τ)

,

φ(τ + τp) = φ(τ)− η, (5)

where η = hpτp/(1 + α2) and τp is the pulse length;
(b) when the external field is switched off the solution takes the form

sinχ(τ + τ0) =
λ sinχ(τ)

(1− (1− λ2) sin2 χ(τ))1/2
,

ψ(τ + τ0) = ψ(τ)− ξ(τ), (6)
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Figure 2: Fragments of phase trajectories for the case (i): χ(τ) (in units of π) vs. ψ(τ) (in units
of 2π) for the continuous time. Arrows show the direction of the time flow. Oblique crosses
appear periodically and mark the time moments τN = Nτrf, N = 1, 2, 3, . . .; their projections
on the ordinate axis are marked by ticks. (a) A regular nutation with periodic oscillations for
hrf = 0.4; (b) the transition to the motion in both upper and lower hemispheres for hrf = 1.05;
regular (c) and chaotic (d) nutation around the axis orthogonal to the anisotrophy axis for
hrf = 1.4 and 2.2, respectively; (e) complex chaotic motion on the sphere for hrf = 2.4.
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Figure 3: Bifurcation diagram for the case (i) for h0 = 0.2.

Figure 4: Period-doubling bifurcations in case (ii). The points on the horizontal show χ(τN )
for a fixed α value.

where ξ(τ) = α−1 ln{[λ sinχ(τ)+(1− (1−λ2) sin2 χ(τ))1/2]/(1+sinχ(τ))}, λ = exp(−ατ0/(1+
α2)) and τ0 is the interpulse gap.

Combining the expressions (5), (6) and using (4), we obtain the two-dimensional evolution
map:

θN+1 = F (θN , φN ;α, λ, η),
φN+1 = G(θN , φN ; α, λ, η), (7)

where θN ≡ θ(N(τp + τ0)), φN ≡ φ(N(τp + τ0)). Now we can make the calculations using
the formulae (7) instead of the numerical integration. Thus we obtain the system’s ”phase
trajectory” in the discrete time scale (with temporal step τp + τ0) by means of the step-by-step
procedure.
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Figure 5: Fragments of the phase trajectories for the case (ii): χ(τ) vs. ψ(τ) for the continuous
time. A regular motion with periods: (a) τrf for α = 0.206; (b) 2τrf for α = 0.20; (c) 4τrf for
α = 0.176; (d) a chaotic motion for α = 0.17.

3 Numerical studies

In this section the dynamical behaviour of m is investigated by numerical solving the eqs. (2).
Bifurcation diagrams (see figs. 1, 3 and 5) are constructed as plots of numerically obtained χ(τ)
(see formulae (4)) versus a bifurcation parameter. The points on the horizontal lines represent
the values χ(τN ) for τN = Nτrf, N = 1, 2, 3, . . .; here τrf = 2π/ωrf is the period of the external
sinusoidal rf-field. In order to illustrate the pecularities of motion we use the plots of χ(τ) vs.
ψ(τ) for the continuous time.

We first consider bifurcation diagrams and phase trajectories for case (i). An example of the
bifurcation diagram is shown in fig. 1. It is assumed that ω = 1, h0 = 0, α = 0.11 and hrf is the
bifurcation parameter. This diagram indicates that there is a period τrf motion for hrf < 0.7
and 1.3 < hrf < 2.1; chaotic motion for 0.7 < hrf < 1.3 and hrf > 2.1. The phase trajectory
images (figs. 2a-e) help us to interpret this diagram. Notice that in the case under investigation
the inversion m3 → −m3 leaves eqs. (2) unchanged. If the rf-field amplitude is weak this leads to
existence of two equivalent sorts of nutational motions: in the upper hemisphere (0 < χ < π/2)
and in the lower hemisphere (−π/2 < χ < 0) (the respective rotations around the e3 axis have
the opposite directions). Using numerical integration one can observe different types of motion.
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Note that for simplification of the figures we draw the trajectory in a few rectangles defined by
the expressions −π/2 < χ < π/2, 2πn < ψ < 2π(n + 1), n = 0,±1,±2, . . . . Every rectangle
corresponds to the whole sphere; after every rotation around the e3 axis the phase point passes
from the initial rectangle to the neighbour one (n → n + 1).

Figure 6: Phase portraits constructed by using the map iteration procedure.

As a first example, a regular nutation with periodicallv oscillating χ(τ) for a weak incident
field is shown in fig. 2a (the situation that the trajectory is located in the upper or lower
hemispliere depends on the initial conditions). The increase of the rf-field intensity causes
abrupt complication of the phase trajectories. The phase point often crosses an equator and
moves chaotically in both the upper and lower hemispheres; this is shown in fig. 2b (note that a
qualitatively similar behaviour have been discovered for the first time in the well-known Lorenz
model [13]). A further increase of the rf-field amplitude causes the regular (fig. 2c) and chaotic
(fig. 2d) nutations around the e2 axis, and then the combined chaotic nutation around e2 and
e3 axes (fig. 2e). One of the bifurcation diagrams for the case (i) for h0 6= 0 is shown in fig. 3;
it contains the pattern similar to that of in fig. 1.

The bifurcation diagram in the case (ii) with h0 = 0.6, hrf = 0.2, ω = 0.7 is shown in fig. 4;
here α is the bifurcation parameter. In this case we have seen the route to chaos through the
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Figure 7: The maximal Lyapunov exponent for the case (iii). There is the 10-cycle for 0.552 <
A < 0.56 and the 12-cycle for 0.564 < A < 0.569. The inlay contains an enlarged fragment of
the plot.

sequence of the period-doubling bifurcations; the first three bifurcations can be identified in
fig. 4. The examples of the phase portraits of various regimes from periodic with period τrf to
chaotic via period-doubling are shown in figs. 5a-d. Note that fig. 5d resembles the well-known
Lorentz attractor.

In the last case (iii) we have constructed the system’s phase portraits (fig. 6) consisting of
the isolated phase points (χ(τN ), ψ(τN )), τN = Nτrf. Calculations have been carried out by
applying formulae (7) for α = 0.3, η = 0.785, λ is variable. In this case it is easy to observe
various attractor transformations including merging of the attractor components. Namely, for
λ = 0.627 (the chaotic motion) there are two symmetrically located attractor components; each
of them has the form of a loop and is trapped in its own basin of attraction (in fig. 6a only one
of these components is shown). With λ decreasing the attractor components merge and this
leads to the formation of a new two-component attractor. This attractor consists of a chaotic
component (shown in figs. 6b-d) and a stable point.

It is convenient to combine the phase portraits analysis with the calculation of the maximal
Lyapunov exponent (MLE) [1]. We have to remind that if the MLE is negative then the nearby
trajectories converge onto the attractor and the motion is regular; the positive MLE corresponds
to the chaotic motion. From fig. 7 one can see the alternation of the regular and chaotic motion
zones as λ changes. Graphs corresponding to the different components of the attractor are
marked by points and rings respectively.

4 Concluding remarks

We showed that it is possible to observe complex regimes of motion even for a simplest model
describing the spatial homogeneous magnetization dynamics in ferromagnets. This system
demonstrates some well-known dynamical features (such as cascades of the subharmonic bifur-
cations and existence of the multicomponent attractors) typical for nonlinear systems. Thus,
the magnetization dynamics under the external field action would be interesting to study more
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comprehensively.
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