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Abstract

It is shown that when certain conditions are met, the random dynamics of radiation in
a ring cavity containing a nonlinear element can be described by means of a 2-D represen-
tation with a rapidly oscillating exponential. Such a representation generates strong mixing
in the attracting region of the phase space and is equivalent to a certain random represen-
tation when the exciting signal contains a small noise component. Methods of finding the
transient and stationary distribution densities in the attracting region are discussed, as is
the maximum Lyapunov index characterizing the mixing rate.

References 1-3 have shown the fundamental possibility of formation of periodic and random
self-oscillations of optical radiation in a ring cavity (RC) containing a nonlinear medium; sub-
sequently, such oscillations have been observed experimentally [4]-[6]. Of interest are a further
study and classification of the types of random oscillations (chaos), transformations of chaos, as
well as scenarios of the genesis of chaos in RC and other nonlinear optical systems. This article
is devoted to a study of developed chaos with strong mixing, which in a certain sense is the
simplest type of chaos in RC and permits an analytical description based on the random-phase
approximation.

Let us assume that a RC is excited by a partially coherent light wave through a beam splitter;
after passage through the nonlinear element, part of the light leaves the RC through another
beam splitter; no excitation of the counterpropagating wave takes place. Let us also assume that
the nonlinear element is a cell with a two-level medium (TM) in which s-quantum transitions
are excited (s > 1); the corresponding dynamic equations for a slowly changing amplitude E of
the wave electric field, polarization P of the medium, and density n of population differences
are:

E′ + c−1Ė = iβsgsP
∗(E∗)s−1, (1)

Ṗ +
P

T2
− i(ω0 − sω)P = igs(E∗)sn, (2)

ṅ +
1 + n

T1
= i(g∗sE

sP − c.c.)/2, (3)

where T1 is the RC population relaxation time; T2 is the RC phase mismatch time; ω0 is
the RC resonance frequency; ω is the frequency of the exciting field; the constants gs and
βs are expressed in terms of the ordinary or composite (when s > 1) matrix elements of the
transitions; the prime and dot above the letter, respectively, denote derivatives with respect to
the coordinate z and time t. Let ∆ = T2(ω0−sω) À 1, so that the RC loss is low in comparison
to the loss due to emission through the mirrors. We will also assume that Tc À τk À T1, T2,
where Tc is the round-trip time, and τk is the correlation time of the noise component of the
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exciting signal (NCE), which is a steady process. By virtue of the assumptions made and
allowing for the boundary condition for the RC, we obtain [7, 8]

E(t) =
√

1− κ Ee(1 + ξ(t)) + κE(t− Tc) exp[−iχs(t) + iθ], (4)

where χs(t) is the phase change due to the nonlinear interaction of the light with the nonlinear
medium; Ee and E(t) are, respectively, the amplitudes of the coherent component of the exciting
wave and of the wave at the entrance to the nonlinear medium (Im Ee = 0); ξ(t) is the relative
amplitude of the NCE; κ is the RC loss factor (κ < 1). Let us note that when ξ = 0, then using
the inequality |E(t)| ≤ √

1− κ Ee +κ|E(t−Tc)|, which follows from Eq. (4), one can show that
the sequence |E(t0 +NTc)|, N = 1, 2, . . ., is dominanted by a converging geometric progression,
whence |E(t)| ≤ Ee

√
1− κ. This article is confined to the discussion of a special case that

makes it possible to represent the dependence of the phase change on the field amplitude in the
explicit and simplest form

χ(t) = KsBs∆|E(t− Tc)|2s−2(1 + BsT1|E(t− Tc)|2s)−1 (5)

Here and below Ks +βsl0, Bs = |gs|2T2(1+∆2)−1, and l0 is the length of the nonlinear element.
Equation (5) holds for all s ≥ 1 if the adiabaticity condition Tc À T1, T2 applies, and when s > 1,
in addition, the condition KsBsE

