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MULTISCALE TWO-DIMENSIONAL MODELING OF A MOTILE
SIMPLE-SHAPED CELL∗

B. RUBINSTEIN† , K. JACOBSON‡ , AND A. MOGILNER†

Abstract. Cell crawling is an important biological phenomenon underlying coordinated cell
movement in morphogenesis, cancer, and wound healing. In recent decades the process of cell crawling
has been experimentally and theoretically dissected into further subprocesses: protrusion of the cell
at its leading edge, retraction of the cell body, and graded adhesion. A number of one-dimensional
(1-D) models explain successfully a proximal-distal organization and movement of the motile cell.
However, more adequate two-dimensional (2-D) models are lacking. We propose a multiscale 2-D
computational model of the lamellipodium (motile appendage) of a simply shaped, rapidly crawling
fish keratocyte cell. We couple submodels of (i) protrusion and adhesion at the leading edge, (ii) the
elastic 2-D lamellipodial actin network, (iii) the actin-myosin contractile bundle at the rear edge, and
(iv) the convection-reaction-diffusion actin transport on the free boundary lamellipodial domain. We
simulate the combined model numerically using a finite element approach. The simulations reproduce
observed cell shapes, forces, and movements and explain some experimental results on perturbations
of the actin machinery. This novel 2-D model of the crawling cell makes testable predictions and
posits questions to be answered by future modeling.
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1. Introduction. Cell crawling [5] is an important part of many biological pro-
cesses such as wound healing, immune response, cancer, and morphogenesis. Almost
all crawling cells move by using dynamic actin machinery to power a simple mechan-
ical cycle [1]: first, the polarized actin network grows at the front and pushes out
the cell’s leading edge; next, the cell strengthens its adhesions at the leading edge
and weakens them at the rear edge; finally, the cell pulls up its rear. Answers to the
question of how the mechanochemical events driving this cycle determine cell shape
and cell movements have proven elusive due to the large number of proteins involved
in cell locomotion, as well as the intricacy of the intracellular control system.

A well-defined model system is crucial for obtaining answers about this relation-
ship between actin dynamics and cell shape and movements. Our cells of choice are fish
epidermal keratocytes which crawl on surfaces with remarkable speed and persistence
while almost perfectly maintaining their characteristic fan-like shape [12] (Figure 1).
Keratocyte cells, streamlined for migration, offer powerful advantages for modeling.
In these cells the steps of protrusion, graded adhesion, and retraction are continuous
and simultaneous, and there is clear spatial separation between them. Protrusion and
adhesion are confined to the leading edge, while retraction occurs at the rear and the
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Fig. 1. Schematic diagrams of a fish keratocyte cell as seen from above (A) and from the
side (B) and of a migrating lamellipodial fragment as seen from above (C). Typical shapes and
dimensions are shown: 1. branching actin network in the lamellipodium; 2. bipolar actin-myosin
bundle at the rear of the lamellipodium; 3. myosin clusters; 4. cell body; 5. adhesion complexes.
Note the concave shapes of the leading (top) and rear (bottom) edges of the lamellipodial fragment
and the characteristic crescent shape of the lamellipodium.

extreme lateral edges [32, 2]. The fan-like shape of a keratocyte is likely to represent
the basic shape of the crawling cell in its pure form, determined solely by the actin
network dynamics.

The lamellipodium is the front, advancing part of the keratocyte and is the basic
engine for crawling [27, 25]. It is a flat, leaf-like extension filled with a dense actin
network. It is only a few tenths of a micrometer thick but is several tens of micro-
meters wide and about 10 micrometers long (Figure 1). The cell body, containing
the cell nucleus and other organelles, appears to be a mechanically passive structure
in the crawling—pulled forward entirely by the lamellipodial action. Recently, sig-
nificant progress has been made in understanding the molecular events of protrusion,
adhesion, and retraction, as well as the structural organization of the lamellipodial
actin network [27, 18, 32]. Moreover, lamellipodial fragments separated from the cell
body have been observed to exhibit autonomous motility and whole-cell shape char-
acteristics [34]. These observations suggest that a two-dimensional (2-D) model able
to explain the dynamics of the flat autonomous lamellipodium would be very useful
for understanding the basic process of cell crawling.

While a number of one-dimensional (1-D) models have examined various aspects
of cell motility [8, 23, 11], these models cannot properly address the issue of cell
shape. Therefore a 2-D model is required. Very few studies quantitatively address
the lamellipodial shape. (See [30] for an interesting 2-D model motivated physically,
rather than biologically.) The graded radial extension (GRE) model sheds light on
kinematic principles underlying keratocyte shape [17]. This model, accompanied by
experimental observations, demonstrates that extension/retraction is locally normal
to the cell boundary and that the rate of extension/retraction is graded, decreasing
from the center to the sides of the cell. It also shows that the 2-D steady-state
cell shape evolves as a function of the extension/retraction rates. The GRE model
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does not examine the role feedback plays in the relationship between cell shape and
actin dynamics. Another combined experimental and theoretical study elucidates the
dynamic feedback between the actin polymerization at the cell’s leading edge and the
shape of that edge [12]. This same study, however, does not examine the behavior
at the rear and sides of the cell. A 2-D computational model simulates the forces,
shapes, and movements of nematode sperm cells [4]. These cells’ amoeboid motility
is very similar to that of the actin-based cells [5]. However, the underlying physics
of protrusion, retraction, and adhesion are different and very peculiar. The model
we present here borrows from the ideology and methodology of the nematode sperm
model, although specifics of the two models are different.

In this paper, we propose a self-consistent 2-D model of the mechanochemistry
of the keratocyte lamellipodial fragment (referred to below simply as lamellipodium).
We analyze this model mathematically and numerically. The model elucidates princi-
ples underlying self-organization of the lamellipodium, provides a dynamic mechanism
for the GRE model, and explains the nature of the stability and persistence of cell
crawling. To our knowledge, this is the first 2-D mathematical model combining the
mechanics of protrusion, graded adhesion, and retraction with those of actin turnover.
We show how this coupling generates stable, steady, rapid migration of the actin-based
cells.

The layout of the paper is as follows. In the next section, we describe relevant
experimental data and outline a qualitative model of the lamellipodium. Then in
sections 3–6 we propose submodels for protrusion/adhesion, myosin driven retraction,
2-D lamellipodial elasticity, and actin turnover and transport, respectively. We report
the results of the numerical simulations of the model in section 7 and apply the model
to simulate keratocyte turning behavior in section 8. We conclude with a discussion
of the model’s predictions and biological implications in section 9.

2. Qualitative model of the lamellipodial dynamics.

2.1. Protrusion and actin dynamics. Protrusion is the most well-studied
subprocess of motility. The following dendritic nucleation model describes the growth
of actin network, which is the basis of protrusion. Although the model is still not
confirmed in all its details, it is accepted in general [27]. First, Arp2/3 protein complex
causes nucleation and branching of nascent actin filaments (F-actin) from the sides
of existing actin filaments at the leading edge of the lamellipodium (Figure 1). Actin
filaments are polar: pointed ends of newly formed filaments are capped and stabilized
at a branching point, while their free barbed ends elongate, pushing the membrane
at the leading edge forward, until they are capped by capping proteins. Thus the
lamellipodial actin network has a branched organization; Arp2/3 complex localizes
to the Y-junctions that give birth to daughter filaments oriented at about 70◦ to the
mother filament (Figure 1). The network is further reinforced by crosslinking proteins.

