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Spreading of a wetting film under the action of van der Waals forces
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The profiles of a spreading wetting film are computed using a variable grid implicit scheme. The
form of Tanner’s law is deduced from the scaling, and the dependence of its coefficient on ratio of
the van der Waals to capillary length and on the inclination angle is determined. ©2000 American
Institute of Physics.@S1070-6631~00!01502-6#
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I. INTRODUCTION

It has been long recognized that liquids can spread un
the action of disjoining pressure.1,2 In the case of a liquid
attracted to the solid by van der Waals forces, a precu
film is formed, and there is no well-defined contact line th
would give rise to the infamous viscous stress singularity3,4

Nevertheless, the problem remains difficult, due to the div
gence of both viscous and disjoining pressure terms~which
have to compensate each other when the layer thick
tends to zero! and a wide separation between the nearly m
lecular scale of van der Waals forces and macroscopic sc
where gravity and other extrinsic factors become importa
It turns out that the behavior on both scales is interrelated
that weak forces acting at macroscopic distances stro
influence the shape of a moving film, even close to the tr
sition region between the precursor and the macrosc
film, affecting the visible contact angle. This necessita
matching between computations carried out in the ‘‘oute
~gravity! and ‘‘inner’’ ~van der Waals! regions and makes
the results sensitive to the matching conditions.

After formulating the basic equations in lubrication a
proximation in Sec. II, we shall stress in Sec. III the pitfa
of this sensitive problem: instability of the static solution a
a rescaling symmetry that disallows using the drift veloc
as a perturbation parameter. We shall further demonst
that the familiar cubic-root dependence of the dynamic c
tact angle on the drift velocity is a direct consequence of
scaling invariance. On the other hand, attempts at compu
the proportionality constant in this dependence by solv
the stationary equation satisfying asymptotic conditions
the comoving frame are hindered by numerical instabiliti
and the ‘‘outer’’ asymptotics converges too slowly to allo
effective separation of the inner region, where the van
Waals interactions are essential, and the outer region, w
macroscopic factors, like gravity, come into play. This p
suades us to seek a numerical solution of the problem u
a variable grid extending over widely separated scales
4801070-6631/2000/12(3)/480/4/$17.00
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encompassing both regions. The numerical procedure is
scribed in Sec. IV, followed by the discussion of results.

II. BASIC EQUATIONS AND SCALING

Consider a liquid film of thicknessh(x) resting on a
solid plate. It is assumed that the surface inclination is sm
@h8(x)5O(e)!1#, so that the lubrication approximation i
applicable. The general form of an evolution equation in
lubrication approximation ~excluding tangential surface
stresses! is5

ht5m21
“"~ 1

3h
3
“P!. ~1!

The effective pressureP, taking into account surface tensio
gravity, and disjoining pressure, is expressed as

P52se2¹2h1rg~h2ax!2
A

6ph3 , ~2!

wheres is surface tension,r is density,g is acceleration of
gravity,ea is the inclination angle of the solid surface, andA
is the Hamaker constant. We shall assumeA.0, which cor-
responds to the case of complete wetting; under these co
tions, the liquid is attracted to the solid, and the disjoini
pressure is negative. As a result, the liquid layer tends
thicken, or, in other words, the liquid interface is repell
from the solid. Surface tension is commonly presumed to
of O(e22) to make it on par with other forces when th
interface is weakly curved; thus we sets5s0e22.

The characteristic length scales associated with differ
terms in the evolution equation~1! are widely separated
Choosing a length scalel ~as yet not specified! and a suit-
able time scalet053lm/s0 , Eq. ~1! is rewritten in the di-
mensionless form

ht52“"Fh3
“S ¹2h1

V

h32G~h2ax! D G , ~3!

where
© 2000 American Institute of Physics
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V5
A

6pl2s0
, G5

rgl2

s0
.

The length scale in the microscopic boundary lay
where intermolecular forces are important is defined by b
ancing the van der Waals and surface tension terms in
~2!. The respective van der Waals lengthl25A/(6ps0)
typically falls into a nanoscale range. The gravity parame
based on this length,G5rgA/(6gps0

2) is quite different
from the standard Bond number, and, to avoid misund
standing, we shall call it the van der Waals number. T
parameter, equal to the squared ratio of the van der Waa
capillary length, is very small, and gravity can be neglec
in a thin precursor film adjacent to the solid surface. W
rewrite the truncated equation valid in this region in t
frame moving with the contact line drift velocityU ~scaled
by U053m/s0!. The velocity is assumed to be positiv
when the bulk fluid layer, situated atx.0, advances to the
left. After integrating once and setting the integration co
stant to zero to satisfy the condition of zero net flux throu
the contact line, this equation becomes

U

h2 1
d

dx S h9~x!1
1

h3D50. ~4!

Setting hereh8(x)5u(h)5Ay(h) yields

2U

h2y1/21
d

dh S y8~h!1
2

h3D50. ~5!

The static equation atU50 is invariant to the rescaling
that changes the slope,

x→x/C, h→h/AC, y→Cy. ~6!

