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It is now well known1 that thin liquid films exhibit
hydrodynamic instability due to long-range molecular
forces. With an apolar liquid these forces result from van
der Waals attractions and the instability leads to film
rupture. It was shown that nonlinear effects accelerate
rupture when the rupture time is compared with that
estimated on linear theory basis (see also ref 2 on similar
calculations for a free film subject to Marangoni forces).
The long-wave evolution equations used in refs 1 and 2
were generalized in ref 3 for a volatile fluid on a heated
flat surface to include evaporative mass change, vapor
thrust, and Marangoni and surface wave effects along
with van der Waals attractive and surface tension forces.
A detailed review of the application of nonlinear stability
theory (based on the long-wave nature of the response) to
different thin film problems is given by Oron et al.4 This
approach provides nonlinear evolution equations, which
can be solved numerically or by means of bifurcation
analysis. Such evolution equations have already been
considered for different situations. In ref 5, the relatively
long-range repulsive forces, owing to the effect of an
adsorbed layer (such as corrosion or contamination) on
the solid surface, were included in the long-wave model
for dynamics of a volatile film under the additional action
of Marangoni and surface tension forces. The conjoining
pressure is significant at actual surfaces instead of “pure”
surfaces, obtained only by cleavage of crystals under
carefully controlled conditions. For pure surfaces the
conjoining pressure is from Born repulsion at atomic
distances. A weakly nonlinear theory was developed for
the nonvolatile case, which showed that the inclusion of
the repulsive forces can lead to stabilization of small, short-
scale perturbations of a uniform stationary basic profile.

The presence of surfactants can drastically change the
dynamics of the film motion. The nonuniform surfactant
distribution in the film will cause surface tension gradi-
ents, which result in tangential velocity along the interface
(Marangoni effect). The Marangoni effect can either

destabilize or stabilize the liquid film, depending on the
particular situation. The combined effect of surfactants
and van der Waals forces is an interesting issue, because
Marangoni forces can compete with the van der Waals
attractions and lead to suppression of the film rupture.
The long-wave model corresponding to this case was
derived inref6; thenumerical simulationsperformedthere
showed that the film ruptures for all values of parameters
checked, and the rupture time was found. In ref 7, the
weakly nonlinear analysis was performed analytically. It
was shown that for common liquids the influence of
surfactant-driven Marangoni forces could slow the rupture
process, but cannot stabilize short-scale perturbations.
Rupture time estimates based on nonlinear analysis
results were close to numerical values found in ref 6.

In this communication we generalize a model considered
in refs 6 and 7 to a case of body potential including both
disjoining and conjoining pressures. The amplitude equa-
tion describing evolution of a small perturbation valid in
a close vicinity of a bifurcation point is derived, using the
approach described in ref 8. The analysis of this equation
enables us to construct a bifurcation diagram showing
that the perturbation is stable in a very narrow region of
dimensionless Hamaker constants determining the con-
tribution of pressures in the body potential. It appears
thatevenasmall influenceof conjoiningpressurestabilizes
the perturbed film in a narrow range of disjoining
pressures. This range grows with an increase of conjoining
pressure, then decreases again, shrinking to zero at some
critical value of conjoining pressure, which is determined
by other parameters of the problem.

We consider a model describing the evolution of the
thin film with insoluble surfactants on a solid substrate
(see ref 6), subjected to van der Waals attractions and
shorter-scale repulsions, for the thickness h of the film
and the concentration Γ of the surfactants:

with

where M is a dimensionless Marangoni number, T is a
dimensionless surface tension, S is a Schmidt number,
and A and B are dimensionless Hamaker constants for
van der Waals long-range attractions and shorter-range
repulsions, respectively. The basic solution is the spatially
uniform stationary state u0 ) {h0,Γ0} ) {1,1}.

The linear analysis provides the critical value of the
wavenumber corresponding to Turing bifurcation kc ) [(3A
- 4B)/T]-1, which imposes the condition on the Hamaker
constants A > 4B/3. The eigenvectors U,U† of both
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linearized and adjoined linearized problems corresponding
to zero eigenvalue are determined as

The surface tension T is selected as a bifurcation
parameter with critical value Tc; in a bounded domain
ofthe length L with periodic boundary conditions this value
is found as

Introduce the small criticality ε ) T - Tc, slow time τ )
ε2t, long spatial coordinate ê ) εx, and expand the solution
and bifurcation parameter in a series in ε:

Substitution of the expansion (eq 3) into the system (eq
1) to the first order of ε, one obtains

where cc denotes complex conjugation. In the third order
of ε the Ginzburg-Landau amplitude equation is obtained

The signs of the Landau constant κ and diffusional

coefficient δ determine the stability of the stationary
uniform solution

of the amplitude equation (eq 4), namely, it is stable at
κ < 0 and δ > 0. The linear coefficient R ) -kc

4 T2/2 is
proportional to the second-order deviation of the bifur-
cation parameter. The expression for the Landau constant
reads as

and for diffusional coefficient one has

The bifurcation diagram depicting the stability region
of the perturbed film in the plane of Hamaker constants
{A,B} is shown in Figure 1. For small B the range of stable
perturbed solution is narrow in A, and it grows with
increase of B. If one neglects dependence of the perturba-
tion amplitude A on the large-scale spatial variable ê,
then the diffusional term in eq 4 can be dropped, and the
stability region width continues to grow. Influence of weak
spatial modulation at larger scales leads to shrinking of
the stability region, which eventually vanishes at

This simple analysis enables us to pose a question about
the significance of the spatial dependence effects (which
clearly may be neglected for systems in bounded region
with size of several wavelengths L ) 2nπ/kc;n∼1) on the
stability of perturbed film.

Thus, the conjoining pressure stabilizes the film in a
narrow region of parameters {A,B} at small B, but
eventually for large B results in absolute instability. This
stabilization is a novel feature in thin film dynamics driven
by surface tension inhomogeneities and shorter scale
molecular interactions.
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Figure 1. Bifurcation stability diagram of the perturbed film
for S ) 34.5, M ) 0.02 and various values of the Hamaker
constants A and B. The stability region is shown gray.
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