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Abstract

A statistical theory for the evolution of radiation in a cavity excited by a partially
coherent signal is constructed based on a simple theoretical model for a ring cavity with a
nonlinear element, leading to a difference equation with a rapidly oscillating exponential. It
is shown that mixing, being the cause of the onset of deterministic autostochastic movement
(chaos) for strictly coherent excitation, leads to conversion of the statistical characteristics of
the signal in the presence of fluctuations: in particular, noise intensity rises due to lowering
of the intensity of the coherent component (the system behaves a noise generator). An
approximate method for calculation of statistical parameters of the generated noise signal
is proposed .

The evolution of optical field in a ring cavity (RC) with a nonlinear medium can be described
(in the plane-wave approximation) by a differential equation with retarded argument; it can be
reduced to a difference equation (the Ikeda model) [1]-[6], if certain additional conditions are
satisfied. It is now well known that this type of equations can have solutions, corresponding to
complex motion with unstable trajectories, including periodic self-oscillations, chaotic motion
with trajectory, tending asymptotically to a singular attractor and others. Certain types of
regular and chaotic self-oscillations were observed in similar systems in numerical simulations
[1]-[8] and experimentally [9]-[11].

We must note that the problem of the fluctuations influence is essential for analysis of
the nonlinear systems dynamics (in particular, in chaotic and near-chaotic regimes); the very
possibility of observing one or the other type of dynamics is determined by its stability with
respect to small random perturbations. In particular, fluctuations can rough a fine structure of
a chaotic attractor and limit the number of observable period-doubling bifurcations [12]. It is
also important that such systems may amplify noisy signal and transform its statistical char-
acteristics in a nontrivial manner; the latter allows us to build a noise generator, synthesizing
noise signal with nonstationary properties.

This paper is devoted to the study of transformation of fluctuations in a RC with a nonlinear
element. We consider a simple RC model, described by a difference evolution equation:

E(t) = 1 + ξ(t) + κE(t− Tr) exp(iλ|E(t− Tr)|2k + iθ0), (1)

(we omit the procedure of deriving Eq. (1) from physical equations, since it is presented rather
completely in [1]-[6] in different versions, and has also been reproduced in [7] and [8]). The
variables in Eq. (1) have the meaning of slowly varying electric field amplitudes of the light wave;
E(t) is the amplitude at the entrance to the nonlinear medium, ξ(t) is the noisy component of
the exciting signal (NCE) (the amplitude of the coherent component of this signal is constant

1



and normalized to unity). Tr is round-trip time of the RC , κ is the intensity loss factor per
pass in the RC (κ < 1). If the RC contains a two-level medium, k = 1 for one- and two-photon
transitions; k = s− 1 for s-photon transitions [6]. We limit our treatment of Eq. (1) for λ À 1,
as was shown in [6], dynamics with strong mixing sensitive to noise arises under this condition.
The case λ À 1 is interesting first of all for its relative simplicity from the computation point of
view; we can find the statistical characteristics of the noisy radiation component (with certain
additional assumptions about the NCE statistics) analytically. It is convenient instead of Eq. (1)
it is convenient to consider evolution mapping

ZN+1 = ξ(t) + F (ZN ) ≡ 1 + ξ(t) + κZN exp(iλ|ZN |2k + iθ0), (2)

which is derived from (1) by substituting ZN = E(t0+NTr), ξN = ξ[t0+(N +1)Tr]; it describes
evolution in a discrete time scale. Let us first consider the case Tr = τc À τ∗, where τc is the
correlation time of NCE (being a stationary random process) and τ∗ is the characteristic time
for transitional processes in the nonlinear element (τ∗ ∼ T1, T2 for the RC with a two-level
medium). In view of the assumption made, the exciting wave and the wave travelling around
the RC are statistically independent; evolution of the random amplitude can be described using
the Kolmogorov-Chapman equation

PN+1(X) =
∫ ∫

dY dZPn(X − Y )W (Y, Z)PN (Z), (3)

where PN (X) is the amplitude distribution density at the time t0 + NTr; Pn(X) is the dis-
tribution density of each of the independent random quantities ξr, r = 1, 2, 3, . . . ; W (Y,Z) =
δ(2)(Y − F (Z)); and δ(2)(X) = δ(ReX)δ(ImX) is a complex delta-function. Assuming λ À 1,
we use the random phases approximation

W (Y,Z) → W̃ (Y,Z) = 〈δ(2)(Y − 1− κZeiη)〉phase = (2π|Y − 1|)−1δ(|Y − 1| − κ|Z|) (4)

Henceforth 〈. . .〉phase denotes averaging over the random phase angle (over several angles)
with uniform distribution density in [0, 2π] [over angle θ in Eq. (4)].