2s−2
e (1− κ)−s ¿ 1 holds (for more detail, see [7]). In order to

simplify the analysis, we also make the usual assumption that the deviation of the population
differences from the equilibrium value is small, this being valid when BsT1E

2s
e (1 − κ)−s ¿ 1,

and we keep in Eq. (5) only the field-amplitude dependent term of the lowest order in the
corresponding small parameter. Considering all of the above, we can describe the emission
dynamics in the RC by means of the 2-D representation

ZN+1 = ξN+1 + F (ZN ) ≡ ξN+1 + 1 + κZN exp(iλ|ZN |2k + iΩ) (6)

where

ZN = E(t0 + NTc)/
√

1− κEe, ξN = ξ(t0 + NTc, ),
λ = −K1B

2
1T1∆(1− κ)E2

e , Ω = θ + K1B1∆, k = 1 for s = 1;
λ = KsB

2
s∆(1− κ)s−1E2s−2

e , Ω = θ, k = s− 1 for s > 1.

We set 〈ξr〉 = 0, 〈ξrξ
∗
l 〉 = Rδrl, which is consistent with the condition imposed previously

on the correlation time (angle brackets denote statistical averaging); here R = In/E2
c , and In

is the intensity of the NCE. Chaos with strong mixing, which will be of interest to us below,
arises when |λ| À 1.

Figure 1 shows fragments of typical phase-plane diagrams of the emission dynamics in an
RC, obtained by numerical iteration of the representation (6) when k = 1, ξN = 0 (let us note
the presence of uncontrollable random perturbations caused by round-off errors). The upper
(lower) sector is the image of 1/8 part of the distribution of the phase points in the attracting
region of the Z plane (for convenience, in Fig. 1, the origin was shifted to the center of this
region, located at the point Z = 1); the attracting region is in the shape of a ring (circle)
when κ = 0.2, λ = 400 (when κ = 0.8, λ = 100). The results obtained clearly indicate the
onset of dynamic stochastization in the RC. Assuming that τk ¿ Tc, and hence, the exciting
wave and the wave which has completed a round trip of the RC are statistically independent,
we describe the evolution of the random amplitude of the radiation field by means of the
Kolmogorov-Chapman equation [9]:

PN+1(X) =
∫ ∫

dY dZPn(X − Y )W (Y, Z)PN (Z), (7)

2



Figure 1: Fragments of distributions of phase points in the Z plane, obtained by numerical
iteration of the representation (6).

where PN (X) is the density of the field amplitude distribution at time t0 + NTc; Pn(X) is the
distribution density of each of the independent random variables ξr, r = 1, 2, 3, . . . ; W (Y, Z) =
δ(2)(Y − F (Z)), where δ(2)(X) ≡ δ(ReX)δ(ImX) is the 2-D δ-function. Assuming

PN (X) =
∫

dUΨN (U) exp[iRe(XU∗)], (8)

we turn to the equation for Fourier transforms

ΨN+1(U) =
∫

dV Λ(U)M(U, V )ΨN (V ), (9)

where
M(U, V ) = (2π)−2

∫
dY exp[iRe(Y V ∗)− iRe(F (Y )U∗)], (10)

and Λ(U) is the characteristic function of the NCE; in the case of Gaussian noise Λg(U) =
exp(−R|U |2/4). Using Eq. (6), we find

M(ueiα, veiβ) =
1
4π

e−iu cos α
∫ ∞

0
dbJ0

(√
b(v2 + κ2u2 − 2κuv cos(λbk + Ω− α + β)

)
. (11)

With the aid of Graf’s addition theorem and the representation of the δ-function resulting from
the inversion theorem for the Hankel transformation [10], we represent Eq. (11) in the form

