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Spreading of a wetting film under the action of van der Waals forces
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The profiles of a spreading wetting film are computed using a variable grid implicit scheme. The
form of Tanner’s law is deduced from the scaling, and the dependence of its coefficient on ratio of
the van der Waals to capillary length and on the inclination angle is determine@000 American
Institute of Physics.S1070-663(00)01502-9

I. INTRODUCTION encompassing both regions. The numerical procedure is de-

It has been long recognized that liquids can spread undesrcribed in Sec. IV, followed by the discussion of results.

the action of disjoining pressufé.In the case of a liquid
attracted to the solid by van der Waals forces, a precursdi. BASIC EQUATIONS AND SCALING
film is formed, and there is no well-defined contact line that . . . .
o . . i Consider a liquid film of thicknes$(x) resting on a

would give rise to the infamous viscous stress singuldrty. . J T eeT Y R

: e 2" solid plate. It is assumed that the surface inclination is small
Nevertheless, the problem remains difficult, due to the dlver_[h’(x)=0(e)<1] <o that the lubrication approximation is
gence of both viscous and disjoining pressure tefwisich ' bp

: applicable. The general form of an evolution equation in the
have to compensate each other when the layer thICkne?l%l)Jrication approximation (excluding tangential surface

tends to zerpand a wide separation between the nearly mo- .5

lecular scale of van der Waals forces and macroscopic scaleg’st,resse)S'S

where gravity and other e_xtrinsic factors be_co_me important.  h =, ~1v.(h3VP). (1)

It turns out that the behavior on both scales is interrelated, so ) o )

that weak forces acting at macroscopic distances stronglyhe €ffective pressurg, taking into account surface tension,

influence the shape of a moving film, even close to the trandravity, and disjoining pressure, is expressed as

sition region between the precursor and the macroscopic A

film, affecting the visible contact angle. This necessitates P=—062V2h+pg(h—ax)—m, 2

matching between computations carried out in the “outer”

(gravity) and “inner” (van der Waalsregions and makes Whereo is surface tensiory is density,g is acceleration of

the results sensitive to the matching conditions. gravity, ea is the inclination angle of the solid surface, aihd
After formulating the basic equations in lubrication ap- is the Hamaker constant. We shall assuie0, which cor-

proximation in Sec. Il, we shall stress in Sec. Il the pitfalls responds to the case of complete wetting; under these condi-

of this sensitive problem: instability of the static solution andtions, the liquid is attracted to the solid, and the disjoining

a rescaling symmetry that disallows using the drift velocitypressure is negative. As a result, the liquid layer tends to

as a perturbation parameter. We shall further demonstraféicken, or, in other words, the liquid interface is repelled

that the familiar cubic-root dependence of the dynamic confrom the solid. Surface tension is commonly presumed to be

tact angle on the drift velocity is a direct consequence of thef O(e %) to make it on par with other forces when the

scaling invariance. On the other hand, attempts at computingiterface is weakly curved; thus we set oge 2.

the proportionality constant in this dependence by solving The characteristic length scales associated with different

the stationary equation satisfying asymptotic conditions iferms in the evolution equatiofl) are widely separated.

the comoving frame are hindered by numerical instabilitiesChoosing a length scale (as yet not specifigdand a suit-

and the “outer” asymptotics converges too slowly to allow able time scalé,=3\u/oq, EQ. (1) is rewritten in the di-

effective separation of the inner region, where the van defmensionless form

Waals interactions are essential, and the outer region, where vV

macroscopic factors, like gravity, come into play. This per-  h;= —V-[h3V(V2h+ m—G(h—ax))

suades us to seek a numerical solution of the problem using

a variable grid extending over widely separated scales andhere

: ()
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A pON? deviation from the static solution at sufficiently large dis-
= 6m\ 20’ = oo tances, and a regular perturbation solutiotJat1 is mean-
ingless.

The length scale in the microscopic boundary layer A correct asymptotics of Eq4) at both small and large
where intermolecular forces are important is defined by balh was obtained in an earlier work by de GenA&sAt h
ancing the van der Waals and surface tension terms in Eq..0, the surface tension is negligible, and the viscous stress
(2). The respective van der Waals |en@‘ﬁ=A_/(67TUo) is balanced by disjoining pressure, contrary to a spurious
typically falls into a nanoscale range. The gravity parametepalance between surface tension and disjoining pressure in

based on this lengthG=pgA/(6gpof) is quite different  the static solutior(7). This yields
from the standard Bond number, and, to avoid misunder-

standing, we shall call it the van der Waals number. This h'(X)=\yo<3Uh?, hx-3/x, ath—0, x——e,
parameter, equal to the squared ratio of the van der Waals to (8

capillary length, is very small, and gravity can be neglecteq/a"d up to a molecular cutoff of
in a thin precursor film adjacent to the solid surface. We On the other hand, dt>1, or large positivex, the dis-
rewrite the truncated equation valid in this region in thejoining pressure is negligible, and the balance between vis-

frame moving with the contact line drift velocity (scaled (i and surface tension leads to the asymptotics
by Ug=3ul/oy). The velocity is assumed to be positive

