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Abstract

We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback
in the presence of external Markovian noise. For the special class of circuits with intense
phase mixing we develop an approach for the computation of the probability distributions
and multitime correlation functions based on the random phase approximation. Both Gaus-
sian and Kubo-Andersen models of external noise statistics are analyzed and the existence
of the stationary (asymptotic) random process in the long-time limit is shown. We demon-
strate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific
statistical transformation properties.

KEY WORDS: Dynamical systems; Markov process; delayed feedback; probability distri-
butions; Lyapunov exponent.

1 INTRODUCTION

The routes to chaos and the general laws of chaotic motion have been intensely investigated
in recent years both theoretically and experimentally with remarkable achievements [1]-[5]. It
seems that one of the most interesting and significant questions in this field is the problem of
noise influence on chaotic motion (see refs. [6]-[11] and the references in [4] and [5]). First, this
is because random fluctuations can erode the fine structure of the chaotic motion and chaotic
attractors [9],[10]. From the statistical point of view we must deal with the more general
problem of fluctuation transformations in nonlinear systems.

In the present paper we consider a simple theoretical model of a circuit with a nonlinear
element and delayed feedback as shown in Fig. 1. Let X ≡ |X|eiφ be a slowly varying complex
amplitude of a signal in this circuit. We assume that:
(i) The transformation in the nonlinear element (NLE) consists of the phase change φ →
φ+ θ(|X|) [we restrict our consideration to the simple case θ(|X|) = λ|X|2k + θ0, k = 1, 2, 3, . . .]
and the dissipation (energy loss) |X| → κ|X|, κ < 1.
(ii) The signal trips from the NLE through the delay line (DL) and then comes to the summation
device Σ, where it interferes with the external signal (ES).
(iii) The average value of the ES is fixed (and equal to unit after renormalization).
(iv) ξ(t) is the noise component of the external signal (NCES), 〈ξ(t)〉 = 0 (the brackets 〈. . .〉
mean the statistical average).
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Figure 1: General scheme of the nonlinear circuit.

As a result, we have the equation of motion

X(t) = ξ(t) + 1 + κX(t− Td) exp(iλ|X(t− Td)|2k + iθ0), (1.1)

where Td is the delay time (the round-trip time for the feedback loop); κ is the dissipation
factor. Further, we will use the discrete time version of Eq. (1.1) (the evolutionary map):

XN+1 = ξN + F (XN ) ≡ ξN + 1 + κXN exp(iλ|XN |2k + iθ0), (1.2)

where XN = X(t0 +NTd) and ξN = ξ[t0 +(N +1)Td], 0 ≤ t0 < Td. For instance, Eqs. (1.1) and
(1.2) describe some nonlinear electrical circuits and also the dynamic processes in the optical
ring cavity containing the nonlinear medium (adiabatically) driven by the radiation [12] - [14]
(Ikeda model). In this paper we focus on the case λ À 1 (intense phase mixing) and develop the
statistical treatment for the dynamic behavior. We describe in Section 2 the case Td À τc, and
in Section 3 the case Td ∼ τc, where τc is the correlation time of the external noise. In Section 3
we also prove the existence of the asymptotic stochastic process in the long-time limit. Finally,
in Section 4 we derive the simple approximate formulas for the maximal Lyapunov exponent.

2 STATISTICAL THEORY FOR Td À τc

In this section we develop the statistical theory for the case Td À τc À τ∗, where τ∗ is the
relaxation (memory) time characterizing the rate of decay of excitations in the NLE. This
assumption implies that the signals reaching the device Σ are statistically independent and
〈ξNξK〉 = 〈ξNξ∗K〉 = 0 for N 6= K. Hence we can use the Kolmogorov-Chapman equation [15]

PN+1(X) =
∫ ∫

dY dZPfl(X − Y )K(Y, Z)PN (Z) (2.1)

Here PN ≡ P (X[t0+NTd]) and Pfl(X) are the probability distributions for the signal amplitude
(at given time t = t0 + NTd) and for the external noise Pfl, respectively (we assume that
the latter is a stationary random process and so Pfl is time independent). Also, K(Y, Z) =
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δ(2)(Y − F (Z)), where δ(2)(X) = δ(ReX)δ(ImX) is the two-dimensional δ-function and F was
defined in (1.2). Setting