The possibility of using the approximation (4) was discovered in [6]; omitting a detailed
account, we will repeat here some qualitative reasons. Considering the Fourier transform of
Eq. (3), we can show that application of approximation (4) leads to negligence by terms re-
sponsible for forming the small-scale structure of the kerne1 W and distributions PN . This
procedure can be justified in the presence of a noisy component in the exciting radiation; in
the large λ case, even low intensity noise can lead to roughening of the distribution and loss of
information about the small-scale structure. As it was noted in [6], we should distinguish the
cases: (a) NCE intensity is low; it is sufficient for roughening of the distribution and generated
noisy radiation in the RC, but the statistics of the latter is independent of the statistical prop-
erties of the NCE; (b) NCE intensity is comparatively high, so that the statistics of the noise
component of radiation in the RC is determined by the NCE statistics. Case (a) was analyzed
in [6]; here we consider case (b) by assuming Gaussian statistics of NCE.

The equation for the Fourier transform, equivalent to Eq. (3) has the form

ψN+1(U) =
∫

dV Λ(U)M(U, V )ψN (V ), (5)

where
ψN (V ) = (2π)−2

∫
dXPN (X) exp[−iRe(XU∗)], (6)
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M(U, V ) = (2π)−2
∫

dY exp[iRe(Y V ∗)− iRe(F (Y )U∗)], (7)

Λ(U) = exp(−R|U |2/4) is the characteristic function of Gaussian noise. Approximation (4) has
an equivalent in terms of Fourier transforms

M(U, V ) → M̃(U, V ) = (2π|V |)−1 exp(−iReU)δ(|V | − κ|U |). (8)

By substituting (8) into Eq. (5), we obtain an approximate iteration equation for the char-
acteristic function; after the substitution ψN+1, ψN → ψst it becomes an equation for the char-
acteristic function of a stationary (invariant) distribution, whose solution can be represented in
the form

ψst(U) = (2π)−2 exp(−iReU −R|U |2/4(1− κ2))
∞∏

l=1

J0(κl|U |). (9)

Here J0(x) is the Bessel function; convergence of the infinite product is obvious. For small
κ, using Eq. (9) we can find an approximate expression for the invariant distribution density.
The roughest approximation is obtained by replacement of the infinite product in the r.h.s. of
Eq. (9) by J0(κ|U |); in this case performing the inverse Fourier transform we arrive at

Pst(X) ' (πR)−1(1− κ2) exp[−(κ2 + |X − 1|2)(1− κ2)/R]I0(2κ(1− κ2)|X − 1|/R). (10)

A more precise expression [having the same precision as that of in the approximate solution
of the integral equation for Pst with the conditions R = 0, κ ¿ 1, found in [6]; Eq. (19)] is

Pst(X) ' (πR)−1(1− κ2) exp[−(κ2 + |X − 1|2)(1− κ2)/R]
∞∑

s=−∞
(−1)sIs(2κ3(1− κ2)/R)×

Is

(
κ(1− κ2)|X − 1|(√1 + 2κ +

√
1− 2κ)/R

)
× (11)

Is

(
κ(1− κ2)|X − 1|(√1 + 2κ−√1− 2κ)/R

)
.

Here and in Eq. (10), Is(x) are modified Bessel functions. Distribution Pst for small κ is
substantially nonzero within a ring with center X = 1 and mean radius |X−1| ∼ κ and possesses
rotational symmetry; a ring shaft with or without a groove in the middle is its graphical
representation. Graphs of the distributions in the radial cross sections found numerically are
shown in Fig. 1.