. . 2/3 1/3
when the bulk fluid layer, situated at>0, advances to the 3U In—) ’ hxx(SU In—) atxhooe,

left. After integrating once and setting the integration con- y= ho hg
stant to zero to satisfy the condition of zero net flux through 9)
the contact line, this equation becomes whereh, is an indefinite constant. This asymptotics is valid
u d 1 only whenh is logarithmically large.
2t gx| 0+ 5] =0. 4) Hervet and de Genngsomputed the constatiy~2.5
by integrating Eq.(4), starting from the asymptotics &t
Setting heren’(x) = #(h) = Vy(h) yields —0. For this purpose, the latter had to be made more precise.
2U 2 Settingy =y, + 8y, wherey, is defined by Eq(8) and §is
an an y'(h)+ Hg) =0. (5) a bookkeeping small parameter, and neglecting terms in Eq.

(5) vanishing ath— 0 yields the equation for the asymptotic
The static equation dl =0 is invariant to the rescaling correctiony,,

that changes the slope, " _
9 P yi(h)—27h 8y, =0, (10

x=X/C, h—h/\C, y—Cy. ©) whereU has been rescaled to unity. The solution is a modi-
The factorC is arbitrary, and the rescaling symmetry existsfied Bessel function/hKy,¢(v3h~2), which can be replaced
because no forces capable to fix the slope are present in thisy its asymptotic$1? exp(—v3h~3) multiplied by an arbitrary
approximation. The static solution, immediately following constant. This constant should be adjusted to ensure that in-
from Eq.(5), isy=h"2+C, which can be further integrated tegration of Eq(5) leads to a finite value of(h) at largeh.

to We found the result to be very sensitive to the choice of an
_ A1 initial point and could not reliably confirm the numerical
h=yCx'=C™" ™ value ofh, reported by Hervet and de Genrfes.
This solution has a zero corresponding to a “contact line” Several authors!! attempted to describe the macro-

located atx=C, and the “true” contact angle is7/2. The  scopic spreading process under the action of either gravity,
asymptotic slopeh’(x)=\y=<C was identified by de or surface tension, or both, assuming a self-similar form of
Genneset al.® with the macroscopic equilibrium contact the solution in the macroscopic region, while accounting for
angle, but, in fact, it remains indefinite and is not related tothe effect of disjoining pressure through matching with de

any material properties. Gennes’ outer asymptotics. The matching could not be, how-
ever, exact, due to the incompatibility of asymptotics and the
. ASYMPTOTIC ANALYSIS breakdown of self-similarity.

Hocking'? overcame this handicap by introducing an in-

de Gennest al® used the static solutiof7) as a zero  termediate region where a rescaled form of E3).with G
approximation for a solution dt<1. This approach is un- =0 was solved numerically. The numerical solution could
suitable for two reasons. First, the static soluti@is un-  not, however, be matched with the short-time solution.
stable, as any perturbation at the foot of the film would tend
to spread further mtq a layer of miniméaholeculay thick- V. NUMERICAL SOLUTION
ness. Second, velocity never can be treated as a small per-
turbation, since it can be eliminated from Hd) or (5) by In view of the difficulties arising in numerically assisted
applying the transformatiori6) with the scaling factorC  intermediate asymptotics and matching, we undertook to ob-
=U?3, Thus, the well-known Tanner's ldw=\y=U3is  tain a numerical solution directly using a variable grid to
a direct consequence of the rescaling invariance. The consextend the integration to a large region. We addressed spe-
guence is that an arbitrarily small velocity causes a finitecifically the problem of a dynamic meniscus on a moving
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FIG. 1. Logarithmically scaled profiles h(x) at «—0 (a) anda=1 (b) calculated for different values of the rescaled van der Waals nub€&he values
of log G™! are shown below the corresponding curves; closely lying curves are marked by the lower and upper applicable val@s"of log