PN (X) =
∫

dUΘN (U) exp[i Re(XU∗)] (2.2)

we find the equation for the Fourier transformations

ΘN+1(U) =
∫

dV Θfl(U)ρ(U, V )ΘN (V ), (2.3)

where
ρ(U, V ) = (2π)−2

∫
dY exp[i Re(Y V ∗)− i Re(F (Y )U∗)] (2.4)

and Θfl(U) is the Fourier transformation of Pfl(X). In particular, for the Gaussian noise,
Θfl(U) = exp(−R|U |2/4), where R = 〈ξNξ∗N 〉. Substituting F from Eq. (1.2) to Eq. (2.4) and
making use of formulae for the Hankel transformation, we have

ρ(U, V ) = ρ̃(U, V ) + ∆ρ(U, V ) (2.5)

where
ρ̃(ueiα, veiβ) = (2πv)−1 exp(−iu cosα)δ(v − ku), (2.6)

∆ρ(ueiα, veiβ) = (4π)−1
∑

ν 6=0

Wν(u, v) exp[iν(θ0 − α + β)− iu cosα] (2.7)

and
Wν(u, v) =

∫ ∞

0
Jν(v

√
s)Jν(κu

√
s)eiνλsk

ds. (2.8)

Using the standard stationary phase method [16], we can obtain the asymptotic evaluation for
the integral in Eq. (2.8) for λ À 1 (u and v are constant). For this purpose (and in accordance
with the localization principle [16]) we use the decomposition for unity into smooth functions:
1 = Q1(s) + Q2(s);Q1(s) ≡ 0 for s ≤ δ1, Q1(s) ≡ 1 for s > δ2, where 0 < δ1 < δ2. Multiplying
the Bessel functions in (2.8) by unity in this form, we obtain the sum of two integrals. It
follows from the asymptotic properties of the Bessel functions that the integral containing Q1

is O(|λ|−∞). Using the Erdèlyi’s lemma for the other integral, we obtain the principal term of
the asymptotic expansion:

Wν(u, v) ∝ 1
kν!2

(νλ)−
ν+1

k

(
κuv

4

)ν

Γ
(

ν + 1
k

)
ei

π(ν+1)
2k (2.9a)

Note that for k = 1

Wν(u, v) =
1
νλ

iν+1Jν

(
κuv

2λν

)
exp

(
−i

v2 + κ2u2

4νλ

)
, (2.9b)

and the estimation (2.9a) follows from (2.9b), too.
Now let us discuss the connection between the NCES properties and the useful approxima-

tion for the kernel Θfl ρ in Eq. (2.3). If λ À 1, then quantities Wν are far from zero only for
u, v À 1. This means that the contribution to ρ containing Wν describes the fine structure of K
(since K is the Fourier transform of ρ). Assuming that Θfl(ueiα) tends to zero rapidly enough
as u → ∞, one can see that the sum in Eq. (2.7) becomes negligible and Θfl ρ ∼ Θfl ρ̃. It
means qualitatively that the random fluctuations erode the fine structure of K (and therefore
of PN ).
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In addition to the above consideration, we can present the supplement for the case k = 1.
Due to the asymptotic evaluation for the Bessel function,

|Jν(x)| ≤ |Jν(jν,1)| = C1ν
−1/3 + 0(ν−1)

(as ν À 1) is valid (here jν,1 denotes the first (left) maximum; see [20]), we have ν−1|Jν(x)| ∼
ν−4/3 and

∑∞
ν=1 |Jν(x)| < C2. As a result, using Eq. (2.9b), we have

∫
|Θ′

N+1(U)|dU ≤ C3

λ

[∫
|Θfl(U)|dU

] [∫
|ΘN (V )|dV

]
(2.10)

where
Θ′

N+1(U) =
∫

dV Θfl(U)∆ρ(U, V )ΘN (V )

and C1, C2, C3 are constants. Assuming the convergence of the integrals in Eq. (2.10), we can
see that the contribution Θ′

N+1(U) is negligible as λ À 1.
The replacement ρ → ρ̃ in the Eq. (2.3) is equivalent to the replacement K → K̃ in Eq. (2.1).

Here
K̃(Y, Z) = δ(2)(Y − 1− κZeiη) = (2π|Y − 1|)−1δ(|Y − 1| − κ|Z|) (2.11)

and η is a random variable with a uniform distribution in [0, 2π] (here and henceforth an overbar
means the phase average). Actually after these replacements we have a random irreversible
evolutionary map instead of a deterministic one.