The case T ∼ τc À τ∗ is more difficult for analysis, since one must take into account the
effect of correlations in the superposition and interference of light waves. We assume that NCE
is a stationary Markovian process; multipoint distributions for NCE can be represented in this
case in the form

P (ξn[tn], . . . , ξ0[t0]) = w(ξ0)
n−1∏

p=0

w(ξp+1, ξp, [tp+1 − tp]), (12)

where w(ξ) = limt→∞w(ξ, η, [t]); and instants of time are shown in square brackets. Evolution
of the signal in this system (in a discrete time scale) can be described by the Kolmogorov-
Chapman type equation for a multipoint distribution density

PN+1((Xs), ξn+1) =
∫

dYdξPN ((Ys), ξ0)
n∏

p=0

δ(2)(Xp− ξp−F (Yp))w(ξp+1, ξp, [τp+1− τp]), (13)
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Figure 1: Radial stationary amplitude distributions for κ = 0.05 and different noise intensities.
Here, r = |X − 1|; the curves correspond to the following values of R : 1− 8× 10−8, 2− 3.2×
10−7, 3− 7.2× 10−7, 4− 1.28× 10−6, 5− 2× 10−6, 6− 1.8× 10−5, 7− 5× 10−5.

which is the natural generalization of Eq. (3). In Eq. (13) we have used the short notation for
the multipoint distribution density; it is expanded as follows

PN ((Xs), ξ) = P ((X0[NTr], X1[NTr + τ1], . . . , Xn[NTr + τn]), ξ[NTr]). (14)

Here, first n + 1 arguments denote radiation in the RC at different instants of time; the last
argument denote the NCE (time values are shown in brackets). In Eq. (13) and below we use
notation dA = dA0dA1dA2 . . ., and it is assumed that 0 = τ0 < τ1 < ... < τn < τn+1 = Tr.
Applying a generalization of Eq. (5) to the multivariate case to the densities (14) to obtain
their Fourier transforms, we can find the evolution equation for the multipoint characteristic
functions

ψN+1((Us), Ωn+1) =
∫

dVdΩψN ((Vs), Ω0)
n∏

p=0

M(Up, Vp)H(Ωp+1, Ωp − Up, [τp+1 − τp]), (15)

where
H(Ω,Γ, [τ ]) = (2π)−2

∫
dξdηw(ξ, η, [τ ]) exp[iRe(ηΓ∗)− iRe(ξΩ∗)] (16)

and the function M(U, V ) is determined by Eq. (7) [the short form of the characteristic function
may be expanded using the rule similar to Eq. (14)].

We consider in this paper two models for the statistics of fluctuations, assuming that NCE
is a) a stationary Gaussian Markovian random process (GRP), b) a generalized telegraphic
Markovian random process (GTRP). The corresponding expressions for the transition proba-
bility densities and their Fourier transforms have the form in the GRP case

wG(ξ, η, [τ ], R) =
1

πR(1− θ2
τ )

exp

(
−|ξ − ηθτ |2

R(1− θ2
τ )

)
, (17)
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HG(Ω,Γ, [τ ], R) = δ(2)(Γ− Ωθτ ) exp

(
−|Ω|

2R

4
(1− θ2

τ )

)
; (18)

in the GTRP case:
wGT (ξ, η, [τ ]) = θτδ

(2)(ξ − η) + p(ξ)(1− θτ ), (19)

HGT (Ω,Γ, [τ ]) = θτδ
(2)(Ω− Γ) + (1− θτ )χ(Ω)δ(2)(Γ), (20)

where

p(ξ) =
L∑

k=1

pkδ
(2)(ξ − ξk), χ(Ω) =

L∑

k=1

pk exp(−iRe(ξkΩ∗)),

θτ = exp(−τ/τc) (the GTRP is characterized by random jumps in the NCE amplitude between
the complex values ξk, k = 1, 2, . . . , L; the probability for the appearance of ξk is pk). The
equation derived from Eq. (15) after application of the random phase approximation (8) will play
a central role. We write two versions of this equation, corresponding to different assumptions
on the NCE statistics: for the GRP

ψN+1((Us), Un+1) = exp


− i

2

n∑

p=0

[(Up + U∗
p )− Λ((Us), Un+1)]×

〈
ψN


(κUse

iφs),
n+1∑

q=0

e−τq/τcUq




〉

phase


 , (21)

where

Λ((Us), Un+1) =
1
4
R

n+1∑

p=1

∣∣∣∣∣
n+1∑
q=p

e(τp−τq)/τcUp

∣∣∣∣∣

2

(1− e2(τp−1−τp)/τc);

for the GTRP

ψN+1((Us), Un+1) = exp


− i

2

n∑

p=0

(Up + U∗
p )− Tr

τc




[
〈ψN ((κUse

iφs), βn+2
0 )〉phase×

n+1∑

α=1

∑

(k1,...,kα)

