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Long-term dynamics of multisite phosphorylation

ABSTRACT Multisite phosphorylation cycles are ubiquitous in cell regulation systems and are 
studied at multiple levels of complexity, from molecules to organisms, with the ultimate goal 
of establishing predictive understanding of the effects of genetic and pharmacological per-
turbations of protein phosphorylation in vivo. Achieving this goal is essentially impossible 
without mathematical models, which provide a systematic framework for exploring dynamic 
interactions of multiple network components. Most of the models studied to date do not 
discriminate between the distinct partially phosphorylated forms and focus on two limiting 
reaction regimes, distributive and processive, which differ in the number of enzyme–sub-
strate binding events needed for complete phosphorylation or dephosphorylation. Here we 
use a minimal model of extracellular signal-related kinase regulation to explore the dynamics 
of a reaction network that includes all essential phosphorylation forms and arbitrary levels of 
reaction processivity. In addition to bistability, which has been studied extensively in distribu-
tive mechanisms, this network can generate periodic oscillations. Both bistability and oscilla-
tions can be realized at high levels of reaction processivity. Our work provides a general 
framework for systematic analysis of dynamics in multisite phosphorylation systems.

INTRODUCTION
Multisite phosphorylation cycles are ubiquitous in cell regulation 
systems (Lim et al., 2014). A canonical example of such a cycle is 
provided by the mechanism controlling the enzymatic activity of the 
extracellular signal-regulated kinase (ERK), an important model for 
studies of enzyme kinetics in cells (Shaul and Seger, 2007; Futran 
et al., 2013). Activation of ERK requires phosphorylation at two sites, 
tyrosine and threonine, within the so-called activation sequence 
(Payne et al., 1991; Canagarajah et al., 1997). Both sites can be 
phosphorylated by mitogen-activated protein kinase kinase (MEK), 
a dual-specificity enzyme that is essential for ERK activation in vivo 
(Burack and Sturgill, 1997; Ferrell and Bhatt, 1997). Both ERK and 

MEK exist in two isoforms in mammalian cells (ERK1/2 and MEK1/2); 
however, the isoforms are functionally redundant (Frémin et al., 
2015; Aoidi et al., 2016). ERK activation can be reversed by multiple 
ERK phosphatases, including PP2A (Ferrigno et al., 1993; Alessi 
et al., 1995), PAC1 (Ward et al., 1994; Yi et al., 1995), PTP-SL 
(Hendriks et al., 1995; Ogata et al., 1995; Sharma and Lombroso, 
1995; Shiozuka et al., 1995; Pulido et al., 1998), HePTP (Saxena 
et al., 1999), MKP1 (Keyse and Emslie, 1992; Alessi et al., 1993; Sun 
et al., 1993; Lewis et al., 1995), MKP2 (Guan and Butch, 1995; King 
et al., 1995; Misra-Press et al., 1995), MKP3 (Groom et al., 1996; 
Mourey et al., 1996; Muda et al., 1996), and MKP4 (Dowd et al., 
1998), which can dephosphorylate one or both of the sites phos-
phorylated by MEK (Sohaskey and Ferrell, 1999; Zhao and Zhang, 
2001; Zhou et al., 2002).

A large number of similar cycles, with varying numbers of phos-
phorylation sites and reaction mechanisms, were discovered by 
studies of intracellular networks and are actively being studied at 
multiple levels of complexity, from individual molecules and single 
reactions to organisms (Caunt et al., 2008; Salazar and Höfer, 2009; 
Kim et al., 2011; Prabakaran et al., 2011; Humphreys et al., 2013). 
The ultimate goal of these studies is to establish an integrative view 
of biochemical reactions in vivo, needed for predicting the effects of 
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unique steady state for all values of model parameters (Conradi 
and Shiu, 2015). In contrast, models of cycles formed by distribu-
tive mechanisms admit multistability, a regime in which multiple 
stable steady states, with different relative amounts of the sub-
strate phosphoforms, coexist for the same set of parameters (Wang 
and Sontag, 2008; Thomson and Gunawardena, 2009; Hell 
and Rendall, 2015a). A handful of studies have explored the 
systems-level properties of networks containing both limiting re-
action mechanisms as reaction channels (Verdugo et al., 2013; 
Suwanmajo and Krishnan, 2015).

Much less is known about the general properties of models that 
both allow the network to operate in the regime between the pro-
cessive and distributive limits (Figure 1A) and explicitly account for 
the existence and differential reactivities of different partially phos-
phorylated forms. Here we use a combination of computational ap-
proaches to explore the long-term dynamics in such a model, which 
is motivated by structural and kinetic studies of ERK regulation. 
Our approach is readily applicable to a broad class of multisite 
phosphorylation networks.