Supposing that the replacement ρ → ρ̃ is valid, we shall distinguish two cases:
(i) the NCES intensity is small and so the statistical properties of a signal are independent of
the NCES characteristics.
(ii) The noise component of the signal is the superposition of the NCES and the noise created
by the chaotic motion.
First, we consider the case (i) and replace ρ → ρ̃ in Eq. (2.3). The resulting approximate
equation of motion reads

ΘN+1(U) = e−i Re U ΘN (κ|U |eiφ), (2.12)

and the equivalent equation for distributions takes the form

PN+1(X) = κ−2 PN (κ−1|X − 1|eiφ). (2.13)

Making the replacement ΘN+1, ΘN → Θst in Eq. (2.12) we find the equation for the Fourier
transformation of the stationary (invariant) distribution. We may write its solution in the form

Θst(U) = (2π)−1e−i Re U
∞∏

γ=1

J0(κγ |U |), (2.14)

It easy to show the convergence of the infinite product in Eq. (2.14) and the stability of this
solution. Likewise, Θst = limN→∞ΘN , where the series Θ1, . . . , ΘN is created starting from
any absolutely integrable function Θ1, using Eq. (2.13).

Note a peculiarity of the functional iteration process PN → PN+1 defined by Eq. (2.13). To
this aim let us suppose

PN (X) = (πκ2)−1 fN (|X − 1|2/κ2) (2.15)

and get a new functional equation from Eq. (2.13):

fN+1(G) = (πκ2)−1
∫ H+

H−

fN (H)dH

[−(H −H−)(H −H+)]1/2
, (2.16)
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where H± = (1 ± √
G)2/κ2. Let f1(H) = 0 for H /∈ [0, h1] . We have, after N iterations,

fN (H) ≡ 0 for H /∈ [h′N , hN ], where hN+1 = (1 + κ
√

hN )2 and h′N+1 = (1− κ
√

hN )2. We then
obtain after simple calculations

h∞ = limN→∞ hN = (1− κ)−2

h′∞ = limN→∞ h′N =

{
(1− 2κ)2/(1− κ)2, for κ < 0.5
0, for 0.5 ≤ κ < 1

(2.17)

As a result, fst(H) = limN→∞ fN (H) ≡ 0 for H /∈ [h′∞, h∞] , and we have for the corresponding
two-dimensional distribution Pst(X) 6= 0 only within the ring domain for

(1− 2κ)κ/(1− κ) ≤ |X − 1| ≤ κ(1− κ) for κ < 0.5 (2.18a)

or the disk domain
0 ≤ |X − 1| ≤ κ(1− κ) for 0.5 ≤ κ < 1 (2.18b)

In addition, the simple approximate formula for the stationary distribution holds true for
k ¿ 1:

Pst(X) =

{
π−2[4κ6 − (|X − 1|2 − κ2)2]−1/2 for ||X − 1|2 − κ2| < 2κ3

0 for ||X − 1|2 − κ2| ≥ 2κ3 (2.19)

The typical numerically computed phase portraits for the two-dimensional noiseless map
[Eq. (1.2) with ξN ≡ 0] are shown in Fig. 2 (note the presence of uncontrollable ”noise” resulting
from the truncation errors in digital calculations). In Fig. 3 we show the radial section profile
of the rotationally symmetric distribution Pst = limN→∞ PN found by the functional iterations
PN → PN+1 with the use of Eq. (2.13). The crosses in Fig. 3 represent data obtained by the
numerical iterations XN → XN+1. We can see that the randomlike distributions caused by the
chaotic motion are in good agreement with the statistical treatment results (even if the noise
is absent).

Now we turn to the case (ii). Replacing ρ → ρ̃ in Eq. (2.12), we take Θfl in the Gaussian
form and obtain

Θst(U) = (2π)−1 exp

(
−i Re U − R|U |2

4(1− κ2)

) ∞∏

γ=1

J0(κγ |U |), (2.20)

Let also κ ¿ 1. To obtain the roughest approximation for Pst in this case one should retain
only the first factor in the infinite product in Eq. (2.20). This gives

Pst(X) ' (πR)−1(1− κ2) exp[−(κ2 + |X − 1|2)(1− κ2)/R]I0(2κ(1− κ2)|X − 1|/R). (2.21)

[here and in the next formula Is(.) are the modified Bessel functions]. The more precise ap-
proximate expression [having the same accuracy as (2.19)] reads

Pst(X) ' (πR)−1(1− κ2) exp[−(κ2 + |X − 1|2)(1− κ2)/R]
∞∑

s=−∞
(−1)sIs(2κ3(1− κ2)/R)×

Is

(
κ(1− κ2)|X − 1|(√1 + 2κ +

√
1− 2κ)/R

)
× (2.22)

Is

(
κ(1− κ2)|X − 1|(√1 + 2κ−√1− 2κ)/R

)
.