The factorC is arbitrary, and the rescaling symmetry exis
because no forces capable to fix the slope are present in
approximation. The static solution, immediately followin
from Eq.~5!, is y5h221C, which can be further integrate
to

h5ACx22C21. ~7!

This solution has a zero corresponding to a ‘‘contact lin
located atx5C, and the ‘‘true’’ contact angle isp/2. The
asymptotic slopeh8(x)5Ay_̂C was identified by de
Genneset al.,6 with the macroscopic equilibrium contac
angle, but, in fact, it remains indefinite and is not related
any material properties.

III. ASYMPTOTIC ANALYSIS

de Genneset al.6 used the static solution~7! as a zero
approximation for a solution atU!1. This approach is un
suitable for two reasons. First, the static solution~7! is un-
stable, as any perturbation at the foot of the film would te
to spread further into a layer of minimal~molecular! thick-
ness. Second, velocity never can be treated as a small
turbation, since it can be eliminated from Eq.~4! or ~5! by
applying the transformation~6! with the scaling factorC
5U2/3. Thus, the well-known Tanner’s law7 u5Ay}U1/3 is
a direct consequence of the rescaling invariance. The co
quence is that an arbitrarily small velocity causes a fin
r
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deviation from the static solution at sufficiently large di
tances, and a regular perturbation solution atU!1 is mean-
ingless.

A correct asymptotics of Eq.~4! at both small and large
h was obtained in an earlier work by de Gennes.2,8 At h
→0, the surface tension is negligible, and the viscous st
is balanced by disjoining pressure, contrary to a spuri
balance between surface tension and disjoining pressur
the static solution~7!. This yields

h8~x!5Ay0_̂
1
3 Uh2, h_̂23/x, at h→0, x→2`,

~8!

valid up to a molecular cutoff ofh.
On the other hand, ath@1, or large positivex, the dis-

joining pressure is negligible, and the balance between
cosity and surface tension leads to the asymptotics

y_̂S 3U ln
h

h0
D 2/3

, h_̂xS 3U ln
h

h0
D 1/3

, at x,h→`,

~9!

whereh0 is an indefinite constant. This asymptotics is va
only whenh is logarithmically large.

Hervet and de Gennes8 computed the constanth0'2.5
by integrating Eq.~4!, starting from the asymptotics ath
→0. For this purpose, the latter had to be made more prec
Settingy5y01dy1 , wherey0 is defined by Eq.~8! andd is
a bookkeeping small parameter, and neglecting terms in
~5! vanishing ath→0 yields the equation for the asymptot
correctiony1 ,

y19~h!227h28y150, ~10!

whereU has been rescaled to unity. The solution is a mo
fied Bessel functionAhK1/6()h23), which can be replaced
by its asymptoticsh2 exp(2)h23) multiplied by an arbitrary
constant. This constant should be adjusted to ensure tha
tegration of Eq.~5! leads to a finite value ofy(h) at largeh.
We found the result to be very sensitive to the choice of
initial point and could not reliably confirm the numeric
value ofh0 reported by Hervet and de Gennes.8

Several authors9–11 attempted to describe the macr
scopic spreading process under the action of either grav
or surface tension, or both, assuming a self-similar form
the solution in the macroscopic region, while accounting
the effect of disjoining pressure through matching with
Gennes’ outer asymptotics. The matching could not be, h
ever, exact, due to the incompatibility of asymptotics and
breakdown of self-similarity.

Hocking12 overcame this handicap by introducing an i
termediate region where a rescaled form of Eq.~3! with G
50 was solved numerically. The numerical solution cou
not, however, be matched with the short-time solution.

IV. NUMERICAL SOLUTION

In view of the difficulties arising in numerically assiste
intermediate asymptotics and matching, we undertook to
tain a numerical solution directly using a variable grid
extend the integration to a large region. We addressed
cifically the problem of a dynamic meniscus on a movi
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FIG. 1. Logarithmically scaled profiles lnh(x) at a→0 ~a! anda51 ~b! calculated for different values of the rescaled van der Waals numberG. The values
of log G21 are shown below the corresponding curves; closely lying curves are marked by the lower and upper applicable values of logG21.
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inclined support, which admits stationary solutions, a
solved the stationary form of Eq.~1! describing the profile of
an infinitely extended film on an inclined plane in the fram
moving with the velocityU:

1

h2 1
d

dx S h9~x!1
1

h32GhD1Ga50, ~11!

whereU has been eliminated by rescaling the variables
parameters as

x→xU22/3, h→hU21/3, G→GU4/3, a→aU1/3.
~12!

The boundary conditions are given by~8! and

h8~x!5a, at x→`.

Several alternative numerical methods were tried in
der to choose the most reliable algorithm. Explicit schem
proved to be very unstable at physically relevant small v
ues ofG. We switched therefore to a more stable impli
scheme. In order to achieve good accuracy in the most in
esting region of transition from a precursor film to bulk li
uid where the profile changes sharply, while keeping
time and memory requirements reasonable, we used a
uniform grid consisting of five segments. The first and t
last segments had a fixed large step size, the middle seg

FIG. 2. The contact angleu, defined as the inclination at the inflection poin
calculated fora→0 ~lower curve! and a51 ~upper curve! and different
values of rescaled van der Waals numberG.
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had a very fine resolution, also with a fixed step, and t
intermediate segments had a variable grid enabling a gra
transition between the fixed step segments. The accurac
calculations was increased by switching to the six-points
rivatives approximation.