M(ueiα, veiβ) = M̃(ueiα, veiβ) + (4π)−1
∑

ν 6=0

Φν(u, v) exp[iν(Ω− α + β)− iu cosα], (12)

where
M̃(ueiα, veiβ) =

1
2πv

exp(−iu cosα)δ(v − κu); (13)
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the functions Φν are defined in the Appendix. Restricting the discussion to a nonrigorous
treatment, let us consider the relationship between the intensity of the NCE and the form of
the kernel of Eq. (12). According to the asymptotic estimates obtained in the Appendix, when
the condition κuv|λ|−1/k ¿ 1 applies, the integrals Φν are small. It follows that if |λ| À 1, the
terms containing Φν , play an essential role only at large u and v, contributing to the small-
scale structure of the kernel W and distributions PN . In a case of nonzero NCE intensity with
|Λ(ueiα)| ¿ 1 at large u, the r.h.s. of Eq. (9) includes the product of the function Λ and the
kernel of Eq. (12), so that one can easily see that for a specific combination of Λ and |λ|, the
contribution of the terms containing Φν , may appear to be negligibly small. This corresponds
to roughening of the density functions, i.e., to loss of information on the small-scale structure
(more rigorous analysis requiring a refinement of the asymptotic behavior of Λ(ueiα) as u →∞
is omitted in this treatment, which is confined to the assumption of a fairly rapid decrease).
For Gaussian noise, the radius of a circle with the center u = 0 in which the function (9) differs
appreciably from zero can be estimated at 2/

√
R of the halfwidth of the Gaussian Λg at the

e−1 level. Accordingly, the condition of applicability of the approximation M → M̃ will assume
the form R À κ|λ|−1/k, or

InK1B
2
1T1∆(1− κ) À 1 for s = 1;

In(KsBs∆)1/(1−s)κ−1(1− κ) À 1 for s > 1.

The following cases will be distinguished: (a) the intensity of the NCE is low; it is sufficient
for roughening of the distributions, but the specific statistical properties of the NCE do not
affect the statistical characteristics of the emission in the RC; the latter are determined solely by
the characteristics of the random dynamics perturbed by the noise; (b) the noise component of
the emission in the RC results from the superposition of the NCE and of the noise generated by
the chaos. In case (a) considered in this paper, the rough description is accomplished by means
of the substitution ΛM → M̃ in Eq. (9). Being applied to Eq. (7), the equivalent procedure
consists in making the substitutions Pn(X − Y ) → δ(2)(X − Y ) and W → W̃ , where

W̃ (Y, Z) = 〈δ(2)(Y − 1− κZeiη)〉 = (2π|Y − 1|)−1δ(|Y − 1| − κ|Z|) (14)

and leads to the equation

PN+1(X) =
1

2πκ2

∫
dφ PN

( |X − 1|
κ

eiφ
)

. (15)

Let us note that the substitution W → W̃ in Eq. (7) is equivalent to the substitution
λ|ZN |2k → η in Eq. (6), where η is a random phase uniformly distributed from 0 to 2π [the
angle brackets in Eq. (4) denote averaging over this distribution]. The indicated substitution
converts a deterministic representation to a random one and leads to loss of time reversibility.
Since the r.h.s. of Eq. (15) depends on the only variable |X − 1|, it is useful to make the
substitution

PN (X) =
1

πκ2
fN

(
|X − 1|2

κ2

)
, (16)

Then Eq. (15) becomes

fN+1(X) =
1

πκ2

∫ H+

H−

fN (H)dH√−(H −H−)(H −H+)
, (17)

where H± = (1 ±√G)2/κ2. Using Fig. 2, we will elucidate the characteristics of the iteration
process determined by the integral transformation (17). For a fixed G, the integration interval
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Figure 2: Integration interval in Eq. (17) is a segment of the the horizontal line located in shaded
region (in the search for transition distributions) or in the dark-shaded region (in the search for
a stationary distribution). Top shows enlarged image of rectangle bounded by shading lines.

will coincide with the portion of the horizontal line inside the shaded region, whose boundaries
are G±(H) = (1 ± κ