Actin monomers (G-actin) are used for the elongation of the uncapped barbed
ends. These monomers are produced in the process of disassembly at the opposite,
pointed ends. This process is mediated by proteins of the ADF/cofilin family that are
likely to accelerate either the uncapping of Arp2/3 bound minus ends, the severing of
the filaments, or both. These proteins then accelerate disassembly of the minus ends
across the lamellipodium. As a result, actin network density decreases exponentially
from the front to the rear of the lamellipodium (for a review, see [24, 27]). Newly
depolymerized actin monomers are sequestered by ADF/cofilin proteins, but they
rapidly exchange this sequestered agent for one of two other important actin binding
proteins—profilin and thymosin. At the same time they bind ATP, which is used
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as an energy source in actin turnover [24, 27]. Actin-thymosin complexes cannot
polymerize. This pool is maintained by the cell as a “backup,” while actin-profilin
complexes attach to the uncapped barbed ends. Actin-thymosin and actin-profilin are
delivered from the depolymerization sites to the leading edge by diffusion, probably
augmented by a cytoplasmic fluid-phase flow in the lamellipodium [24, 37].

Protrusion involves generating pushing forces at the front of the lamellipodium.
Most likely, these forces are generated by elastic polymerization ratchet. In this
process actin filaments and the cell membrane bend away from each other, actin
monomers intercalate into the gap between the filament tip and the membrane, as-
sembling onto the tip, and the elongated bent filaments push the membrane forward
with elastic force [20, 21, 25].

2.2. Adhesion. Although the protrusion phase does not, per se, require contact
with the substrate, adhesion is necessary for stabilization of the protrusion and can
influence both its final shape and amplitude [7]. In the major part of the keratocyte
lamellipodium, the actin network is stationary with respect to the substratum, while
the cell moves forward [32]. The firm adhesion of the actin lamellipodial network to
the substratum makes the forward motion possible [18]. This adhesion is mediated by
attachments consisting of transmembrane integrin molecules bound simultaneously
to substratum and cytoskeletal protein complexes (containing vinculin, talin, and
other important proteins), which in turn bind to actin filaments. Mapping of the
attachments between the lamellipodium and the substratum shows higher density of
adhesion molecules at the front parts of the lamellipodium [18] (Figure 1). On a
molecular level, how the attachments localize to the leading edge is unclear, although
multiple integrin-mediated adhesion pathways are known to feed back on this localized
protrusion activity [14]. For example, recruitment of Arp2/3 complex (crucial for
protrusion) to vinculin (crucial for adhesion) might be one mechanism through which
protrusion is coupled to integrin-mediated adhesion, providing a direct explanation
for the potentiation effect of adhesion on protrusion [7].

2.3. Retraction. Pulling up the rear of the lamellipodium involves contractile
forces. Myosin-driven contraction of the actin network generates the necessary forces
[32, 34]. The model introduced in this paper suggests that actin disassembly weakens
the network in the posterior region of the lamellipodium. This allows myosin-powered
collapse of the largely isotropic lamellipodial actin network into a bipolar actin-myosin
bundle at the very rear of the lamellipodium (Figure 1). Subsequent (muscle-like)
sliding contraction of the bundle pulls lamellipodial actin filaments into the bundle,
advancing the rear boundary of the lamellipodium forward. The detailed 1-D model
of this actin-myosin contraction of the proximal-distal transect of the central part
of the lamellipodium was reported in [23]. Active actin-myosin contraction is con-
fined to a narrow, rear part of the lamellipodium [32, 34]. Probably the bulk of the
lamellipodium reacts to this contraction only through passive elastic forces.

2.4. The model. The model is based on the following seven assumptions. Three
factors can inhibit protrusion: membrane resistance, recycling of monomeric actin
from the rear to the front, and adhesion strength. In keratocytes, the resistance is
relatively weak [12], and we will assume here that the (i) protrusion rate is locally
normal to the leading edge and proportional to the local concentration of G-actin
(either free or bound to profilin) [24]. This assumption is implicitly based on another
assumption, namely, that there is no rearward slippage of the actin network at the
leading edge.
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Without firm adhesion to the substratum, newly grown sheets of actin network
buckle and drift backward [3]. There is evidence that the contractile forces are trans-
mitted across the lamellipodium [10]. These forces either can break the nascent adhe-
sions or can reinforce tight filamin binding and restrict integrin-dependent transient
membrane protrusion [6]. These processes would decrease the density of adhesions
and the rate of protrusion. We assume that (ii) the actin-myosin contractile forces
deform the elastic actin network of the lamellipodium and diminish adhesion density
and protrusion at the leading edge. Therefore, (iii) the protrusion rate is an increasing
function of the adhesion density, which, in turn, is a decreasing function of the mag-
nitude of the local elastic deformation force. We also assume that this force leads to
a partial disassembly of the nascent F-actin so that (iv) the density of F-actin at the
leading edge is a decreasing function of the magnitude of the local elastic deformation
force.

We assume that (v) the only limiting factor in determining lamellipodium size
is a constant number of adhesion molecules which are distributed evenly along the
leading edge. That is, densities of Arp2/3 complexes, capping proteins, and myosin
are assumed to be constant and independent of the lamellipodial shape and size.
According to this assumption, if the lamellipodium grows too much, the density of
the adhesions along the leading edge decreases. Meanwhile, the myosin-generated
force deforming and disassembling the adhesions does not change, so the protrusion
and F-actin density at the leading edge decrease. As a result, while the rear edge
retraction does not change, the leading edge advances less, resulting in decreased
lamellipodial area. Although this assumption gives qualitative insights as to how
the total area of the lamellipodium is controlled, a quantitative model is needed to
understand how the shape is controlled.

Other possible assumptions can explain the stability of the lamellipodial area.
One such assumption is that the total amount of Arp2/3 is the limiting factor in
determining the area’s size. In this case, area growth would deplete Arp2/3 density.
Depleted Arp2/3 density weakens the F-actin network, enabling myosin to collapse
it more effectively, decreasing the area. Much more experimental data than is now
available is needed to better understand the nature of the processes regulating the
lamellipodial area.

Our remaining assumptions are as follows: (vi) the lamellipodial network disas-
sembles at a constant rate; and (vii) there exists a constant critical low F-actin density
at which the actin network collapses into the actin-myosin bundle, determining the
rear edge of the lamellipodium.

In the next four sections we demonstrate that expressing these assumptions in
mathematical terms is sufficient to reproduce the shape and movement of the lamel-
lipodium. The general idea of the model is as follows. The actin-myosin contraction
at the rear edge generates forces which deform the 2-D elastic lamellipodial sheet,
straining the adhesions along the leading edge. We will demonstrate that the con-
traction forces increase from the center to the sides. As a result, adhesion strain also
increases from the center to the sides. This gradually inhibits protrusion toward the
sides of the cell, effectively bending the leading edge into its characteristic concave
shape. The rear edge assumes a correspondingly concave shape, although less curved,
defined by locations of critical low actin density. Monomeric actin reactions, diffu-
sion, and convection create an actin gradient from the rear to the front of the cell.
The gradient maintains sufficiently high G-actin concentration for protrusion at the
leading edge. We neglect slippage and viscoelastic deformations at the lamellipodial
sides. We have also neglected the continuous actin-myosin bundle distribution across



418 B. RUBINSTEIN, K. JACOBSON, AND A. MOGILNER

Table 1

Model variables.