inclined support, which admits stationary solutions, andhad a very fine resolution, also with a fixed step, and two
solved the stationary form of E¢l) describing the profile of intermediate segments had a variable grid enabling a gradual
an infinitely extended film on an inclined plane in the frametransition between the fixed step segments. The accuracy of

moving with the velocityU: calculations was increased by switching to the six-points de-
1 rivatives approximation.
—+—| h"(x)+ —3—Gh) +Ga=0, (11 The numerical scheme used in calculations is fully im-
h® " dx h plicit. We need to find the solution of a stationary problem,
whereU has been eliminated by rescaling the variables and
parameters as F[x,h(x),h"(x),h"(X),...]=0,
x—xU~ 23  h—hU™ 13 G—-GU* a—aU” which is found by introducing some artificial timg and
12 applying a relaxation technique. Then the problem to be
The boundary conditions are given k) and solved is rewritten as
Mo)=a, atx—e. F X, N(X,6), hy(%,6) WX, £),... 11 9€
Several alternative numerical methods were tried in or-
= _g ' "
der to choose the most reliable algorithm. Explicit schemes FEICR(X£), 0y (X, £), (X, £, .,

proved to be very unstable at physically relevant small val- ; P
ues of G. We switched therefore to a more stable implicit WheE)ee:;(iir?;plir(ic;n:p(t?:&ngt/ajga ;Tg Ségfréspondingl
scheme. In order to achieve good accuracy in the most inte'ﬁ’(x)=ah’(x &)l o¢ R”(x)’=(9h”, (x g)/’ag we can ex)f’
esting region of transition from a precursor film to bulk lig- X ' AT

uid where the profile changes sharply, while keeping the"S° the problem in the form

time and memory requirements reasonable, we used a non- HE(N+1) GE(N+1) SE(M+1)
uniform grid consisting of five segments. The first and the - R+ o R+ = R'-o=—FM,
last segments had a fixed large step size, the middle segment J J
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FIG. 2. The contact anglé defined as the inclination at the inflection point, FIG. 3. Dependence of the computed contact angle on the inclination angle
calculated fora—0 (lower curve and =1 (upper curvg and different « at rescaled van der Waals numh@r 10 °. The limiting casef=« is
values of rescaled van der Waals humfer shown by the dashed line.
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Using the discretization foR,R’,R",..., with respect to a The “visible” contact angle cannot be defined in this
chosen multipoint scheme on a specified grid, we rewrite thease unequivocally, as the slope changes continuously. We
problem in the matrix form for the vectdr(i), wherei chose to characterize the different profiles by the inclination
denotes the tag of a grid point. angle calculated at the inflection point. The dependence of

The boundary conditions are incorporated into the abovéhe “contact angle” defined in this way on the van der
numerical scheme in a similar way. The function values andVaals number is shown in Fig. 2. It has to be reminded that
their derivatives at both ends of the integration interval arehe computed slopes should be multiplied, according to Eq.
defined with the help of additional point$—1),x(—2) and  (12), by U3, so that the data show, in fact, the change of the
x(N+1),x(N+2), respectively, at the left and right end. coefficient in Tanner’s law.

For example, the left asymptotic conditibrx — 3/x is coded The dependence of the “contact angle” on the inclina-

as follows. It is assumed that this condition is satisfied at théion anglea is shown in Fig. 3. Although the film profile is
leftmost point of the region, as well as at the two extraindeed universalin the rescaled unijsat G<1 and moder-

points: h(i)=—3/(i), i=—2, —1, 0, or G,(x,h)=h(i)  ateh, itis never approximated by the intermediate asymptot-

+3/x(i)=0. Then ics (9), since gravity becomes important before the thickness
) ) ) becomes logarithmically large.

dG(h)/o&=R(i)=—h(i)—3/x(i), Qualitative considerations make it obvious that the inter-

and fori=0, —1, —2 we getR(i)=0 automatically, so that face, being repelled from the solid, is stable in the wetting
there are no additional terms in the matrix for the first twocase. Instabilities in the spanwise direction may develop in
rows. flow down an inclined plane or due to the Marangoni effect,

Similarly, at the right endi(=N) we need to satisfy the in the presence of either a longitudinal or transverse tempera-
conditionG,(h")=h’(x) — @=0, which produce®’(i)=0, ture gradient. The numerical solution obtained above can be
or R(i+1)=R(i—1) for i=N,N+1. The last relation is used as a basic state in the numerical stability analysis,
used for tuning the elements of thex N matrix used in the Which will be the subject of a forthcoming commun-
calculation process. In this way, we ensure that the corredgation
asymptotics is reached at the boundary of a large but finite
integration interval.
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