RESULTS
Our analysis is based on a mathematical model that is motivated by 
biochemical studies of ERK regulation. The model describes a per-
fectly mixed reaction system consisting of ERK, MEK, and MKP3, a 
dual-specificity phosphatase that dephosphorylates both the tyro-
sine (Y) and threonine (T) sites within the activation sequence of 
ERK. Previous studies established that both MEK and MKP3 follow 
an ordered mechanism (Haystead et al., 1992; Zhao and Zhang, 
2001). Specifically, tyrosine is the first site phosphorylated by MEK, 
and phosphotyrosine (pY) is the first site dephosphorylated by 
MKP3. As a consequence of this strict order, the unphosphorylated 
and bisphosphorylated ERK molecules (denoted by TY and pTpY, 
respectively) give rise to two distinct monophosphorylated forms: 
the first phosphorylation of ERK leads to tyrosine-phosphorylated 
ERK (TpY), and the first dephosphorylation of bisphosphorylated 
ERK leads to threonine-phosphorylated ERK (pTY). At the same 
time, both of the monophosphorylated forms of ERK can act as sub-
strates for both enzymes (Figure 2A).

The minimal network accounting for these interactions is closely 
related to the networks considered in two earlier studies. Specifi-
cally, Markevich et al. (2004) considered a network with one extra 
reaction, which resulted from assuming that ERK phosphorylation by 
MEK follows a random mechanism. Their analysis demonstrated 
that this network can be bistable. As a consequence of this bistabil-
ity, continuous variations in the relative levels of kinase and phos-
phatase can trigger a sharp and irreversible transition between fully 
unphosphorylated and bisphosphorylated ERK states. Almost a de-
cade later, as a part of computational analysis of circadian rhythms 
(unrelated to ERK regulation), Jolley et al. (2012) analyzed dynamics 
in a network with one more reaction, corresponding to a random 
dephosphorylation mechanism. On the basis of extensive sampling 
of model parameters, these authors established that their network 
can generate self-sustained oscillations, a dynamic regime in which 
the relative levels of different phosphorylated forms change periodi-
cally in time. Thus, the two studies most closely related to the net-
work in Figure 2 considered models with one or two extra reactions. 
As shown later, our results establish that bistability and oscillations 
can be found in a simpler model.

Of importance, both of these models assumed that the kinase 
and phosphatase follow a fully distributive mechanism, in which all 
of the catalytic steps on the way to the fully modified substrate 
(phosphorylated or dephosphorylated) generate dissociated enzyme 

genetic and pharmacological perturbations of protein phosphoryla-
tion networks. For instance, activating mutations in MEK can lead to 
both developmental abnormalities and cancers, and drugs directly 
inhibiting MEK are being used in the clinic (Anastasaki et al., 2009; 
Caunt et al., 2015; Jindal et al., 2015). Understanding the organism-
level effects of such mutations and drugs requires systematic analy-
sis of the functional properties of multisite phosphorylation cycles 
and is essentially impossible without mathematical models (Qiao 
et al., 2007; Salazar et al., 2010; Ferrell and Ha, 2014; Piala et al., 
2014; Prabakaran et al., 2014).

Several models of phosphorylation cycles have received consid-
erable attention from mathematicians and computational biologists 
(Yang et al., 2004; Salazar and Höfer, 2006; Manrai and Gunawar-
dena, 2008; Kapuy et al., 2009; Thomson and Gunawardena, 2009; 
Aoki et al., 2011, 2013; Harrington et al., 2012; Conradi and 
Mincheva, 2014a,b; Hell and Rendall, 2015b; Suwanmajo and 
Krishnan, 2015). Most of these models do not discriminate between 
different partially phosphorylated forms and focus on two limiting 
mechanisms of multisite phosphorylation: processive and distribu-
tive (Figure 1, B and C). In a processive mechanism, all of the phos-
phorylation (or dephosphorylation) reactions happen in one en-
zyme–substrate binding event (Patwardhan and Miller, 2007). In a 
distributive mechanism, the catalytic step is followed by rapid dis-
sociation of a partially phosphorylated substrate, and subsequent 
reactions require a new binding event. Of interest, multisite phos-
phorylation cycles formed by these two types of mechanisms 
appear to have qualitatively different systems-level properties. In 
particular, when the mechanism is processive, the network has a 

FIGURE 1: Mixed, processive, and distributive mechanisms. S00, S01, 
and S11 denote unphosphorylated, monophosphorylated, and 
bisphosphorylated forms of the substrate, respectively. (A) In our 
model, dual phosphorylation and dephosphorylation are assumed to 
occur by a mixed mechanism. Processive and distributive mechanisms 
are limiting cases of the mixed mechanism. (B) In a processive 
mechanism, the same enzyme phosphorylates the substrate twice, 
without dissociating. This corresponds to the limit where >>k kcat off 
for the complex of enzyme and monophosphorylated substrate. 
(C) In a distributive mechanism, upon the first phosphorylation event, 
the enzyme–substrate complex dissociates immediately, allowing 
the molecules to find new binding partners. This corresponds to the 
limit where >>k koff cat for the complex of enzyme and monophos­
phorylated substrate.
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correspond, respectively, to the unphosphorylated (TY), two mono-
phosphorylated (TpY and pTY), and bisphosphorylated (pTpY) mol-
ecules. The two enzymes are denoted by E and F, corresponding to 
MEK and MKP3, respectively. The mass action model of this network 
leads to a system of 12 coupled ordinary differential equations 
(ODEs) describing the joint dynamics of two enzymes (E and F), four 
substrates (S00, S01, S10, S11), and six enzyme–substrate complexes 
(ES00, ES01, ES10, FS01, FS10, FS11).