Symbol Meaning Units

V protrusion rate µm/sec

a G-actin or G-actin-profilin concentration µM

g force dependent factor µM

x 2-D coordinate nondimensional

Fe magnitude of the elastic force at the leading edge pN/µm

Fcr critical force constant at which protrusion stops pN/µm

Lle length of the leading edge µm

f F-actin density along the leading edge filaments/µm

m(x, t) myosin density along the rear edge molecules/µm

r(x, t) right-oriented filament density along the rear edge filaments/µm

l(x, t) left-oriented filament density along the rear edge filaments/µm

vm velocity of myosin clusters along the rear edge µm/sec

vr velocity of right-oriented filaments along the rear
edge

µm/sec

vl velocity of left-oriented filaments along the rear
edge

µm/sec

Π elastic potential energy nN·µm

σ elastic stress nN/µm

ε elastic strain nondimensional

u elastic displacement µm

T traction forces at the rear nN/µm

b G-actin-thymosin concentration µM

a free G-actin or G-actin-profilin concentration µM

β thymosin concentration µM

Vc convection velocity µm/sec

P hydrostatic pressure Pa

K permeability µm2

φ porosity nondimensional

part of the lamellipodial rear. It remains to be seen how this affects our model’s
predictive power. Despite these limitations, however, the quantitative analysis of this
model is a necessary first step in developing a comprehensive theory of cell motility.

3. Mathematical model of protrusion at the leading edge. Variables and
parameters of the submodels introduced in this and the next sections are listed in
Tables 1 and 2, respectively. We approximate the effective rate of protrusion at the
leading edge as

V (x) = δkona(x) · g(x),(3.1)

neglecting the weak membrane resistance to actin polymerization and the slow disas-
sembly rate at the barbed end. In this equation δ is the half-size of an actin monomer
and kon is the assembly constant. At location x = (x, y) along the leading edge a(x) is
the local concentration of ATP-G-actin, either free or in complex with profilin. In or-
der to establish the vectorial coordinate system, at each computational step we find a
rectangle bounding the lamellipodial domain. The center of this rectangle is the origin
of the coordinate system. The x-axis is taken as that perpendicular to the direction
of motion. Similarly, the y-axis is parallel to the direction of movement, with positive
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Table 2

Model parameters.

Symbol Meaning Value

δ half-size of actin monomer 2.7 nm [24]

kon barbed end assembly rate 11.6 µM−1sec−1 [24]

F0 force constant 103 pN/µm

F 0
cr critical force constant 103 pN/µm

L spatial scale 10 µm

fcr critical F-actin density at which the actin network
collapses

100 filaments/µm

f0 maximal (force-free) F-actin density 200 filaments/µm

γb F-actin disassembly rate in the bundle 0.2 sec−1, assumed

γm myosin disassembly rate in the bundle 0.2 sec−1, assumed

γl F-actin disassembly rate in the lamellipodium 0.02 sec−1 [24]

nm myosin source at the rear not specified

n0 F-actin source at the rear not specified

ε1,2 nondimensional actin, myosin velocities at the rear � 1

Y Young’s modulus 10 kPa [28]

D G-actin diffusion coefficient 10 µm2/sec [24]

k1, k2, k′1, k
′
2 G-actin reaction rates 1/sec [24]

η water viscosity 1 cPoise

d actin filament diameter 5 nm

ν geometric conversion factor 500µM−1µm−2 [24]

direction corresponding to the direction of movement. Expression δkona(x) is the free
polymerization rate. The protrusion rate is given by modifying the polymerization
rate with the nondimensional factor:

g(x) =

{
exp(−Fe(x)/F0) − exp(−Fcr/F0), Fe(x) < Fcr,

0, Fe(x) ≥ Fcr,
(3.2)

Fcr = F 0
cr

L

Lle
.(3.3)

This phenomenological factor captures the mediating effects of the elastic and adhesive
forces at the leading edge. We assume that when the critical force, Fcr, is reached,
all nascent protrusions are lifted off the substratum and recede, stalling effective
protrusion. This critical force is determined by the effective density of attachments.
Formula (3.3) reflects our assumption that the total number of adhesions is distributed
uniformly along the leading edge whose length is Lle. When the force deforming
the attachments is subcritical, we assume effective protrusion is slowed exponentially
(3.2). This assumption stems from a frequently observed exponential dependence of
the adhesion breakage rate on the force [9]. F0, F 0

cr, and L are phenomenological
parameters. The velocity profile V (x) is an output calculated at each computational
step using computed values of G-actin concentration and elastic force (see below).

We describe the advancing lamellipodium geometrically by attributing the normal
protrusion velocity to every point on the leading edge. This is in accordance with the
GRE model [17]. Figure 2 illustrates this using the sample parabolic force distribution,
Fe = c1 + c2x

2, along the leading edge. In this force expression, c1 and c2 are positive
constants and x is the 1-D lateral coordinate. The force affects the magnitude of
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Fig. 2. The protrusion (arrows) is graded along the leading edge (described by the function
y(x)) by the elastic deformation force (dashed) according to (3.1)–(3.2). The initial shape of the
leading edge is shown with the lower solid curve. In a short time interval, the edge advances and
deforms into the upper solid curve. The slope of the edge is measured by the angle θ, which is the
function of the x-coordinate. The x-axis is directed from side to side of the cell; the y-axis is in the
direction of migration.

the local normal protrusion velocity V (x) so that the protrusion speed decreases
symmetrically from the edge’s center to its sides. The shape shown evolves over a
short time interval. For stationary rates of protrusion, a steady and stable concave
shape evolves [17, 12]. The slope of such a shape is given by the formula θ(x) =
arccos(V (x)/V (0)).

Finally, we assume that the effective density of F-actin along the leading edge is
graded by the same force-dependent factor as the protrusion rate:

f(x) = fcr + (f0 − fcr)g(x),(3.4)

where g(x) is as defined in (3.2). In this case fcr represents the critical low density
of the actin network; at this density myosin can collapse the network into a bipolar
bundle. We assume this critical density is reached at the same critical deformation
force at which protrusion stops. The parameter f0 is the maximal density of the actin
network, attained when the leading edge is not deformed. We rationalize formula
(3.4) due to the possibility that the deformation destroys some of the nascent actin
network (depending on the force magnitude). There is also a possibility that F-actin
density is force-independent and graded by kinematic effects of the lateral flow [12];
this possibility will be examined elsewhere.

4. Mathematical model of actin-myosin contraction at the rear. As ex-
plained above, we assume that all actin-myosin contraction occurs at the rear bound-
ary of the lamellipodium. Therefore the corresponding submodel of actin-myosin
contraction is 1-D. This is a very strong assumption; in later versions of the model
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it will be changed to incorporate a continuous distribution of bundles throughout
the cell. A pioneering quantitative model for the 1-D actin-myosin contraction was
developed in [15] but is not directly applicable to the actin-myosin bundle in the
lamellipodium. We suggest an alternative model of the actin-myosin contraction. In
this 1-D model, we consider active, contractile, sliding elements (or bundles). These
elements are composed of actin and myosin and are distributed along the rear edge
of the lamellipodium (Figure 3). At the end of the next section, we explain how the
contractile forces generated by these sliding elements are applied to the lamellipodial
network: deforming the network, breaking the crosslinks, and pulling network actin
filaments into the contractile bundle.

Fig. 3. A myosin cluster interacts through multiple motor domains with bundle and network
actin filaments. Active forces are generated through bundle actin-myosin sliding. Resistive forces
arise from breaking crosslinks between myosin clusters and bundle actin filaments on the one hand
and between network filaments and adhesions on the other hand. A. A contractile element at the
center of the rear edge. B. A contractile element at the right of the rear edge. C. Force balance at
the rear of the lamellipodium.