∏

p=k1,...,kα

(
e

τp−τp−1
τc − 1

)
× (22)

α∏

γ=1

χ(βkγ+1
kγ

)〈ψN ((κUse
iφs), βk1

0 )〉phase


 ,

where

βq
p =

q−1∑

i=p

Ui; 1 ≤ k1 < . . . < kα < kα+1 ≡ n + 2; τ0 = 0; τn+1 ≡ Tr;

averaging is performed over all the angles φs, s = 1, 2, . . . , n.
The characteristic functions are generating functions for the multipoint moment functions

(MMF); differentiating Eqs. (21,23) we can construct an evolution mapping for MMF. We define
the MMF as

mN (p, q, (ks, ls)) =

〈
ξpξ∗q

n∏

i=0

Zki
i Z∗lii

〉

N

= (23)

(2π)2n+4(2i)D
(

∂p

∂Ω∗p
∂q

∂Ωq

) n∏

i=0

(
∂ki

∂U∗ki

∂li

∂U li

)
ψN ((Us), Ω)

∣∣∣Ω=0
Us=0 .
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Here

D = p + q +
n∑

i=1

(ki + li)

is the order of the MMF. We call the MMF (24) the N -moments, i.e., the mean of one-term
polynomials over distribution (13) formed by signal amplitudes Zs (taken at the time values
NTr+τs, s = 0, 1, . . . , n) and also by the NCE amplitude (at NTr). The structure of Eqs. (21,23)
is such that any (N + 1)-moment of a certain order is expressed linearly in terms of the N -
moments of the same or lower orders. For this reason, evolution mappings for the MMF are
linear and finite-dimensional. We note that, if we do not employ the approximation (8), the
(N +1)-moment is expressed in terms of the N-moments of all orders, and the finite-dimensional
mapping for the MMF can be obtained only by using some uncoupling procedure (see, for
example, [13]).

We can assume that radiation dynamics leads to the formation of a limiting stationary (in-
variant) random process in the limit N →∞ (this corresponds to an instant of time, substan-
tially larger than Tr). By confining ourselves to the treatment of GRP- and GTRP-type NCE,
we find that evolution mapping of the MMF, which describes dynamics of a finite (but arbitrar-
ily large) set of MMF, including all MMF of order lower than given order, possesses a stable
stationary point. We first note that the matrix A in the evolution mapping MN+1 = AMN +B,
can be made triangular by a special choice of the basis in the linear MMF space; MN is the
vector of the finite-dimensional space of N -moments. In fact, Eqs. (21,23) are such that (N +1)-
moment of order D, characterized by given value d = p+ q, is a linear combination of moments
of order D′ ≤ D, in which only N -moments with D′ = D with d′ ≥ d appear. Taking this
into account for the construction of the basis, in which matrix A is triangular, it is necessary
to introduce an indexing for the MMF in such a manner that moments with larger D have
larger indices and among moments with given D, those with smaller d have larger indices. The
diagonal elements of matrix A (its eigenvalues) are equal for the GRP

A(p, q, (ks, ls)) =
n∏

i=0

δki,liκ
ki+lieTr(p+q)/τc , (24)

and for the GTRP

A(p, q, (ks, ls)) =
n∏

i=0

δki,liκ
ki+li(δp0δq0 + eTr/τc(1− δp0δq0)), (25)

(each of these is strictly less than unity). Hence, the equation Mst = AMst +B for a stationary
point in the MMF space is equivalent to a system of linear algebraic equations with a nonsingular
matrix and, therefore, has a unique solution. To show the stability of the stationary point, we
write the solution of the linearized equation for small deviation: δMN+1 = AδMN representing
A in the normal Jordan form [14]:

δMN = ANδM0 = (TJT−1)NδM0 = TJNT−1δM0. (26)

Here, J is the direct sum of Jordan blocks (having the same diagonal elements as those of A),
and T is some nonsingular matrix. If the diagonal elements of matrix J are less than unity,
JN → 0 is satisfied as N → ∞ (see [14]). It follows from Eq. (26) that δMN → 0 as N → ∞,
so that the stationary point is stable.