The model has 21 free parameters: three rate constants for each 
of the six enzymatic reactions and three total concentrations of the 
substrate and two enzymes (Stot, Etot, and Ftot). In the limit when 
enzymes are much less abundant than substrates ( <<E Stot tot and 

<<F Stot tot), the dynamics of the six complexes are slaved to the dy-
namics of the free substrates, and the model can be reduced to a 
system of only four ODEs for the substrates (S00, S01, S10, and S11). 
We developed an efficient approach for applying the steady state 
approximation for the complexes and deriving reduced models in 
this and related classes of enzyme–substrate networks. As a result of 
the steady state approximation, the dynamics of the four remaining 
variables in the reduced model satisfy the conservation equation 

+ + + =S S S S 100 01 10 11  after rescaling the substrate concentrations 
by Stot. Thus, the dynamics in the reduced model is effectively three-
dimensional and can be readily visualized.

As a starting point for analyzing the dynamics, we used a combi-
nation of computational and algebraic techniques to characterize 
the steady states in the reduced model. The right-hand sides of the 
four ODEs contain rational functions of the four variables, and the 
corresponding steady state problem gives rise to a system of four 
coupled quadratic equations. Using Gröbner bases, a tool from 
algebraic geometry that has been applied in the context of dual 

and product. As a consequence, all subsequent reactions require de 
novo formation of complexes between the enzyme and partially 
modified substrates. This model can be viewed as a limiting regime 
of a more detailed mechanism in which the enzyme–substrate com-
plex is first transformed into a complex between the enzyme and 
product of the first reaction (Figure 1A). This complex can either dis-
sociate or continue directly to the next catalytic step. Depending on 
the relative rates of these steps, this mechanism can behave as fully 
distributive or fully processive. When the dissociation rate constant 
of the newly formed complex between the monophosphorylated 
substrate and enzyme is much larger than the catalytic rate constant 
for the subsequent reaction, the mechanism behaves as fully dis-
tributive. In our model, this corresponds to the limit in which 

>>k kub2 2, which makes the kinase fully distributive, and >>k kub4 4, 
which makes the phosphatase fully distributive (see Table 1 for the 
assignment of rate constants to reaction steps). In the opposite ex-
treme, when the catalytic reaction is much faster than dissociation, 
the mechanism behaves as processive ( <<k kub2 2 and <<k kub4 4). 
Between these extremes, the mechanism, which can be called 
“mixed,” can accommodate both distributive and processive reac-
tion channels.

We used the mixed reaction mechanism as a building block in 
constructing the minimal model of ERK regulation (Figure 2B). This 
model describes six enzymatic reactions that interconvert four differ-
ent forms of the substrate. To simplify the notation, in the rest of the 
article, these states are denoted by S00, S01, S10, and S11, which 

FIGURE 2: Reaction network (A) and reaction mechanism (B) in the 
minimal model of ERK regulation by MEK and MKP3. Table 1 gives 
rate constants associated with each reaction step in B.

Rate constant Reaction

k1 →ES ES00 01

k2 → +ES E S01 11

k3 →FS FS11 10

k4 → +FS F S10 00

k5 FS F S01 00→ +

k6 ES E S10 11→ +

kb1 E S ES00 00+ →

kb2 E S ES01 01+ →

kb3 F S FS11 11+ →

kb4 F S FS10 10+ →

kb5 F S FS01 01+ →

kb6 E S ES10 10+ →

kub1 ES E S00 00→ +  

kub2 ES E S01 01→ +

kub3 FS F S11 11→ +

kub4 FS F S10 10→ +

kub5 FS F S01 01→ +

kub6 ES E S10 10→ +

TABLE 1: Rate constants associated with each reaction step in the 
reaction diagram in Figure 2B.
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Jolley et al., 2012). Our results show that oscillations and bistability 
persist in a simpler model based on the interactions and reactions 
established in the MEK/ERK/MKP3 system (Haystead et al., 1992; 
Zhao and Zhang, 2001; Zhou et al., 2002; Aoki et al., 2013). We 

phosphorylation cycles for mechanism discrimination (Gunawardena, 
2007; Manrai and Gunawardena, 2008; Thomson and Gunawardena, 
2009; Cox et al., 2010; Harrington et al., 2012), all solutions of this 
system of polynomials can be calculated for any given set of model 
parameters. Furthermore, the stability of the resulting steady states 
can be readily evaluated by examining the eigenvalues of the linear-
ized problem. We implemented this algorithm in Mathematica 
(Wolfram Research, Champaign, IL) and used it to examine the 
steady states in our model for 5 × 105 parameter vectors randomly 
drawn uniformly in logarithm over the 20-dimensional space of 
model parameters. The Supplemental Materials contain the Math-
ematica notebooks used to implement parameter sampling and 
evaluation of long-term dynamics.