If κ ¿ 1, then values of Pst are far from zero only within the ring domain; the mean radius of
this domain is of the order of κ. The radial section profiles of the distribution Pst are shown in
Fig. 4.
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Figure 2: Typical chaotic attractors for the system described by Eq. (1.2), with ξN ≡ 0.
The point distribution on the spiral Ikeda attractor (A) becomes randomlike (B,C) as λ À 1.
The parameters are: (A) – κ = 0.6, λ = 5; (B) – κ = 0.25, λ = 500 (ring domain); (C) –
κ = 0.6, λ = 500 (disk domain).
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Figure 3: The radial section of the stationary probability distribution in the ring domain for
κ = 0.25 (the noiseless case). The line shows the results of the numerical iterations fN → fN+1

as N →∞ [calculated using Eq. (2.16)]. Crosses represent the analogous dependence obtained
from the results of the numerical iterations XN → XN+1 [see Eq. (1.2)] for λ = 500, κ = 0.25.

3 STATISTICAL THEORY FOR Td ∼ τc. RANDOM PRO-
CESS IN THE LONG-TIME ASYMPTOTICS

The situation Td ∼ τc À τ∗ is more difficult to analyze because one should take into account
the existence of correlations between two fluctuating signals reaching the device Σ. In this
section we suppose that the NCES is a Markovian stationary random process. This implies
that multitime distributions (MTD) of the NCES are given by

P (ξn[tn], . . . , ξ0[t0]) = ω(ξ0)
n−1∏

p=0

ω(ξp+1, ξp, [tp+1 − tp]) (3.1)

where ω(ξ) = limt→∞ ω(ξ, η, [t]), and ξ0, . . . , ξn are the NCES amplitudes at given times
t0, . . . , tn respectively. Now we can write the generalized Kolmogorov-Chapman equation for
the MTD as

PN+1((Xs), ξn+1) =
∫

dYdξPN ((Ys), ξ0)
n∏

p=0

δ(2)(Xp− ξp−F (Yp))ω(ξp+1, ξp, [τp+1− τp]), (3.2)

In Eq. (3.2) we use the short notation defined by

PN ((Xs), ξ) = P ((X0[NTd], X1[NTd + τ1], . . . , Xn[NTd + τn]), ξ[NTd]). (3.3)

where X0, X1, . . . , Xn are the signal amplitudes at times NTd, NTd + τ1, . . . , NTd + τn, respec-
tively, and ξ is the NCES amplitude at a time NTd (here and henceforth we assume that
0 ≡ τ0 < τ1 < . . . < τn+1 ≡ Td; it follows that NTd ≡ NTd + τ0). We also use the notation
dA = dA0dA1 . . . dAn. Using the Fourier transformation rule analogous to (2.2), we obtain

ΘN+1((Us), Ωn+1) =
∫

dVdΩΘN ((Vs), Ω0)
n∏

p=0

ρ(Up, Vp)H(Ωp+1,Ωp − Up, [τp+1 − τp]), (3.4)
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Figure 4: The radial section of the stationary probability distributions in the ring domain for
various values of the Gaussian noise parameter R (κ = 0.1).

where
H(Ω, Γ, [τ ]) = (2π)−2

∫
dξ dη ω(ξ, η, [τ ]) exp[iRe(ηΓ∗ − ξΩ∗)] (3.5)

and ρ(U, V ) was defined by Eq. (2.4). The short notation ΘN ((Us), Ω) can be unfolded in the
same way as was done in Eq. (3.3) for the MTD.