Together with multipoint functions of type (13) correspond to points on the time axis,
located inside a segment of length Tr, it is necessary to be able to find common-type functions.
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We can show that it is not necessary to reconstruct these functions and solve the evolution
equations for them, since any such function for points on the time axis, spaced larger than Tr, is
expressed in terms of the functions considered above. The general expressions are cumbersome,
so we do not give their explicit expressions.

By solving the set of linear equations of the MMF, corresponding to a stationary point, we
can find any MMF in an explicit form. Let us consider a number of examples. We note that,
in the random phase approximation, phase correlation vanishes after single pass of the wave
through the nonlinear element. It is instructive to calculate intensity correlation corresponding
to different instants of time. We denote

C(τ) = 〈|Zt+τ |2|Zt|2〉st − 〈|Zt+τ |2〉st〈|Zt|2〉st (27)

the covariance of radiation intensities at a fixed point of the RC. For the GRP

C(τ) =
1

1− κ4

(
R2 θ2

τ + κ2(θ/θτ )2

1− κ2θ2
+ 2R

θτ + κ2(θ/θτ )
1− κ2θ

)
, (28)

C(kTr + τ) = κ2kC(τ) + 2R
θθτ

1− κ2θ

κ2k − θk

κ2 − θ
+ R2 θ2θ2

τ

1− κ2θ2

κ2k − θ2k

κ2 − θ2
, (29)

and for the GTRP

C(τ) =
θτ + κ2(θ/θτ )

(1− κ4)(1− κ2θ)
(〈Q2〉GT − 〈Q〉2GT ), (30)

C(kTr + τ) = κ2kC(τ) +
θθτ

1− κ2θ

κ2k − θk

κ2 − θ
(〈Q2〉GT − 〈Q〉2GT ), (31)

where
θ = exp(−Tr/τc), θτ = exp(−τ/τc), 0 < τ < Tr, Q = 1 + ξ + ξ∗ + |ξ|2;

averaging of the GTRP with a single-point distribution density is denoted by the symbol 〈. . .〉GT .
Let us compare the found expressions with their analogs, corresponding to a RC with a linear

absorber. The method of computing these expressions do not differ from the above mentioned,
if we use Eq. (15), in which the kernel (7) corresponds to the mapping F (Z) = 1 + κZeiδ.
For RC with a linear absorber and GRP-type NCE from Eq. (15) we can find the multipoint
distribution functions in explicit form:

P lin
st ((X), ξ) = wG(ξ,R)wG(X − X̃, κ(X − X̃)eiδ + ξ, [Tr],

R

1− κ2
)|1− κeiδe−Tr/τc |2 (32)

P lin
st ((X, Y ), ξ) = wG(ξ,R)wG(Y − X̃,X − X̃, [τ ],

R

1− κ2
)×

wG(X − X̃, κ(Y − X̃)eiδ + ξ, [Tr − τ ],
R

1− κ2
)|1− κeiδe−Tr/τc |2 (33)

where X̃ = (1 − h)−1, h = κe−iδ [single- and two-point GRP distribution densities (17) are
used in writing the r.h.s.]. We can find an expression for the intensity covariance directly from
Eqs. (32,33)

C(kTr + τ) = R|1− h|−2(Γk + Γ∗k) + R2|Γk|2, (34)

Γk =
h∗k

1− |h|2
(

θτ

1− hθ
− h∗(θ/θτ )

1− h∗θ

)
+

θθτ

1− hθ

h∗k − θk

h∗ − θ
. (35)
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Figure 2: Intensity correlation functions for κ = 0.7, τc/Tr = 0.6; curves 1 and 2 are for a
RC with a nonlinear medium and NCE: 1 – GRP type, R = 9.2, 2 – GTRP type; curves 3
correspond to RC with a linear absorber with different δ and GRP-type NCE.

Graphs of the correlation functions are given in Fig. 2.
We conclude by noting that we can extend the results obtained to other nonlinear oscillatory

systems with retardation, in which the oscillations may have a different physical nature (for
example, hybrid optoelectronic or radioelectronics devices [7, 8, 4]. It is most important from a
physics point of view that the ability to convert a coherent into a noise signal and to transform
the statistical characteristics of the noise be the common feature of such systems.
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