Our analysis revealed three classes of outcomes (Figure 3). The 
first and most abundant class consists of parameter vectors that cor-
respond to steady states that are unique and linearly stable (Figure 
3A). The second class contains parameter vectors that predict three 
steady states—two stable and one unstable (Figure 3B). Of the 5 × 
105 parameter sets sampled, 1877 fell into this class, corresponding 
to a hit rate of ∼1 in 270. Finally, the third and least abundant class 
of outcomes corresponds to parameter vectors that result in steady 
states that are unique and linearly unstable. In this case, the linear-
ized problem has at least one eigenvalue with positive real part. This 
means that any small perturbation to the steady state solution 
should grow, leading to a periodic solution due to the conservation 
condition for the total amount of substrate. In principle, it is possible 
that some of such parameter sets could correspond to more com-
plex dynamics, such as deterministic chaos, but our analysis so far 
has not revealed such behaviors. By time integration of the full non-
linear problem (without making the steady state approximation for 
complexes), we confirmed that models with parameters in this class 
give rise to stable limit cycles in which the relative abundances of 
the four phosphoforms change periodically in time (Figure 3C). Only 
120 parameter sets were found that fell into this class, correspond-
ing to a hit rate of ∼1 in 4300. The Supplemental Materials contain 
Matlab (MathWorks, Natick, MA) code for numerically integrating 
the equations of the full and reduced systems at the parameter val-
ues used to generate Figure 3.

The three classes of long-term dynamics identified by our com-
putational screening of model parameters suggest that our network 
can display three different classes of input–output behaviors. We 
define the input to be the ratio of the total amounts of kinase and 
phosphatase (ρ = E F/tot tot) and the output to be the long-term con-
centration of dually phosphorylated substrate, S11. To illustrate this, 
we used numerical continuation algorithms to compute the branches 
of steady states and limit cycles as a function of the input to the 
network (Figure 4). As the starting points for numerical continuation, 
we used the steady states shown in Figure 3, the parameters for 
which are given in Table 2. First, we verified that the nonlinear be-
haviors found in these three cases using the pseudo–steady state 
approximation carried back to the full model. Then, we calculated 
the steady state branches using the full model. The three parameter 
sets with different types of long-term dynamics gave rise to three 
different types of steady state branches. In all three cases, the state 
of the substrate transitions from the unphosphorylated form to the 
fully phosphorylated form as the input to the network is increased, 
but this transition can pass through robust regions of bistability or 
oscillations.

To summarize, our analysis of the minimal mechanism of the ERK 
regulation cycle reveals that the system can function as an irrevers-
ible switch and as an oscillator. Both of these regimes were previously 
detected in cycles with additional reactions (Markevich et al., 2004; 

FIGURE 3: Three types of long­term dynamics in the model: a unique 
stable steady state (A), bistability (B), and a stable limit cycle (C). 
Colors are trajectories in phase space from multiple initial conditions. 
Black dots correspond to stable steady states and red dots to 
unstable steady states. The black trajectory in C corresponds to the 
stable limit cycle, which all initial conditions approach after long times. 
The inset in C zooms in near the unstable steady state, showing that 
the limit cycle orbit passes very close by the unstable steady state. 
Phase plots were constructed by numerically integrating the full 
model. Table 2 gives the parameter values.
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found that bistability and oscillations in our model can be realized at 
very different levels of reaction processivity, which can be defined as 
the probability that a complex between the partially phosphory-
lated substrate and enzyme will not dissociate and will continue to 
the next reaction step.

For instance, for the parameter set corresponding the limit cycle 
shown in Figure 5A, both the phosphorylation and dephosphoryla-
tion reactions are highly processive—for both of these reactions, 
the rate constant of the second catalytic step exceeds, by orders 
of magnitude, the dissociation rate constant for the partially phos-
phorylated form. As a consequence, the relative amounts of the 
monophosphorylated forms at any given time are very low, and the 
substrate switches between the unphosphorylated and bisphos-
phorylated forms. A limit cycle in the strongly distributive regime, 
when partially phosphorylated forms are much more likely to disso-
ciate than continue to the next catalytic step, has a very different 
structure (Figure 5B). Here all of the four possible phosphoforms are 
present at appreciable levels at different parts of the oscillating tra-
jectory. Of the 1877 parameter sets that produce bistability, 18 were 
found for which the probability of the processive reaction channel 
is at least as likely as the distributive one ( ≥k kub2 2 and ≥k kub4 4). 
However, only one parameter set of the 120 that were found to 
produce oscillations satisfies this condition.