In this paper we consider two models for the fluctuation statistics assuming the NCES
to be either (a) a Gaussian random process (GP), or (b) a Kubo-Andersen random process
(KAP). It should be mentioned that the latter, which is also called a generalized random
telegraph process, is the stepwise constant Markovian process describing random jumps between
(complex) values ξk (with appearance probability pk); the jumping times are uniformly and
independently distributed along the time axis [17]. The transition densities and their Fourier
transformations are:
(a) for the GP case

ωGP (ξ, η, [τ ], R) = [πR(1− ψ2
τ )]

−1 exp[−|ξ − ηψτ |2/R(1− ψ2
τ )], (3.6)

HGP (Ω, Γ, [τ ], R) = δ(2)(Γ− Ωψτ ) exp[−|Ω|2R(1− ψ2
τ )/4]; (3.7)

(b) for the KAP case

ωKAP (ξ, η, [τ ]) = ψτδ
(2)(ξ − η) + p(ξ)(1− ψτ ), (3.8)

HKAP (Ω, Γ, [τ ]) = ψτδ
(2)(Ω− Γ) + (1− ψτ )χ(Ω)δ(2)(Γ), (3.9)

here

p(ξ) =
L∑

k=1

pkδ
(2)(ξ − ξk),

χ(Ω) =
L∑

k=1

pk exp[−iRe(ξkΩ∗)],
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ψτ = exp(−τ/τc).

The replacement ρ → ρ̃ [random phase approximation; see Eqs. (2.5)-(2.7)] leads to approximate
equations of motion:
(a) for the GP case

ΘN+1((Us), Un+1) = exp


− i

2

n∑

p=0

(Up + U∗
p )− Λ((Us), Un+1)


×

ΘN


(κUseiφs),

n+1∑

q=0

e−τq/τcUq


, (3.10)

(3.10) where

Λ((Us), Un+1) = (R/4)
n+1∑

p=1

∣∣∣∣∣
n+1∑
q=p

e(τp−τq)/τcUp

∣∣∣∣∣

2

(1− e2(τp−1−τp)/τc) (3.11)

and (b) for the KAP case

ΘN+1((Us), Un+1) = exp


− i

2

n∑

p=0

(Up + U∗
p )− Td

τc




[
ΘN ((κUseiφs), βn+2

0 )×

n+1∑

α=1

∑

{k}

∏

p={k}

(
e

τp−τp−1
τc − 1

)
× (3.12)

α∏

γ=1

χ(βkγ+1
kγ

) ΘN ((κUseiφs), βk1
0 )


 ,

where βq
p =

∑q−1
i=p Ui; 1 ≤ k1 < . . . < kα < kα+1 = n + 2. The overbars in Eqs. (3.10) and

(3.13) mean the averaging over all phase angles φs, s = 1, 2, . . . , n; {k} ≡ k1, k2, . . . , kn. We are
also interested in multitime correlation functions (MTCF) of the form

mN (p, q, (ks, ls)) =

〈
ξpξ∗q

n∏

i=0

(Xki
i X∗li

i

〉

N

= (3.13)

(2π)2n+4(2i)γ
(

∂p

∂Ω∗p
∂q

∂Ωq

) n∏

r=0

(
∂kr

∂U∗kr

∂lr

∂U lr

)
ΘN ((Us), Ω)

∣∣∣Ω=0
Us=0 ,

where γ = p + q +
∑n

r=0(kr + lr) is the order of the MTCF, and the brackets 〈. . .〉N denote
averaging with (3.3). Using Eqs. (3.10)-(3.13), we can obtain evolutionary maps for the MTCF.
In order to shorten our account, we denote functions (3.14) as N -moments. It follows from the
structure of the equations under consideration that every (N + 1)-moment of the order γ is a
linear function of N -moments of the order γ′, where γ′ ≤ γ. Therefore, MTCF evolutionary
maps are linear and finite-dimensional:

mN+1 = AmN + B (3.14)

where mN is a vector composed of N -moments with γ ≤ γmax, B is a fixed vector, and A is a
square matrix.
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Let us now investigate the long-time asymptotics of random signal motion in our circuit.
Notice that the total description of the random process is provided with the infinite family of
multitime correlation functions (moments). So it is sufficient to investigate the evolution of
these functions only.