We describe the actin-myosin bundle with three densities: the density of myosin
clusters is denoted by m(x, t); the density of actin filaments whose barbed ends are
oriented to the right is denoted by r(x, t); and l(x, t) gives the density of those actin
filaments whose barbed ends are oriented to the left. Time is given by t, and x is the
1-D arc length coordinate along the bundle. We assume a bundle of constant length:
−L ≤ x ≤ L; x = 0 corresponds to the center of the bundle. These densities are
governed according to

∂r

∂t
= nr(x) − γbr +

∂

∂x
(vrr),(4.1)
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∂l

∂t
= nl(x) − γbl −

∂

∂x
(vll),(4.2)

∂m

∂t
= nm − γmm− ∂

∂x
(vmm),(4.3)

where γb and γm are the constant rates of actin disassembly within the bundle and
of myosin detachment, respectively. We take γb = γm = γ for simplicity. The
velocities of right- and left-oriented filaments and of myosin clusters are given by
vr, vl, and vm, respectively. nr, nl, and nm are the respective sources of right- and
left-oriented filaments and myosin. These sources originate from the actin network
and attached myosin clusters of the rear edge: forward translocation leads to these
molecules’ effective incorporation into the bundle. Since the density of F-actin near
the rear edge is assumed constant, the total source of F-actin is also taken as constant
along the bundle: nr(x) + nl(x) = const. Similarly, the myosin source is assumed
constant. These sources may change in time, depending on how quickly the rear edge
advances, but we neglect this possible time dependence for the sake of simplicity.
Note that (4.1)–(4.3) assume that the average sizes of both the actin filaments and
the myosin clusters are constant.

Though the total actin source is constant, the polarity of the F-actin in the bundle
can be graded. Indeed, Svitkina et al. [32] observed that at the right (left) edge of the
bundle most filaments were oriented to the right (left), while in the middle the polarity
was equally mixed. The predominantly barbed-end growth near the leading edge
may explain this graded polarity [19]. Because filaments do not change orientation
after they are capped, the concave shape of the lamellipodial front would lead to the
majority of the filaments at the right (left) side of the cell to be oriented to the right
(left). Thus, filament polarization may depend on the leading edge shape; however, for
simplicity we assume that the number of the right- (left-) oriented filaments increases
linearly to the right (left). Hence,

nr = n0
x + L

L
, nl = n0

L− x

L
, −L ≤ x ≤ L,(4.4)

where n0 is the average F-actin source.
Constitutive relations for the actin and myosin velocities stem from the following

model (Figure 3). We assume each multiple motor domain bound in a myosin cluster
attaches transiently and with equal probability to any actin filament within the 1-D
bundle in the vicinity of this cluster, generating a constant average force Fm. We
neglect a possible force-velocity relationship by assuming that all the motors operate
near stall. Furthermore, we assume that myosin density, and not F-actin length, is
the limiting factor in force generation. So the total force density exerted by myosin
at x is Fmm(x). This force is distributed proportionally between right- and left-
oriented filaments. Because myosin motors are barbed-end directed and equal to
Fr = −Fmm(x)r(x)/(r(x) + l(x)) (Fl = Fmm(x)l(x)/(r(x) + l(x))), the force on the
right- (left-) oriented filaments is directed to the left (right) (Figure 3). We can find
the corresponding force per right or left filament, Fr/r and Fl/l, respectively, as well
as the corresponding velocities, assuming there is an effective viscous resistance to
filament movement (Figure 3):

vr =
Fr

ζar
= − Fmm

ζa(r + l)
, vl =

Fl

ζal
=

Fmm

ζa(r + l)
,(4.5)

with ζa representing the effective viscous drag coefficient. Physically, this resistance
stems from breaking transient crosslinked bonds between the bundled filaments and
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network filaments and adhesions. Similarly, the force applied to a myosin cluster is
equal to −(Fr + Fl), and its corresponding velocity is

vm = −Fr + Fl

ζmm
=

Fm

ζm

r − l

r + l
,(4.6)

with ζm representing the effective viscous drag coefficient per myosin. The corre-
sponding absolute value of the total contractile force density is given by the sum:

Fnet = |Fr| + |Fl| + |Fr + Fl| = Fmm

(
1 +

|r − l|
r + l

)
.(4.7)

We substitute (4.4)–(4.6) into (4.1)–(4.3). Taking into account that the submodel
variables have the scales r ∼ l ∼ n0/γb, m ∼ nm/γm, x ∼ L, and t ∼ 1/γb, and
rescaling the equations using these scales, we obtain the following nondimensional
system of equations (−1 ≤ x ≤ 1):

∂r

∂t
= (x + 1) − r + ε1

∂

∂x

(
mr

r + l

)
,(4.8)

∂l

∂t
= (1 − x) − l − ε1

∂

∂x

(
ml

r + l

)
,(4.9)

∂m

∂t
= 1 −m− ε2

∂

∂x

(
r − l

r + l
m

)
.(4.10)

(We keep the same notations for the nondimensional and dimensional variables.)
From the rescaling, we obtain two important nondimensional parameters: ε1 =
(nm/n0) · (Fm/ζa)/(Lγ) and ε2 = (Fm/ζm)/(Lγ). The first parameter has the mean-
ing of the characteristic actin velocity scaled by the product of the bundle size and
disassembly rate. The second parameter similarly has the meaning of characteristic
myosin velocity scaled by the product of the bundle size and disassembly rate. The
observed velocities are on the order of 0.1µm/sec, while the corresponding scales are
on the order of 1µm/sec. As a result ε1 � 1 and ε2 � 1.

In this limit, the steady-state solutions of (4.8)–(4.10) can be found using singular
perturbation theory:

r ≈ x + 1, l ≈ 1 − x, r + l ≈ 2, m ≈ 1, Fnet ∼ 1 + |x|.(4.11)

These approximate analytical solutions do not take into account the respective be-
haviors of the actin and myosin densities and velocities in the boundary layers of
the width ∼ ε1, ε2. Their boundary layer behaviors, which can be found using the
boundary conditions r(1) = l(−1) = 0 and m(0) = 1/(1 + ε2), are the exponential
decrease of the actin densities to zero and almost no change of myosin density (Fig-
ure 4). In the composite model of the whole lamellipodium, we neglect this boundary
layer behavior because there are large, peculiar adhesions at the edges of the bun-
dle [34]. Actin-myosin interactions with these adhesions are unclear; thus, for the sake
of simplicity, we use the approximate solutions (4.11) in the multiscale computations.

The equation Fnet ∼ 1+ |x| is the key result of this section. It implies that the net
force applied to the F-actin network and adhesions at the rear of the lamellipodium
grows linearly with distance from the center (Figures 4 and 5). This effect can be
understood qualitatively as follows. At the center, on average, myosin clusters do not
move because they apply equal and opposite forces to equal numbers of oppositely
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Fig. 4. Stationary distributions of the right- and left-oriented actin filament densities (dotted)
and of myosin density (dashed) predicted by the model of the 1-D actin-myosin bundle. The resulting
magnitude of the force density applied to the actin network at the rear of the lamellipodium is shown
with the solid line.

Fig. 5. The lamellipodial domain and forces are plotted in a late stage of computation, when the
shape and movement of the fragment are steady and stable. The bottom arrows show the contractile
forces generated by the actin-myosin contraction at the rear edge; the top arrows show the elastic
deformation (traction) forces at the leading edge. The traction forces applied to adhesions at the
rear boundary are locally equal in magnitude but directed oppositely to the contractile forces. The
sum of the traction forces applied by the cell to the substratum is equal to zero.
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oriented bundle filaments. As a result, the contractile stress per myosin cluster is
equal to half the number of myosin heads multiplied by the force per head. On the
other hand, at the sides, all myosin heads pull the polarized bundle filaments in a
single direction. Thus, the contractile stress per myosin cluster at the sides is equal
to the total number of myosin heads multiplied by the force per head (Figure 3).