Note that earlier analysis of a model that does not distinguish 
between different partially phosphorylated forms conclusively ruled 
out bistability in the fully processive regime (Conradi and Shiu, 
2015). At the same time, our results obtained for a model with mul-
tiple partially phosphorylated forms found that both bistability and 
oscillations can be realized at high levels of processivity. In the fu-
ture, it will be interesting to determine how close to the fully proces-
sive limit can bistable or oscillatory regimes still exist.

DISCUSSION
We used an idealized mechanism of ERK regulation to explore the 
long-term dynamics of a model that accounts for all relevant phos-
phorylation forms and nonzero levels of reaction processivity. In 
addition to bistability, which has been studied extensively in dis-
tributive mechanisms, we found that this model can also generate 
oscillations. Whether such oscillations can be realized in a single 
ERK regulation cycle is unclear, but similar oscillations, with or-
dered appearance of four distinct phosphorylation states, form the 
basis for robust circadian rhythms in cyanobacteria (Rust et al., 
2007). At the same time, several lines of evidence suggest that 
ERK phosphorylation in cells can be switch-like, in the sense that 
most of ERK is in fully unphosphorylated or dually phosphorylated 
forms (Hahn et al., 2013). To interpret these observations from 
studies in cells, our model must be extended to include additional 
components (Harrington et al., 2013; Michailovici et al., 2014; 
Shindo et al., 2016) and interactions, such as the possibility of 
ERK dephosphorylation by multiple phosphatases (Rintelen et al., 
2003).

Another important direction is to include the effects of intracel-
lular crowding, which slows down diffusion. This may result in in-
creased rebinding of partially phosphorylated substrate to the 
same enzyme. As a consequence, the processive reaction channel 

FIGURE 4: Branches of steady states as a function of the ratio of the 
total amounts of kinase and phosphatase, E F/tot totρ = . All parameters 
other than the total kinase concentration are the same as those in 
Table 2. (A) The system only has a unique stable steady state for all 
values of ρ. (B) The system has two stable steady states for some 
values of ρ and exhibits switch­like behavior and hysteresis. (C) The 
system exhibits limit cycles for a range of values of ρ. Close to the left 
bifurcation point, two stable limit cycles can coexist, separated by 
unstable limit cycles. The Supplemental Materials contain Matlab code 
for numerically integrating the equations at the parameters and total 
enzyme concentrations for which two stable limit cycles coexist. The 
inset zooms in on the region near the left bifurcation point. Note that 
in all three cases shown here, numerical continuation was performed 
on the full model of the dual phosphorylation cycle, showing that the 

nonlinear behaviors found under the pseudo–steady state 
approximation lift back to the full model in most cases. In addition, 
Etot and Ftot are both <<Stot for all values of ρ in these bifurcation 
diagrams.
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domain to bind to the enzymes that phosphorylate and dephos-
phorylate it (Tanoue et al., 2000). A well-studied mutation in this 
domain, which should result in decreased affinity for both kinase 
and phosphatase, acts as gain of function in vivo (Brunner et al., 
1994). Quantitative explanation for this effect is lacking, but it is 
generally accepted that ERK binding to a phosphatase, such as 
MKP3, is affected to a greater extent than its binding to the activat-
ing enzyme (Bott et al., 1994; Zhou and Zhang, 1999; Zhou et al., 
2002; Zhao and Zhang, 2001; Zhang et al., 2003). The relative ef-
fects of this mutation on ERK’s interactions with the two enzymes 
have not been quantified, but once this is done, our approach can 
be used to predict how these effects influence the systems-level 
properties of the dual phosphorylation cycle that controls ERK with 
this mutation.

MATERIALS AND METHODS
Mathematical model of ERK regulation
The following system of equations describe the dynamics of a ki-
nase (E), a phosphatase (F), a substrate with four phosphorylation 
states (S00, S01, S10, S11), and six enzyme–substrate complexes (ES00, 
ES01, ES10, FS01, FS10, FS11). Here each index on the substrates and 
complexes is a phosphorylation site, with 0 denoting unphosphory-
lated and 1 denoting phosphorylated:

[ ] [ ][ ] [ ] [ ] [ ]= − + + +
d S

dt k E S k ES k FS k FSb ub
00

1 00 1 00 4 10 5 01
 

(1.1)

[ ] [ ][ ] [ ] [ ][ ] [ ]= − + − +
d S

dt k E S k ES k F S k FSb ub b ub
01

2 01 2 01 5 01 5 01
 

(1.2)

becomes more prominent, which may in turn lead to significant 
changes in the domain of bistability (Takahashi et al., 2010; Gopich 
and Szabo, 2013; Verdugo et al., 2013; Gopich and Szabo, 2016). 
Our approach should be readily applicable to kinetic models that 
include these additional effects, as well as the effects of intracellu-
lar compartments and ERK interaction with its substrates, which 
can protect ERK from phosphatases (Kim et al., 2011; Liu et al., 
2011).