It follows from Eqs. (3.10)-(3.13) that any (N+1)-moment with fixed parameters (γ, α), α =
p + q, is a linear superposition of N -moments with parameters (γ′, α′) if either γ′ ≤ γ or
γ′ = γ, α′ ≥ α. As a result, choosing the special form of a basis in the MTCF linear space,
we can make the matrix A triangular. To achieve this, one must enumerate the basis elements
(i.e., the moments with fixed parameters) in a special manner: if (γi, αi) are the i-th element
parameters, then i > j means that either γi > γj or γi = γj , αi > αj . The diagonal elements
of the matrix A (which coincide with its eigenvalues) are:
(a) for the GP case

[A](p, q, (ks, ls)) =
n∏

s=0

δks,lsκ
ks+lseTd(p+q)/τc , (3.15)

(b) for the KAP case

[A](p, q, (ks, ls)) =
n∏

s=0

δks,lsκ
ks+ls(δp0δq0 + eTd/τc(1− δp0δq0)), (3.16)

Every diagonal element is less than unity. After the replacement mN+1,mN → mst we obtain
the ”stationary point” equation

mst = Amst + B (3.17)

which has the only solution because A is a nondegenerate matrix. To prove the stability of this
solution, one must consider the linearized equation for small deviations

δmN+1 = AδmN . (3.18)

Let A be represented in the normal Jordan form A = TJT−1; here T is a nondegenerate matrix,
and J is the Jordan matrix [18]. We have

δmN+1 = ANδm0 = (TJT−1)Nδm0 = (TJNT−1)δm0 (3.19)

We have from Eqs. (3.15) and (3.16) that the diagonal elements of a matrix J are also less than
unity; therefore JN → 0 as N →∞ (see [18], p. 145). Hence, Eq. (3.19) leads to the conclusion
δmN → 0 as N →∞; this means the asymptotic stability of the ”stationary point.”

To complete our technique, we must show how to calculate the MTCF with arbitrary time
values. It is easy to find that this function can be expressed in terms of the MTCF considered
above. In view of the fact that general expressions are complicated and cumbersome, we write
here only the two-time function (for the GP case):

Θ(V [(N + k)Td + τ ], U [NTd], Ω[NTd]) = exp[−i(V Lk + V ∗L∗k)/2]×

exp

(
−R|V |2

4

{
[1− exp(−2Td/τc)](1 +

k−2∑

i=1

|Gi|2) + [1− exp(−2τ/τc)]|Gk−1|2
})

×

Θ(κkV {exp(iγ)}[NTd + τ ], U [NTd], Ω + V Gk−1{exp(−τ/τc)}[NTd]), (3.20)

where

Gk = exp(−kTd/τc)



1 +

k∑

j=1

[κ exp(Td/τc)]j exp(iβj)




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Lk = 1 +
k−1∑

j=1

κj exp(iβj)

and the overbar means averaging over phase angles βj , j = 1, . . . , k − 1; γ. Solving Eq. (3.17),
one can obtain every MTCF in analytic form. Because the phase coherence is destroyed in the
NLE, only the intensity correlation functions are of interest. Defining the covariance as

C(τ) = 〈|Xt+τ |2|Xt|2〉st − 〈|Xt+τ |2〉st〈|Xt|2〉st (3.21)

we have analytic expressions for various noise statistics:
(a) for the GP case

C(τ) =
1

1− κ4

(
R2 ψ2

τ + κ2(ψ/ψτ )2

1− κ2ψ2
+ 2R

ψτ + κ2(ψ/ψτ )
1− κ2ψ

)
, (3.22)

C(kTd + τ) = κ2kC(τ) + 2R
ψψτ

1− κ2ψ

k−1∑

l=0

κ2(k−l−1)ψl + R2 ψ2ψ2
τ

1− κ2ψ2

k−1∑

l=0

κ2(k−l−1)ψ2l, (3.23)

(b) for the KAP case

C(τ) =
ψτ + κ2(ψ/ψτ )

(1− κ4)(1− κ2ψ)
(〈Q2〉KAP − 〈Q〉2KAP ), (3.24)

C(kTd + τ) = κ2kC(τ) +
ψψτ

1− κ2ψ

k−1∑

l=0

κ2(k−l−1)ψl(〈Q2〉KAP − 〈Q〉2KAP ). (3.25)

Here Q = |1 + ξ|2; 0 < τ < Td; ψ = exp(−Td/τc);ψτ = exp(−τ/τc); ξ is a random variable;
the brackets 〈. . .〉KAP mean averaging with the onedimensional distribution (for KAP). It is
interesting to compare the aforementioned results with analogous ones for a linear dissipative
circuit. Let a linear absorber takes the place of the NLE; accordingly we have to replace
F (X) → FL(X) = 1 + κXeiδ in Eq. (1.2). The covariance for the GP statistics is

C(kTr + τ) = R|1− h|−2(Γk + Γ∗k) + R2|Γk|2, (3.26)

where

Γk =
h∗k

1− |h|2
(

ψτ

1− hψ
− h∗(ψ/ψτ )

1− h∗ψ

)
+

ψψτ

1− hψ

k−1∑

l=0

(h∗)k−l−1ψl (3.27)

and h = κe−iδ. Figure 5 shows the graphs of the normalized covariances (3.22)-(3.26).