√
H)2 (Fig. 2 corresponds to κ = 0.35). It can readily be seen that if

fN (H) ≡ 0 for H > hN , then fN+1(H) ≡ 0 for H > hN+1, where hN+1 = G+(hN ). The
iteration sequence h1, h2, . . . , hN , . . . converges to the solution of the equation H = G+(H),
equal to H1 = (1−κ)−2, since the following conditions are satisfied: the function G+ increases;
G+(H) < H for H > H1; G+(H) > H for H < H1.Furthermore, if fN (H) ≡ 0 outside the
segment [0,H1], then fN+1(H) ≡ 0 outside the segment [H2, H1], where H2 = G−(H1) =
(1 − 2κ)2/(1 − κ)2. Thus the functional iteration sequence f1, f2, . . . , fN , . . . starting from a
finite function f1, consists of finite functions; in the limit N → ∞, the segment [H2,H1] is
the carrier. All of the above arguments remain in force for κ < 0.5; in the case 0.5 ≤ κ < 1,
the graph of the function G is tangent to the abscissa axis to the left of point H1, so that the
limiting carrier is a segment [0,H1]. The corresponding distributions in Z plane are described
by Eq. (16) and have as carriers the ring at κ < 0.5 and the circle at 0.5 ≤ κ < 1 (see Fig. 1).
It is important that not only the sequence of the carriers, but also that of the distribution
densities converges to a limit. To prove this, it suffices to consider the Fourier transform of the
stationary (invariant) distribution

Ψs(ueiα) =
1
2π

exp (−u cosα)
∞∏

γ=1

J0(uκγ), (18)

which is a solution of the equation obtained from Eq. (9) after the substitutions ΛM →
M̃ ; ΨN+1, ΨN → Ψs; the convergence of the infinite product in the r.h.s. of Eq. (18) fol-
lows from the convergence of the series |Ψs|; the stationary solution is stable.

Figure 3 shows the results, obtained in different ways, of a numerical calculation of the
limiting stationary distribution, fs(H) for κ = 0.2. The points represent the dependence
calculated by means of Eq. (17); the initial distribution was chosen uniform on the segment
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Figure 3: 1-D stationary distribution for κ = 0.2, calculated in different ways.

[H2,H1] and equal to zero outside this segment; the integration intervals were segments of
horizontal lines located in the dark shaded region in Fig. 2. The dependence shown by circles
was found by iteration of the representation (6) (without noise, λ = 104, k = 1) and subsequent
numerical smoothing of the small-scale structure. Crosses represent the results of the solution
of the integral equation for fs obtained from (17) after the substitution fN+1, fN → fs, by
expansion in a Fourier series; the first 50 terms of the series were kept.

From a physical standpoint, a transformation of the statistical properties of the radiation
and noise generation take place in the RC. For example, the distribution shown in Fig. 3 is
associated with the superposition of a coherent wave of intensity 0.8E2

e and a noise wave; the
latter has a phase uniformly distributed between 0 and 2π, and an intensity distributed over the
interval (0.018 − 0.05)E2

e ; the distribution has maxima at 0.022E2
e and 0.042E2

e (the intensity
of the exciting wave is assumed to be equal to E2

e ). When λ = 104, k = 1, the approximate
statistical description resulting in the distribution in question applies if In ∼ 10−4E2

e .
We will distinguish, in particular, the case κ ¿ 1. Retaining in the r.h.s. of Eq. (17) under

the root sign only quantities containing κ to the lowest order, we can find the approximate
expression

fs(H) =

{
1
π [−(H − 1− 2κ)(H − 1 + 2κ)]−1/2, if |H − 1| < 2κ;
0, if |H − 1| ≥ 2κ

(19)

As the universal quantitative measure of randomness of the motion, it is usually used the rate
of divergence of the initially close trajectories averaged along a trajectory, i.e., the maximum
Lyapunov index (MLI); a detailed discussion of the behavior of the MLI and of its relationship
to the dimensional characteristics of an attracting set (attractor) is given in [11]. For a system

6



described by the representation ZN+1 = F (ZN ), the MLI can be calculated from the equation