Note that while there are multiple techniques for probing the 
long-term dynamics in multisite phosphorylation cycles, there are 
no general-purpose tools for probing their transient responses to 
time-varying inputs. Nevertheless, analysis of transient responses is 
essential for understanding many of the functional properties of 
phosphorylation cycles, including their roles during inductive signal-
ing in developing tissues (Lim et al., 2015; Mattingly et al., 2015). In 
the future, it will be interesting to classify transient responses of mul-
tisite phosphorylation cycles to several of the typical inputs encoun-
tered by these networks in vivo, starting with pulses provided by the 
upstream signaling components.

One may ask whether the nonlinear behaviors we found in the 
model can occur at biologically feasible parameter values. We argue 
that this question motivates experiments in which isolated compo-
nents of phosphorylation cycles, such as the ERK-MEK-MKP3 sys-
tem, are reconstituted in vitro for the purpose of constraining model 
parameters and determining which long-term behaviors are feasible 
in such systems.

Another important direction for future work is the systematic 
analysis of mutations affecting the components of phosphorylation 
cycles. As an example, it is known that ERK uses the same docking 

Parameter
Figures 3A  

and 4A: monostable
Figures 3B  

and 4B: bistable
Figures 3C, 4C,  

and 5A: limit cycle Figure 5B: limit cycle

k1 1 1.1994 5314.5 4.5915 × 105

k2 2 19,327 1291 22.28

k3 3 0.36953 44.965 3.2585 × 106

k4 1 29,332 9.2497 × 105 9.7962

k5 1 4.1166 × 105 1.3334 213.71

k6 2 552.32 2.0451 14.154

kb1 3 2733.8 5241 2531.6

kb2 3 2.6221 × 106 4.0205 1.0435 × 105

kb3 2 109.37 64.271 19,464

kb4 1 50.134 54.606 2.4078 × 106

kb5 4 6.0968 2.1496 × 106 8.8294 × 105

kb6 3 103.34 2.7625 × 106 1.0831 × 105

kub1 2 85.59 149.19 3208.6

kub2 1 7.9504 76.203 1.5788 × 106

kub3 2 10.303 2.2707 209.83

kub4 3 1.6602 × 105 27,238 5.6317 × 105

kub5 4 28.243 6.0681 785.47

kub6 5 0.29981 0.40324 22.769

Etot 0.003 0.0026087 0.0012244 0.0068182

Ftot 0.002 0.018996 0.0052442 0.0084204

TABLE 2: Parameter values used to generate the phase plots, bifurcation diagrams, and time courses in Figures 3–5.
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[ ] [ ][ ] [ ] [ ][ ]
[ ] [ ][ ] [ ]( ) ( )

= − + −

+ + − + +

d E
dt k E S k ES k E S

k k ES k E S k k ES

b ub b

ub b ub

1 00 1 00 2 01

2 2 01 6 10 6 6 10  

(1.11)

[ ] [ ][ ] [ ] [ ][ ]
[ ] [ ][ ] [ ]

( )
( )

= − + + −

+ + − +

d F
dt k F S k k FS k F S

k k FS k F S k FS

b ub b

ub b ub

5 01 5 5 01 4 10

4 4 10 3 11 3 11
 

(1.12)

The conservation laws are as follows:

[ ] [ ] [ ] [ ]= + + +E E ES ES EStot 00 01 10  (1.13)

[ ] [ ] [ ] [ ]= + + +F F FS FS FStot 01 10 11  
(1.14)

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

= + + +

+ + + + + +

S S S S S

ES ES ES FS FS FS

tot 00 01 10 11

00 01 10 01 10 11
 

(1.15)

Matrix representation
It is convenient to write the foregoing system of equations in vector-
matrix form:

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]
[ ]

[ ]
[ ]
[ ]

=























=



















=



















SS CC CC

S

S

S

S

ES

ES

ES

FS

FS

FS

, ,kk pp

00

01

10

11

00

01

10

01

10

11

 

(2.1–2.3)

=





















=





















KK KK

k
k

k

k
k

k

0 0 0
0 0 0
0 0 0
0 0 0 0

,

0 0 0 0
0 0 0
0 0 0
0 0 0

bb
kk

bb
pp

b

b

b

b

b

b

11 11

1

2

6

5

4

3  

(2.4–2.5)