4 APPROXIMATE FORMULAS FOR MAXIMAL LYA-
PUNOV EXPONENT

It is well known that the maximal Lyapunov exponent (MLE) characterizing the exponential
divergence rate of initially close trajectories enables one to determine the type of system dy-
namics. If the motion is regular (a stable point or a limit cycle) the MLE is negative; a positive
MLE corresponds to chaotic behavior.

In this section we present some simple approximate formulas for the MLE for the nonlinear
system under investigation. Let XN+1 = F (XN ) [see Eq. (1.2)]; the MLE can be obtained as
[19]

L = lim
N→∞

ln sup |σ([MNMN−1 . . .M1]1/N )|, (4.1)
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Figure 5: (a) Covariance of the signal intensities. Crosses and squares correspond to the circuit
with NLE and the Gaussian noise statistics (crosses) or the Kubo-Andersen noise statistics
(squares); lines are for the circuit with a linear absorber and the Gaussian noise, (A) δ = π/6,
(B) δ = π/2,(C) δ = 5π/6. (b) Two-time dependence graph for the intensity correlation
function (τ and τc are normalized on fixed Td).
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Figure 6: Maximal Lyapunov exponent vs. the dissipation parameter κ.

where Mp ≡ M(Xp) is the Jacobian matrix calculated at point Xp; σ(A) is the eigenvalue
spectrum of A. Using Eq. (1.2) (ξN ≡ 0), we determine

Mp = κ

(
cos γp − sin γp

sin γp cos γp

)
+ 2κλk|Zp|2k

(
− sin(φp + γp)
cos(φp + γp)

)
× ( cosφp sinφp ), (4.2)

where γp = λ|Xp|2k + θ0, and φp = arg Xp [the second term in Eq. (4.2) is the direct product
of two-dimensional vectors]. It is natural to suppose that for λ À 1 the principal contribution
is given by terms including λ in the maximal power. Keeping only this contribution and
substituting expression (4.2) into Eq. (4.1), we obtain

L = ln(2κλk) + lim
N→∞

N−1


k

N∑

p=1

ln |Xp|2 +
N−1∑

p=1

ln | sin(φp+1 − φp − γp)|+ C


 , (4.3)

If we also take into account the relation

sin(φp+1 − φp − γp) = |Zp|−1 sin arg(Zp − 1)

and replace in Eq. (4.3) summation along the trajectory by integration with the invariant
distribution, we have

L = ln(κλk) + (2k − 1)θ(κ− 1/2)
∫ (1−κ)−2

κ−2
dHfst(H) ln(κ

√
H), (4.4)

where θ(x) = 0 for x ≤ 0 and θ(x) = 1 for x > 0; fst = limN→∞ fN , see Eq. (2.16). Notice
that fst(H) (and the integral in the second term) is independent of k and λ; the second term
vanishes for κ < 0.5. The plots of L vs. κ for k = 1 are shown in Fig. 6. Corresponding results
were obtained numerically with the use of formula (4.4) (circles) and from datra calculated
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by iterations of the map (1.2) (ξN ≡ 0) (points). The dashed line corresponds to the simple
approximation

L = ln(κλ) + Θ(κ− 1/2)[(κ− 1/2)6.60− 1.18](κ− 1/2), (4.5)

and the solid line is the graph of ln(κλ).

5 CONCLUSION

We have presented a statistical theory describing in the same manner the stochasticity caused
by either deterministic chaos in a nonlinear system or ordinary fluctuations resulting from
the influence of external noise. In this paper we have considered a nonlinear circuit with
delayed feedback, and also the special case of intense phase mixing. The processes under
investigation may be interpreted as noise amplification (generation) in nonlinear systems. Our
description is based on the Kolmogorov-Chapman equations for the multitime distribution
functions of the signal amplitude. We have developed a simple method of determining the
multitime correlation functions of any order. Approximate formulas describing the dependence
of the maximal Lyapunov exponent on the control parameters have been obtained, and are in
good agreement with the results of numerical calculations.
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