Note that the model predicts the net inward flux of F-actin in the bundle ∼
(vll−vrr) ∼ −x, which increases linearly from the center to the sides. This prediction
can be tested in the future. The model also predicts the slow outward myosin drift.
Such drift is not experimentally observed; therefore, the model may need revisions in
the future.

5. 2-D elastic model of lamellipodial actin network. Following [4], we
treat the lamellipodium as a thin 2-D elastic plate. However, we do not assume the
distributed active contractile stress of [4] but instead localize that stress to the rear
boundary. We model the corresponding linear elastic problem [16] using in-plane stress
and strain as variables. We solve this problem for the two unknown components of
the displacement vector, using a potential energy approach [16]. The potential energy,
Π, of a linear elastic body is given by

Π =
1

2

∫
Ω

Tr(σε) dΩ −
∫

Γ

u · T dΓ, σ = Y · ε.(5.1)

In (5.1), Tr means trace, σ is the stress tensor, ε is the strain tensor with compo-
nents εij = 0.5(∂ui/∂xj + ∂uj/∂xi), and u(x) is the displacement vector. Ω denotes
the lamellipodial domain; Γ denotes the rear boundary. Y is the so-called stiffness
matrix; its elements are computed using values of Young’s modulus and the Poisson
ratio. Young’s modulus determines the order of magnitude of the elastic deformations
in the lamellipodium which develop in response to contractile forces. The traction
forces T are applied to the rear boundary of the domain. We specify the bound-
ary condition of zero displacement on the leading edge. The unique solution of this
problem corresponds to the minimum of the potential energy functional (5.1) [16].

Force balance at the rear boundary. In the model introduced in the previous sec-
tion, we implicitly assume that myosin heads develop sliding forces only by interacting
with bundle filaments. Those heads which interact with network filaments do not gen-
erate active forces but instead act as crosslinks. These crosslinks are similar to the
crosslinks between bundle and network filaments (Figure 3). (Indeed, myosin clusters
do not contract the lamellipodial network away from the rear bundle [32].) The forces
applied to network filaments through these crosslinks pull the network filaments into
the bundle (Figure 3). These forces break the crosslinks and the network filaments,
pulling them into the antiparallel bundle configuration [23].

Note that in the previous section we did not analyze the orientation of the con-
tractile forces. We assume the contractile elements are almost parallel to the rear edge
(Figure 3). Some contractile elements apply all myosin-generated stress to the F-actin
network. These stresses break the network filaments and crosslinks but do not result
in a traction force. We assume other contractile elements are linked transiently to
both the F-actin network and the weak adhesions at the rear edge (Figure 3). These
elements generate an oppositely oriented traction force applied to the substratum. At
the same time, they create a local force which is applied to the actin network on the
average normal to the rear boundary. The magnitude of the force is proportional to
(4.11). Thus, the myosin-generated force at the rear boundary results in an effective
force that pulls the lamellipodial network F-actin backwards into the bundle. This
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force is locally normal to the rear edge (the bottom arrows in Figure 5). Hence the
lamellipodium is elastically deformed, which, in turn, generates the traction force at
the leading edge (the top arrows in Figure 5). The geometric sum of the traction
forces applied to the substratum at the leading edge and at the rear edge (the top
arrows, opposite to the bottom arrows in Figure 5, respectively) is equal to zero.

The following force balance argument underlies the assumptions made about the
rear boundary position. Let us denote by Fn the magnitude of the force per unit
length which is normal to the rear boundary. Fn pulls the network backward. Due to
force balance, an equal and opposite force, denoted here by Fa, is pulling the weak
adhesions forward. Fa is a function of the local rate of advancement of the rear edge, v:
Fa = Fa(v) = Fn. The rate of advancement depends on how fast the actin network is
broken down by the contractile force; thus v is a function of the local network density,
f , and of the magnitude of the force: v = v(f, Fn). Therefore, the two equations
Fa(v) = Fn and v = v(f, Fn) locally determine f and v. In the model we assume
that, in the range of relevant parameters, the adhesion force is almost independent
of the velocity. We also assume that the density, fcr, at which the network breaks is
almost independent of the rate of breaking. (Physically, both of these assumptions
can be justified when a constant number of molecular links (adhesion links in the
first case and actin crosslinks in the second case) are made per unit time, deformed,
and broken before spontaneous dissociation. In this case, the total average force is
velocity independent [22].) Because of these two assumptions, in the model (i) the
local adhesion force is velocity independent; (ii) the density at the rear edge is equal
to fcr; and (iii) the rate of advancement of the rear edge is determined effectively not
by the forces but by the rate of network disassembly. In the future, we will test more
realistic and complex molecular models of the force balance at the rear edge.

6. 2-D convection-reaction-diffusion model of actin transport. One of
the important features of rapid keratocyte migration is the steady and effective recy-
cling of actin [24, 27]. As the F-actin network depolymerizes throughout the lamel-
lipodium, G-actin assembles into F-actin along the leading edge, requiring a rapid,
steady, forward transport of G-actin. Simple diffusion may be largely responsible for
this transport [24], but some directional transport due to convection in the cytoplasm
(possibly observed indirectly in [37]) might also play a role. Mathematically, this
actin transport determines a(x), the value of G-actin concentration, along the front
which then modifies the protrusion rate, ultimately regulating leading edge shape.

In [24] we analyzed a detailed 1-D model of the lamellipodial actin transport. We
omitted the fluid flow, which is essentially a 2-D effect. Here we consider, for the
first time, the 2-D G-actin transport. This analysis is useful, even without modeling
the lamellipodial shape, because relevant experimental data emerges and requires
theoretical interpretation [35, 33].

For simplicity, we omit here some of the reactions considered in [24], namely the
fast ADP-ATP and ADF/cofilin-profilin exchanges on G-actin. We consider the case
when concentrations of thymosin and profilin (see section 2) are significant, resulting
in almost all the G-actin being bound to either thymosin or profilin [24]. The corre-
sponding 2-D densities are denoted by b(x, t) and a(x, t). These densities obey the
following reaction-diffusion-convection equations:

∂b

∂t
= −k1b + k2a + D∆b−∇ · (Vcb),(6.1)

∂a

∂t
= k1b− k2a + γlf + D∆a−∇ · (Vca).(6.2)
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In (6.1) and (6.2), k1 and k2 are the effective rates of the thymosin-profilin exchange
reactions [24], D is the diffusion coefficient, and Vc(x, t) is the velocity of the fluid
phase of cytoplasm in the cell coordinate system. The term γlf(x, t) describes the
source of G-actin from the F-actin; density f(x, t) depolymerizes with constant rate γl.
The F-actin density dynamics are described by the equation

∂f

∂t
= −γlf.(6.3)

The boundary conditions for this model include no flux of G-actin-thymosin at all
boundaries of the lamellipodium, as well as no flux of G-actin-profilin at the rear edge.
At the front edge, G-actin-profilin polymerizes onto F-actin barbed ends requiring the
corresponding boundary condition of G-actin-profilin flux (left-hand side) to be equal
to the rate at which G-actin-profilin assembles onto the filament tips (right-hand side):

([−D(∇a) + Vca] · n)(x) = −V (x)f(x)

δν
.(6.4)

Here n is the unit normal vector to the boundary and ν is a geometric dimension
converting factor [24].