=





















=





















KK KK

k
k

k
k k

k k
k

k
k

0 0
0 0
0 0
0

,

0
0 0

0 0
0 0

kk pp

ub

ub

ub

ub

ub

u

11 11

1

2

6

2 6

5 4

5

4

3  

(2.6, 2.7)

=
















=
















KK KK
k

k
k

k
k

k

0 0 0
0 0 0
0 0 0

,
0 0 0
0 0 0
0 0 0

bb
kk

bb
pp

b

b

b

b

b

b

22 22

1

2

6

5

4

3  

(2.8, 2.9)

=
+
− +

+

















KK
k k

k k k
k k

0 0
0

0 0

kk
ub

ub

ub

22

1 1

1 2 2

6 6  

(2.10)

=
+

+ −
+

















KK
k k

k k k
k k

0 0
0
0 0

pp
ub

ub

ub

22

5 5

4 4 3

3 3  

(2.11)

In terms of these vectors and matrices, the differential equations 
become

[ ] [ ]= − + +SS KK KK CC KK SS KK CCd
dt E S F–bb

kk kk kk
bb
pp pp pp

1 1 1 1
 (2.12)

[ ] [ ][ ] [ ] [ ][ ] [ ]= − + − +
d S

dt k F S k FS k E S k ESb ub b ub
10

4 10 4 10 6 10 6 10
 

(1.3)

[ ][ ] [ ] [ ] [ ]= − + + +d S
dt k F S k FS k ES k ES[ ]

b ub
11

3 11 3 11 2 01 6 10
 

(1.4)

[ ] [ ][ ] [ ]( )= − +
d ES

dt k E S k k ESb ub
00

1 00 1 1 00
 

(1.5)

[ ] [ ][ ] [ ] [ ]( )= − + +
d ES

dt k E S k k ES k ESb ub
01

2 01 2 2 01 1 00
 

(1.6)

[ ] [ ][ ] [ ]( )= − +
d ES

dt k E S k k ESb ub
10

6 10 6 6 10
 

(1.7)

[ ] [ ][ ] [ ]( )= − +
d FS

dt k F S k k FSb ub
01

5 01 5 5 01
 

(1.8)

[ ] [ ][ ] [ ] [ ]( )= − + +
d FS

dt k F S k k FS k FSb ub
10

4 10 4 4 10 3 11
 

(1.9)

[ ] [ ][ ] [ ]( )= − +
d FS

dt k F S k k FSb ub
11

3 11 3 3 11
 

(1.10)

FIGURE 5: Periodic solutions were found at two different levels of 
reaction processivity. Time courses and state­space plots of limit 
cycles found in the processive (A) and distributive (B) regimes. Time 
courses were generated by numerically integrating the full model. 
Table 2 gives the parameter values.
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At this point, we will also nondimensionalize the system. First, we 
rescale all substrate and complex concentrations by Stot. However, 
the concentrations of the complexes are bounded above by the 
total concentrations of their corresponding enzymes, Etot and Ftot. In 
addition, we take the limit in which E S/tot tot  and F S/tot tot go to zero. 
Therefore the complexes disappear from the conservation law for 
the substrate (Eq. 2.19), and the equation becomes

( )= SST1  (3.11)

Rescaling time by k F S/tot tot3 , Lk and Lp by k S/ tot3 , and Mk and Mp 
by Stot and introducing the parameter E F/tot totρ =  gives the dimen-
sionless system of differential equations:

SS LL SS
MM SS

LL SS
MM SS

d
dt =

T T1 1

kk

kk

pp

pp

ρ

( )( )+
+

+  
(3.12)

where all quantities are now understood to be in their dimensionless 
form.

Sampling of model parameters
Parameters were sampled uniformly in logarithm from a 20-dimen-
sional hypercube. All rate constants were allowed to take on values 
between 10−1 and 107. The total concentrations of kinase and phos-
phatase were allowed to vary between 10−4 and 10−1.

Steady state calculations
To solve for the steady states of the foregoing system of differential 
equations, we set the left-hand sides equal to zero:

LL SS
MM SS

LL SS
MM SS

=
T T

0
1 1

kk

kk

pp

pp

ρ

( )( )+
+

+
 

(4.1)

which is equivalent to

MM SS LL SS MM SS LL SS= T T0 1 1pp kk kk ppρ ( ) ( )+



 + +





 
(4.2)

Note that this is a system of algebraic polynomial equations in 
the substrate concentrations, with each polynomial being at most 
degree 2. Using the computer algebra software Mathematica, it is 
possible to numerically find all solutions to this system of equations. 
This is done by computation of a Gröbner basis using an efficient 
monomial ordering, followed by eigensystem methods to extract 
numerical roots (Cox et al., 2010). The Gröbner basis for a system of 
polynomials is an equivalent polynomial system that has many use-
ful properties. For example, the set of polynomials in the Gröbner 
basis has the same set of roots as the original polynomials. In the 
simplest case, for a linear function of any number of variables, the 
Gröbner basis computation is equivalent to the Gaussian elimina-
tion procedure.