L = lim
N→∞

ln sup |σ([MNMN−1 . . . M1]1/N )|, (20)

where Mp is the Jacobi representation matrix, calculated at the point Zp; the symbol σ(A)
denotes the spectrum of the matrix A. The MLI can usually be found only from the results
of numerical modeling. We will show that for the MLI characterizing the iteration dynamics
of the representation (6) for |λ| À 1, there exists a simple approximate formula. The Jacobi
representation matrix for (6) without noise is

Mp = κ

(
cos γp − sin γp

sin γp cos γp

)
+ 2κλk|Zp|2k

(
− sin(φp + γp)
cos(φp + γp)

)
× ( cosφp sinφp ), (21)

where γp = λ|Zp|2k + Ω and φp = arg Zp, [the second term in Eq. (21) is given by the direct
product of 2-D vectors]. Substituting the matrices (21) into the matrix product entering into
Eq. (20), and keeping only the term containing λ to the highest power, we obtain

L = ln(2κλk) + lim
N→∞

1
N

[k
N∑

p=1

ln |Zp|2 +
N−1∑

p=1

ln | sin(φp+1 − φp − γp)|+ C], (22)

where C denotes quantities independent of N and vanishing after taking the limit. Noticing
that

sin(φp+1 − φp − γp) = |Zp|−1 sin arg(Zp − 1)

and replacing the averaging over discrete time by averaging with the density of stationary
distribution, we finally find

L = ln(κλk) + (2k − 1)Θ(κ− 1/2)
∫ (1−κ)−2

κ−2
dHfs(H) ln(κ

√
H), (23)

where Θ(x) = 0 when x ≤ 0; Θ(x) = 1 when x > 0. We should point out that fs (and hence, the
integral in the second term) is independent of k and λ; the second term disappears if κ < 0.5.
When k = 1 the dependence of L on λ and κ is satisfactorily described by

L = ln(κλ) + Θ(κ− 1/2)[(κ− 1/2)6.60− 1.18](κ− 1/2), (24)

In Fig. 4, the dependence of L on κ, shown by dots, was drawn using the results of numerical
iteration of the representation (6) for k = 1, λ = 104. The circles represent the dependence
obtained from Eq. (23) by using fs found numerically. In this figure, the continuous and
dashed lines represent plots of the functions lnκλ and Eq. (24), respectively. Let us note in
the conclusion that we discussed the 1-D variant of the theory based on an approximate 1-D
evolutionary representation, obtained from Eq. (6) by the substitution ZN → |ZN | (for details
see [7]).

APPENDIX

Using the standard stationary phase method [12], one can obtain asymptotic estimates for the
integrals entering into Eq. (12)

Φν(u, v) =
∫ ∞

0
Jν(v

√
S)Jν(κu

√
S)eiνλSk

dS ∝
1

kν!2
(νλ)−

ν+1
k

(
κuv

4

)ν

Γ
(

ν + 1
k

)
ei

π(ν+1)
2k (A1)
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Figure 4: Maximum Lyapunov index vs cavity loss factor.

when |λ| → ∞ (u and v being fixed). For this purpose, in accordance with the localization
principle, it is necessary to multiply the integrand by unity, represented as a sum of two infinitely
differentiable functions: Q1(S) + Q2(S) ≡ 1;Q1(S) ≡ 0 for S ≤ δ1, Q1(S) ≡ 1 for S > δ2,
where 0 < δ1 < δ2. As a result, Φν is transformed into a sum of two integrals. Considering
the asymptotic properties of Bessel functions, one can show that the integral containing the
function Q1(S) when |λ| → ∞ has the order O(|λ|−∞). The asymptotic expansion for the other
integral can be obtained by means of Erdèlyi’s lemma; the leading term of this expansion is
represented in the expression (A1). Note that when k = 1

Φν(u, v) =
1
νλ

iν+1Jν

(
κuv

2λν

)
exp

(
−i

v2 + κ2u2

4νλ

)
, (A2)

whence also follows the asymptotic estimate (A1).
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