Finally, to find the velocity of the fluid phase of cytoplasm, we solve the equation
for D’Arcy flow [36]

(Vc − Vf ) = −K

φη
∇P, φ ≈ 1 − 0.1f, K ≈ d2φ3

(1 − φ)2
,(6.5)

coupled with the incompressibility condition:

∇ · [Vcφ + Vf (1 − φ)] = 0.(6.6)

Vf is the velocity of F-actin in the moving lamellipodium coordinate system; η is
the water viscosity; K is the F-actin permeability; φ is the porosity; d is the actin
filament diameter; P is the hydrostatic pressure; and the F-actin density f is scaled
so that its value at the front center of the lamellipodium is equal to 1. The boundary
condition represents the cell membrane’s impermeability to water [13]. Equation (6.5)
is valid in the limit of low Reynolds numbers characteristic of intracellular biological
processes [36]; it says that the effective drag between the cytoskeletal network and
fluid is linearly proportional to the corresponding velocity difference. Expression
(φη/K), derived and discussed in [36], is the corresponding effective drag coefficient.
Furthermore, this effective drag is created by and is equal to the pressure gradient.
The F-actin retrograde flow physically generates the pressure defined in (6.5). This
pressure is ultimately powered by myosin action and is computed implicitly from the
incompressibility condition (6.6), as is usual in the hydrodynamics of incompressible
fluid.

7. Simulations of the finite element model of the motile lamellipodial
fragment. The model is characterized by dimensional parameters listed in Table 2.
The values of some of these parameters (such as δ, kon, k1, k2, k

′
1, k

′
2, η, d, and ν) are

well known from the literature. The values of the parameters nm, n0, and ε1,2 do not
affect the model behavior. The F-actin disassembly rate, γl, is estimated in [24] from
the experimental data. The characteristic size of the lamellipodium, L, is known from
multiple observations. The actin and myosin disassembly rates in the rear bundle,
γf and γm, respectively, are unknown. The values assumed are an order of magnitude
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Fig. 6. Diagram illustrating the computational procedure at each simulation step.

higher than the F-actin disassembly rate in the lamellipodium, which is explained by
the mechanical breaking of the cytoskeleton by myosin-generated forces at the rear.
This is reasonable and does not affect model behavior, as long as the actual values
are not more than an order of magnitude higher.

The order of magnitude of the diffusion coefficient, D, is known (see the relevant
discussion in [24]). The force constants F0 and F 0

cr are unknown. We chose the values
listed in Table 2 to be on the order of characteristic values of traction forces [26].
Characteristic actin densities fcr and f0 are also unknown. We chose their values
to be on the order of characteristic F-actin densities described in [24]. Exact values
of parameters D, F0, F

0
cr, fcr, and f0 do not affect the model behavior qualitatively

but do determine the exact shape and rate of movement of the lamellipodium. More
research is necessary to investigate the model dependence on these parameters’ values.

The Young’s modulus in the model is 10 kPa [28]. In order for the model to be
valid, this modulus has to be high enough (higher than 1 kPa) to ensure that the
deformations are small enough for the linear model. Recently, a number of studies re-
ported smaller numbers (0.01–0.1 kPa); however, controversy exists about when these
measurements are valid. The value of the Poisson ratio characterizes the relationship
between local deformations in perpendicular directions. Its exact value does not affect
the results much, as long as it is between 0.1 and 0.45. We take the value to be 0.25.

The complexity of the interactions and the geometry preclude direct mathematical
analysis of the model; therefore, we use a finite element model to investigate the
dynamics described above. A good elementary introduction to the finite element
method can be found in [31]. Here we will present the method using a more heuristic
approach.

In the numerical simulations we implemented the following scheme, illustrated in
Figure 6:

• At each iteration step, we specify the lamellipodial domain for triangulation
by an ordered set of boundary point coordinates along with boundary markers de-
noting the type of the boundary point (belonging to either the leading or rear edge).
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An ordered array of edges of the boundary is provided. The triangulation procedure
is performed using the external Triangle package written by J. R. Shewchuk. This
package is called in a manner which prevents creation of extra boundary points other
than those supplied to the package. We also specify the maximal area of the created
triangles. Typically, there are several hundreds of triangular elements.

• We solve the ordinary differential equation (6.3) for F-actin density on the
triangular mesh.

• We solve the discretized elasticity problem (4.11), (5.1) using the external
LASPack package written by Tomáš Skalický. This package is designed for the solution
of sparse linear systems and adopted for singular systems. We choose the conjugate
gradient squared method with preconditioning because it also works for nonsymmetric
systems. The computed displacement vector solution is substituted into the original
system. The error norm is checked against a prescribed accuracy.

• We solve the D’Arcy flow equations (6.5)–(6.6) using Femlab.
• We solve the reaction-diffusion-convection equations (6.1), (6.2), and (6.4)

using Femlab.
• Using the value of the elastic force induced at the front edge by the contractile

force generated at the rear edge, we determine the positions of the ends of the leading
and rear edges, xr and xl. Namely, the end points of the domain are those at which
the force reaches the critical value Fcr. These points are then points at which the
velocity of front edge protrusion is zero and the F-actin density is equal to fcr. The
lateral sides are assumed to be parts of the front edge. The right lateral side is a single
segment of the front edge connecting points with the same value of x-coordinate; the
y-coordinates are determined from the intersection of the straight line x = xr with
the updated front and rear edges. The right lateral side is first. The same procedure
is followed for the left lateral side which is the last segment of the front edge. The
intersections are found using linear interpolation or extrapolation procedures.

• The position of the rear edge is determined by the curve at which actin
density reaches its critical value f(x) = fcr. The curve is found as an ordered set of
points belonging to the sides of the triangular elements. The procedure begins with
the determination of the triangular element having one side at the front edge on which
the critical density is reached. Then the point at this side with f(x) = fcr is found
using linear interpolation. The linear interpolation is used to find a similar point on
the other side of this triangle. This second point also belongs to an adjacent triangle.
This procedure is repeated until a point belonging to the front edge is found. Thus, an
ordered set of points representing a new rear edge is constructed. The fixed number
N = 24 of rear edge points is distributed equidistantly over the new rear edge; this
makes the shift of the edge done as a shift of each boundary point on the edge.

• The leading edge motion depends on elastic deformation forces as described
above. The elastic forces Fe(x) exerted on a boundary segment ∆l are computed using
the stress tensor σ (which is constant inside each triangular element) and the relation
Fe = −σn∆l, where n is the unit normal vector to the boundary. The local leading
edge protrusion velocity is determined using formulae (3.1)–(3.3). The shift of the
front edge is found as ∆x = V ∆t. After the shift is made, the fixed number N = 51
of front edge points is distributed equidistantly over the new front edge. The F-actin
density in the vicinity of the leading edge is found using (3.4). We create a boundary
of the new domain connecting the front and rear edges. A rectangle bounding the
new domain is found. We compute the instant velocity of cell motion as the ratio of
the bounding rectangle center shift ∆x to the time step: V = ∆x/∆t.

• We choose a length scale equal to the typical size of the lamellipodial frag-
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ment: L = 10µm. We scale the Young’s modulus to the traction force scale using the
formulation which converts the stress tensor components through the strain tensor
in the plane-stress case. Our effective 2-D model was produced by reducing the full
three-dimensional (3-D) model with the assumption of constant lamellipodial thick-
ness (0.2µm). The characteristic value of traction force per unit length is ∼ 1 nN/µm2,
and the scaled value of the Young’s modulus is 10. The traction force applied at the
rear boundary is scaled with respect to 1 nN/µm. The characteristic migration speed
is V = 0.25µm/sec, so we choose a time scale of 40 sec = L/V .