Among the solutions to the polynomial system of equations in 
Eq. 4.2, the only ones kept were those that had no negative com-
ponents in the vector S and obeyed conservation of substrate 
(Eq. 3.11). Continuations of steady states were performed in 
Matcont (Dhooge et al., 2003), a numerical continuation software 
for Matlab.

Linear stability analysis
If we define 

SS SS LL SS
MM SS

LL SS
MM SS

f = d
dt =

T
+

T1 1

kk

kk

pp

pp

ρ

( )( )( )
+ +

[ ]=CC KK SS KK CCd
dt F –

kk

bb
kk kk kk

22 22
 

(2.13)

[ ]=CC FF KK SS –– KK CCd
dt

pp

bb
pp pp pp

22 22  
(2.14)

[ ] + 





=CCd E
dt T d

dt 0
kk

 
(2.15)

[ ] +






=CCd F
dt T d

dt 0
pp

 
(2.16)

Here we define the operator T ( )⋅ , which acts on a vector and 
takes the sum of the elements of the vector. The conservation laws 
become

CCE E T kk
tot ( )[ ]= +

 (2.17)

( )[ ]= + CCF F T pp
tot  (2.18)

( )( )( )= + +SS CC CCS T T Tkk pp
tot  (2.19)

Pseudo–steady state approximation
In the pseudo–steady state approximation (valid for E F S,tot tot tot� ), 
we assume that the left-hand side of the differential equations for 
the complexes vanish, giving

CC KK KK SSEkk kk
bb
kk

22

––11

22( )[ ]=  (3.1)

CC KK KK SSFpp pp
bb
pp

22

––11

22( )[ ]=
 (3.2)

Substituting Eqs. 3.1 and 3.2 into the conservation laws for [E] 
and [F] (Eqs. 2.16 and 2.17) and solving for each enzyme concentra-
tion gives

KK KK SS
E E

T1 kk
bb
kk

tot

22

––11

22( )( )
[ ] =

+
 

(3.3)

( )( )
[ ] =

+ KK KK SS
F F

T1 pp
bb
pp

tot

22

––11

22
 

(3.4)

Substituting the expressions for the enzymes and the complexes 
into the differential equations for the substrate concentrations gives 
the reduced system of differential equations:

( )
( )

( )
( )

( )
( )

( )
( )

=
+

+
+

+

+

SS
––KK KK KK KK SS

KK KK SS

––KK KK KK KK SS

KK KK SS

d
dt

E

1 T

F

1 T

bb
kk kk kk

bb
kk

kk
bb
kk

bb
pp pp pp

bb
pp

pp
bb
pp

tot tot11 11 22

––11

22

22

––11

22

11 11 22

––11

22

22

––11

22

 

(3.5)

Lumping together the matrices in the numerator and the denomina-
tor gives

( )LL KK KK KK KK= – +kk
bb
kk kk kk

bb
kk

11 11 22

––11

22
 (3.6)

( )= +LL KK KK KK KK–pp
bb
pp pp pp

bb
pp

11 11 22 22

–1

 (3.7)

MM KK KKkk kk
bb
kk

22 22

–1( )=
 (3.8)

MM KK KK=pp pp
bb
pp

22 22

–1( )  (3.9)

( )( )+ +
SS LL SS

MM SS
LL SS
MM SS

d
dt = E

T
+ F

T1 1

kk

kk

pp

pp
tot tot

 
(3.10)
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then determining the linear stability of a steady state SS  of the re-
duced system of differential equations requires calculation of the 
eigenvalues of the Jacobian matrix

( )SS ff
SSJ = d

d |SS

evaluated at that steady state. The equation for ( )JJ SS  in terms of the 
matrices defined in the preceding section is

JJ SS LL

MM SS

LL SS MM

MM SS

LL

MM SS

LL SS MM

MM SS

JJ SS JJ SS

=
T

–
T

T T
–

T

T

=

1 1 1 1

kk

kk

kk kk

kk

pp

pp

pp pp

pp

kk pp

2 2( ) ( )( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

( ) ( )

























ρ

ρ

+ +
+

+ +

+

 

(5.1)

Here MMT ( )kk  (and similarly MMT ( )pp ) means the sum of the columns of 
MM kk , producing a row vector, so that the product LL SS MMT( ) ( )kk kk  is the 
outer product of the column vector LL SS( )kk  and the row vector 

MMT ( )kk . The denominator of each term is a scalar.
For each parameter set, the linear stability of each nonnegative 

steady state solution that satisfied the conservation condition was 
evaluated by substituting it into Eq. 5.1 and calculating the eigen-
values of the Jacobian matrix SSJ( ). If one or more eigenvalues had a 
positive real part, then the steady state was linearly unstable. If all 
eigenvalues had negative real parts, then the steady state was lin-
early stable.
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