The numerical scheme used in calculations is fully i
plicit. We need to find the solution of a stationary problem

F@x,h~x!,h8~x!,h9~x!,...#50,

which is found by introducing some artificial timej and
applying a relaxation technique. Then the problem to
solved is rewritten as

]F ~n11!@x,h~x,j!,hx8~x,j!,hxx9 ~x,j!,...#/]j

52F ~n!@x,h~x,j!,hx8~x,j!,hxx9 ~x,j!,...#,

where the superscript denotes a ‘‘time’’ step.
Denoting R(x)5]h(x,j)/]j, and, correspondingly

R8(x)5]hx8(x,j)/]j, R9(x)5]hxx9 (x,j)/]j,..., we can ex-
press the problem in the form

]F ~n11!

]h
R1

]F ~n11!

]h8
R81

]F ~n11!

]h9
R91¯52F ~n!.

FIG. 3. Dependence of the computed contact angle on the inclination a
a at rescaled van der Waals numberG51026. The limiting caseu5a is
shown by the dashed line.
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Using the discretization forR,R8,R9,..., with respect to a
chosen multipoint scheme on a specified grid, we rewrite
problem in the matrix form for the vectorR( i ), where i
denotes the tag of a grid point.

The boundary conditions are incorporated into the ab
numerical scheme in a similar way. The function values a
their derivatives at both ends of the integration interval
defined with the help of additional pointsx(21),x(22) and
x(N11),x(N12), respectively, at the left and right en
For example, the left asymptotic conditionh_̂23/x is coded
as follows. It is assumed that this condition is satisfied at
leftmost point of the region, as well as at the two ex
points: h( i )523/x( i ), i 522, 21, 0, or Gl(x,h)[h( i )
13/x( i )50. Then

dGl~h!/]j5R~ i !52h~ i !23/x~ i !,

and for i 50, 21, 22 we getR( i )50 automatically, so tha
there are no additional terms in the matrix for the first tw
rows.

Similarly, at the right end (i 5N) we need to satisfy the
conditionGr(h8)[h8(x)2a50, which producesR8( i )50,
or R( i 11)5R( i 21) for i 5N,N11. The last relation is
used for tuning the elements of theN3N matrix used in the
calculation process. In this way, we ensure that the cor
asymptotics is reached at the boundary of a large but fi
integration interval.

Since a computation using a fully implicit scheme is
generalization of the Newton method for a large set of al
braic equations, the stability of computations is very sen
tive to the choice of an initial approximation. We found th
the computations became unstable as the value ofG de-
creased. Therefore we started the calculations with a v
large valueG510 and an initial profile satisfying the spec
fied boundary conditions. With a properly chosen initial pr
file, the iteration process converged successfully. Then
value of G was reduced by a certain decrement and the
eration process was repeated with the solution obtained a
preceding~larger! value of G used as the initial profile. In
this way, G was gradually reduced to physically releva
small values. In a similar way, we gradually reduced
inclination anglea to obtain film profiles ata→0. The limit
a50 is, of course, singular, as no stationary meniscus ex
in this case.

V. RESULTS AND CONCLUSIONS

Figure 1 shows logarithmically scaled profiles ata→0
anda51 in the region close to the origin where the steep
change of the thickness is observed. One can clearly see
all profiles approach a common asymptotic form at smalx,
but digress at the right, depending onG. The curves at smal
values ofG that lie close to one another in this region digre
at larger distances. Although the limit of smalla is singular,
it is interesting because the distinction among various cur
is most pronounced in this limit~it is also most difficult to
compute!.
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The ‘‘visible’’ contact angle cannot be defined in th
case unequivocally, as the slope changes continuously.
chose to characterize the different profiles by the inclinat
angle calculated at the inflection point. The dependence
the ‘‘contact angle’’ defined in this way on the van d
Waals number is shown in Fig. 2. It has to be reminded t
the computed slopes should be multiplied, according to
~12!, by U1/3, so that the data show, in fact, the change of
coefficient in Tanner’s law.

The dependence of the ‘‘contact angle’’ on the inclin
tion anglea is shown in Fig. 3. Although the film profile is
indeed universal~in the rescaled units! at G!1 and moder-
ateh, it is never approximated by the intermediate asympt
ics ~9!, since gravity becomes important before the thickn
becomes logarithmically large.

Qualitative considerations make it obvious that the int
face, being repelled from the solid, is stable in the wett
case. Instabilities in the spanwise direction may develop
flow down an inclined plane or due to the Marangoni effe
in the presence of either a longitudinal or transverse temp
ture gradient. The numerical solution obtained above can
used as a basic state in the numerical stability analy
which will be the subject of a forthcoming commun
ication.13
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