The program is written as a combination of C, Matlab, and Femlab codes. The
simulations are run on a desktop PC. The dynamic behavior of the model can best be
appreciated by viewing the movie that can be downloaded from http://www.math.
ucdavis.edu/∼mogilner/CompKerat1.mpg. The simulations that produced this movie
take about 10 minutes of computational time. The “virtual lamellipodium” was sim-
ulated for 20 time units; this corresponds to 7.5 minutes of real time. The scaling
is chosen so that the cell travels roughly one cell’s body length over each time unit.
Thus the simulations capture cell translocation over significant distance (of the order
of 10 body lengths). Figure 7 shows frames from this movie.

We start the simulations with an initial perfect crescent shape (Figure 7(a)).
The initial area of the lamellipod is a few-fold less than the equilibrium area, so the
leading edge expands rapidly (Figure 7(b)). The rear edge rapidly “catches up” with
the expanding leading edge, and the forces generated at the rear (Figure 5) stop the
expansion of the leading edge (Figure 7(c)). Finally, after 4–5 time units (∼ 3 minutes
of real time) the equilibrium shape evolves (Figure 7(d)), and the fragment moves
steadily and persistently without changing shape (for ∼ 4–5 minutes of real time,
traveling close to 10 cell body lengths).

The computed hydrostatic pressure and velocity of the cytoplasmic fluid phase
are shown in Figure 8. The F-actin moves backward relative to the leading edge; this
movement then “drags” the fluid phase backward, creating the computed pressure
gradient, from the rear to the front. Closer to the center of the lamellipodial domain,
the F-actin drag overcomes the pressure gradient, and the fluid moves backward.
Meanwhile, closer to the sides, the F-actin density is low, and the pressure pushes the
fluid forward. This creates “eddies,” shown in Figure 8. This flow pattern assists in
the recycling of G-actin across the lamellipodium, although the simulations show its
relative importance is low. Further studies are needed to investigate the effect of the
flow at different geometries and diffusion coefficients.

Note that, from both the simulations and the scaling in formula (6.5), the model
predicts the order of magnitude of the hydrostatic pressure is P ∼ LVfηφ

2/d2 ∼
0.1 pN/µm2. This value is orders of magnitude lower than either the characteristic
actin-myosin contractile stress or the effective protrusion force per unit area. Hence it
seems the mechanical role of the hydrostatic pressure in thin lamellipodial protrusions
is negligible.

Figure 9 illustrates the computed distribution of the sum of G-actin-thymosin and
G-actin-profilin densities. Due to G-actin assembly at the leading edge, a gradient of
G-actin develops. The resulting density at the rear is about two times larger than the
density at the front. This gradient leads to the effective diffusive delivery of G-actin
to the leading edge. Note that G-actin density at the front is a little lower than that
at the sides; however, the force stalling protrusion at the sides overcomes the graded
influence of G-actin density on protrusion there.

The model simulates a broad range of features of the lamellipodial motility. Most
importantly, it reproduces the observed, persistent, steady-state movement and its
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(a)

(b)

(c)

(d)

Fig. 7. Four consecutive snapshots (a)–(d) of the computed lamellipodial domains with trian-
gular mesh (left) and F-actin density (right) are shown. x- and y-coordinates are plotted in the lab
coordinate system. (a) t = 0; (b) t = 1.5 time units; (c) t = 4.5 time units; (d) t = 13.5 time units.



432 B. RUBINSTEIN, K. JACOBSON, AND A. MOGILNER

Fig. 8. Computed pressure (nondimensional) and velocity field of the cytoplasmic fluid phase
in the lamellipodial domain.

characteristic crescent shape. We tested the stability of the model to the choice of
the initial shape and found that the model generally produces the same final shape
despite these differing initial shapes. We are unable to reproduce this result from
an initial disc-shaped fragment [34] because of computational difficulties: before the
stability break, the discoid shape of the lamellipodial fragment crucially depends on
the distributed 2-D myosin contraction and F-actin retrograde flow, which we cannot
yet handle numerically. Nevertheless, the model is valid because it can reproduce
locally stable cell movements. Global bistability of the lamellipod underlying the
experiment reported in [34] is more challenging to simulate. Modeling this experiment
is one of our future priorities. The F-actin density distribution also agrees with
observations [32]. The G-actin distribution and fluid cytoplasmic velocities are model
predictions that can be tested in the future.

8. Simulations of the turning lamellipodial fragment response to local
perturbations of actin transport. The model allows us to not only simulate the
steady, stable lamellipodial locomotion but also some transient complex cell move-
ments. For example, when caged thymosin was photoreleased at the left side of a
keratocyte lamellipodium, the cell’s left edge stopped and the cell “pivoted” around
its left side, making a half-turn [29]. The authors of [29] suggest that this behavior
could be explained if (i) the local concentration of the polymerization-able G-actin
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Fig. 9. Computed G-actin distribution in the lamellipodial domain.

was arrested by the released thymosin and (ii) low local G-actin concentration in-
hibits both protrusion of the leading edge and contraction of the rear edge but not
the adhesion. The idea is that the center and right side of the leading edge would
continue to advance. Since the cell cannot diverge from its left side, it pivots. We
test this hypothesis using the model.

In order to do this testing, we first have to change the actin turnover submodel
as follows. In section 6, we implicitly assumed that both concentrations of profilin
and thymosin are higher than the G-actin concentration. In this situation, release of
more thymosin would have only a minor effect on G-actin dynamics. In this section,
for simplicity and clarity, we assume that the profilin concentration is negligible and
the thymosin concentration is less than that of G-actin. In this case we denote the
densities of G-actin-thymosin, G-actin, and thymosin by b, a, and β, respectively.
They are governed by the following equations:

∂b

∂t
= −k′1b + k′2aβ + D∆b−∇ · (Vcb),(8.1)

∂a

∂t
= k′1b− k′2aβ + D∆a−∇ · (Vca),(8.2)

∂β

∂t
= k′1b− k′2aβ + D′∆β −∇ · (Vcβ).(8.3)
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The diffusion and convection terms in (8.1)–(8.3) have the same meaning as the cor-
responding terms in section 6; k′1 is the rate of dissociation of thymosin from G-actin;
k′2 is the rate of association of thymosin and G-actin. For a moment, we neglect
sources and sinks of G-actin and consider the no flux boundary conditions for all
variables on all boundaries. In this case the following conservation laws are valid:∫

Ω

(a(x) + b(x)) dx = a0

∫
Ω

dx = const,

∫
Ω

(a(x) + β(x)) dx = β0

∫
Ω

dx = const,

where a0 > β0 are the conserved total densities of actin monomers and thymosin
molecules.

In the relevant range of model parameters [24], k1 � k′2(a0 −β0), thymosin binds
tightly to G-actin. As a result the concentration of free thymosin molecules is very
small. In this limiting case, the characteristic concentration scales are as follows:

b ∼ β0, a ∼ (a0 − β0), β ∼ (k1b0)/(k
′
2(a0 − β0)), β � a, b.

We use these scales, along with 1/k′1 as a time scale and L as the spatial scale, to
nondimensionalize, obtaining the following system of equations:

∂b

∂t
= −b + aβ + λ1∆b−∇ · (Vcb),(8.4)

∂a

∂t
= λ2(b− aβ) + λ1∆a−∇ · (Vca),(8.5)

∂β

∂t
=

1

ε
(b− aβ) +

D′

D
λ1∆β −∇ · (Vcβ).(8.6)

The nondimensional parameters are

λ1 =
D

L2k′1
∼ 0.1, λ2 =

β0

(a0 − β0)
∼ 1,

ε =
k′1

k′2(a0 − β0)
∼ 0.01,

D′

D
∼ 10, vc =

Vc

Lk′1
∼ 0.01.

(We keep the same notations for the nondimensional and dimensional variables.) In
this limit, the concentration of free thymosin equilibrates rapidly with local G-actin
and G-actin-thymosin and β ≈ b/a. The equations for the concentrations of G-actin
and G-actin-thymosin then uncouple and become very simple:

∂b

∂t
≈ D∆b−∇ · (Vcb),

∂a

∂t
≈ D∆a−∇ · (Vca).(8.7)

In the simulations we solve only the second of the pair of (8.7) for the free G-actin
density instead of simulating the submodel of section 6. We use the boundary condi-
tion given in section 6 for this density and add the source of G-actin from disassembling
F-actin. We also modify the magnitude of the traction actin-myosin force (4.11) at
the rear boundary according to the following formula:

F̃net(x) = Fnet(x) · a(x)

aaver
, aaver =

∫
Ω

a(x) dx.(8.8)

The underlying rationale is the possibility that, at very low G-actin concentration,
enhanced depolymerization of the actin bundle depletes the bundle to the point where
a low number of actin filaments could become the force limiting factor.
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The results of the simulations of this modified model can best be appreciated
by viewing the movie that can be downloaded from http://www.math.ucdavis.edu/
∼mogilner/turn.mpg. The simulations that produced the movie take around 10 min-
utes of computational time. The “virtual lamellipodium” was simulated for 10 time
units (corresponding to approximately 4 minutes of real time) over which the “virtual
lamellipodium” turns at a roughly right angle. Note that in the experiment [29] the
corresponding turn took a similar amount of time. Figure 10 shows frames from this
movie.

Initially, thymosin is released, and the free G-actin concentration drops at the
left (Figure 10(a)). The leading edge protrusion and contraction at the left are sig-
nificantly inhibited. Because both protrusion and retraction at the right are changed
little, the cell starts to “pivot” (Figure 10(b)–(c)). Diffusion and convection redis-
tribute the free G-actin, while the cell makes a quarter-turn (Figure 10(b)–(c)). The
simulation results agree qualitatively with the observations [29].

9. Discussion. The general principles of cell crawling have been established for
some time [1]; however, many details remain elusive. Broadly speaking, two questions
that need to be resolved are the following: (1) What is the physical nature and
the molecular basis of protrusion, retraction, and adhesion? (2) How are these three
processes coordinated to achieve the observed shapes and movements of crawling cells?
These questions have been subjects of biophysical studies and mathematical modeling
for some time, but there have been only a few attempts to connect the molecular and
cellular levels of description to the whole crawling cell [8, 4].

Here we have developed a 2-D multiscale model of the actin-myosin system that
generates movement in simple crawling cells. Flatness of the keratocyte’s lamel-
lipodium makes this 2-D modeling adequate and relieves us from the very challenging
task of simulating 3-D cells. We propose that protrusion is made possible by actin
polymerization and growth of uncapped barbed ends at the leading edge. The ef-
fective protrusion rate is graded by the strength of adhesion along the leading edge;
this strength is, in turn, graded by the contractile forces transmitted from the rear
via the elasticity of the lamellipodial actin network. These forces are generated at
the rear by actin-myosin sliding. Depolymerization of the lamellipodial actin network
weakens the lamellipodium and provides the source of G-actin. As a result, myosin
collapses the actin network into the actin bundle and generates the contractile forces
which slide the actin filaments from the sides to the center of the bundle. G-actin is
transported to the front of the lamellipodium by diffusion and convection. The model
accounts for the steady fan-like shape of the lamellipodium, as well as its persistent
“gliding.”

The model we present here identifies the minimal processes that underlie self-
organization of the lamellipodium and provides a dynamic mechanism for the kine-
matic GRE model. The main contribution of our multiscale model is that it demon-
strates for the first time that protrusion and adhesion localized to the front and regu-
lated mechanically by the myosin generated forces localized to the rear and chemically
by actin turnover and transport are sufficient to explain the fan-like lamellipodial
shape. Furthermore, quantitative estimates show that the observed concentrations,
reaction rates, and forces can explain the lamellipodial shape and movement not just
qualitatively but also quantitatively.

Predictive capacity of the model of the whole lamellipodium is limited. The prob-
lem is that a few crucial assumptions of the model are plausible but not proven. Such
assumptions include (i) adhesion, rather than membrane resistance, as the limiting
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(a)

(b)

(c)

Fig. 10. Three consecutive snapshots (a)–(c) of the computed turning lamellipodial domain
with free G-actin density are shown. x- and y-coordinates are plotted in the lab coordinate system.
(a) t = 0; (b) t = 5 time units; (c) t = 10 time units.
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factor for protrusion; (ii) concentrations of myosin, nucleation (Arp2/3), and adhe-
sion molecules as the factors limiting lamellipodial area; and (iii) contractile forces
at the rear as governors of the adhesion at the front. Detailed biophysical research
needs to verify these assumptions or suggest alternates. Other model limitations
stem from simplifications chosen to avoid challenging mathematical and computa-
tional complexities at this early stage of modeling cell movements. For example, we
have (i) considered the lamellipodial network as an elastic (rather than viscoelastic)
plate, (ii) neglected the retrograde flow of the actin network, and (iii) concentrated
actin-myosin sliding at the very rear of the lamellipodium.

The value of the model, besides its theoretical reproduction of lamellipodial motil-
ity, is in the examination of a minimal set of assumptions that are sufficient for a
quantitative description of cell crawling. In subsequent publications, we will system-
atically change the model assumptions in order to examine impacts of alternative
sets of assumptions on the shape and movement of the “virtual lamellipodium.” For
example, the number of uncapped barbed ends might be a limiting factor for pro-
trusion [12]. We are presently performing numerical experiments on how including
barbed ends in the model affects lamellipodial shape. We will also gradually improve
the modeling technique to allow simulations of more realistic models. Finally, we will
continue to coordinate our modeling efforts with experimental studies. In particular,
transient lamellipodial shapes, similar to those illustrated in Figures 7 and 10, will be
compared to data. These future developments of our model will make it predictive
and provide a conceptual framework for evaluating many aspects of cell locomotion
quantitatively.

Our general modeling approach is applicable to a number of other crawling cells
such as fibroblasts, nerve growth cones which are more important for biomedical
applications than keratocytes. All of these cells use an actin-myosin lamellipodial
protrusion-contraction-adhesion cycle for motility. Therefore, the computational dia-
gram in Figure 6 is applicable. However, the specifics of the computational steps can
differ significantly depending on cell type. For example, significant stress fiber con-
tractility, as well as complex adhesion dynamics, would need to be modeled to capture
the fibroblasts’ irregular movements. Filopodial protrusion is essential in describing
nerve growth cone advancement. As far as there is sufficient data to make realistic
model assumptions, theoretical studies of more cell types are possible. Some other
cells, such as neutrophils [13], move differently and thus require different approaches.
It is also necessary to include the cell body in the model. At present, the nature of
the interactions between the lamellipodium and the cell body remains elusive. If, as
some observations indicate [34], the cell body is but a passive cargo, then the corre-
sponding modeling is easy, straightforward, and similar to that in [4]. However, if the
forces [2] and actin exchange [33] between the cell body and the lamellipodium are
active and nontrivial, the model would need to be changed significantly, though the
general modeling formalism of this paper would still be applicable.
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