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Resonant two-dimensional patterns in optical cavities with a rotated beam

Boris Y. Rubinstein and Len M. Pismen
Department of Chemical Engineering and Minerva Center for Research in Nonlinear Phenomena,

Technion-Israel Institue of Technology, Technion City, Haifa 32 000, Israel
~Received 29 May 1997!

We describe selection and dynamics of transverse patterns in a nonlinear feedback cavity with a rotated
beam. The symmetry of the patterns, described by composite modes, is determined by the image rotation angle
within the loop. Complex quasicrystalline patterns sustained by resonant interactions arise under conditions
when wave and Turing composite modes are excited simultaneously. It is shown that the excited patterns may
be saturated even by the action of quadratic~three-wave! interactions only. Exact resonance involves three
composite modes, and may exhibit periodic amplitude modulation on a slow time scale. Another possibility is
a strained resonance leading to stabilization of the pattern in a wider parametric domain. Finally, wave-Turing
resonance may be complemented by resonance among Turing triplets.@S1050-2947~97!09211-1#

PACS number~s!: 42.65.Sf
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I. INTRODUCTION

Recent experiments based on nonlinear optical cav
with a rotated image beam@1–5# showed a variety of trans
verse patterns, including rolls, hexagons, rotating spirals,
various multipetal structures. Liquid crystals were chosen
a nonlinear medium in all these experiments. Observatio
transverse patterns in real time was facilitated by the str
nonlinearity and slow response times of liquid crystals.

Akhmanovet al. @1# investigated both experimentally an
numerically transverse patterns in a ring cavity containin
nonlinear element and a fiber bundle enabling one to rot
shift, or dilate an optical image. In their simulations, th
used a parabolic equation for the nonlinear phase shift in
nonlinear medium valid in the high absorption limit. Th
equation described various spatial transformations of the
tical image~rotation, shift, dilation, and their combinations!,
as well as a time delay of the optical image in the feedb
loop, but neglected diffraction. Linear stability analysis
this model, showing possible excitation of a variety of s
tionary ~Turing! and wave modes with different symmetr
was carried out by Adachihara and Faid@6#. The experiment
@1# demonstrated excitation of rotating multipetal spi
structures, and their coexistence and hysteresis.

In the experiments reported by Pampaloni and co-work
@2–5#, a liquid crystal light valve~LCLV ! was used to close
up the feedback loop. LCLV imitates a Kerr-like nonlineari
converting an amplitude deviation in the light beam into
phase modulation. In its turn, diffraction in a free propag
tion section of the optical cavity converts a phase shift i
an amplitude modulation. The feedback loop is completed
a fiber bundle rotating the image by a certain angle. T
experiment showed@2# that in the absence of rotation on
hexagonal patterns are stable, while rotation byp leads to a
stable roll structure. It was further shown@3# that periodic
and quasiperiodic structures can be generated by rotating
image by an angleD52p/N with an integerN.4. Any of
these structures corresponds to a family ofN plane waves
with the same wave number equispaced in Fourier spac
the angleD. Recent experiments@4,5# demonstrated simulta
neous excitation of phase-locked families with differe
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wave numbers, leading to still more complicated quasicr
talline patterns.

Quasicrystalline patterns in experiments with a rota
optical beam may be viewed in a longer perspective o
quest for nonequilibrium patterns that have a complica
spatial structure but are well ordered in the Fourier space
has been long expected that a variety of patterns of this k
may be constructed by considering interaction of compet
wave modes near a symmetry-breaking bifurcation point@7#.
It was predicted that such patterns may also exhibit comp
dynamics of amplitude modulation on a slow time scale d
to phase locking between noncollinear standing waves@8#.
Another possible source of quasicrystalline patterns is a
perposition of two resonant triplets of stationary~Turing!
modes@9#. Conditions whereunder such patterns might
selected in reaction-diffusion or convective systems are
parently very rare, and are not easy to locate becaus
technical difficulties in evaluation of mode interaction coe
ficients. Quasicrystalline patterns of Turing type were, ho
ever, observed in experiments with parametric excitation
surface waves@10,11#. Selection of unforced quasicrystallin
Turing patterns was discussed for model equations@12#; they
were also shown to be one possible state of Marangoni c
vection in a layer with a deformable interface@13#. Optical
systems may show more possibilities for formation of co
plex patterns. Selection of quasicrystalline patterns in a fe
back cavity has been recently demonstrated analytically
numerically by Leducet al. @14#.

Optical systems with a rotated beam offer a most straig
forward way to controlled spatiotemporal complexity, sin
here the symmetry of the pattern is imposed externally ra
than being subject to a stringent selection process. Inte
tion among simultaneously excited modes of different wa
lengths@4# is an additional way to greatly enhance comple
ity. In this case, pattern selection depends, however,
nonlinear interactions as in all ‘‘natural’’ nonequilibrium
patterns.

Concerted selection of several modes is most likely wh
they are mutually enhanced as a result of resonant inte
tions @5#. Le Berreet al. @15# used this property to generat
quasicrystalline Turing patterns with eightfold symmetry in
4264 © 1997 The American Physical Society
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56 4265RESONANT TWO-DIMENSIONAL PATTERNS IN . . .
special case when modes with the wave number ratioA2
were excited simultaneously. Dynamical resonant patte
may occur when a Turing and wave mode are excited sim
taneously. This is quite likely to occur in nonlinear optic
cavities@16#. Logvin et al. @17# noticed a possibility of reso
nance between Turing and wave mode. This resonance
also been detected in Marangoni convection@18#.

It is the aim of this paper to analyze dynamics of patte
generated through resonant interaction among families o
furcating modes~or composite modes! of different type. Af-
ter formulating the basic equations in Sec. II, we reiterate
Sec. III the linear analysis of the model discussed in Ref.@3#,
emphasizing simultaneous bifurcation of wave and Tur
composite modes. Following the nonlinear analysis and d
vation of amplitude equations~Sec. IV!, we investigate in
Sec. V long-time dynamics of composite patterns.

A specific feature of the system in question is a possibi
of stabilization of a pattern by quadratic interactions on
Simple resonant patterns like a hexagonal one require
their stability a cubic~four-wave! interaction term to be in-
cluded because quadratic~three-wave! terms alone canno
ensure amplitude saturation. Stabilization by quadratic in
actions has been described before for restricting condit
of exact subharmonic resonance@18–20#. We shall see tha
composite patterns formed by two resonantly interact
families of modes may be stabilized by three-wave inter
tions in a wide parametric range, and show that the am
tudes of the constituent modes may undergo slow perio
modulation resulting in complicated spatiotemporal patt
dynamics. The exact resonance condition, verified by
wave modes and a single Turing mode, leads to complica
spatiotemporal patterns.

We shall also discuss~Sec. IV C! a possiblestrainedreso-
nance situation when only two composite modes~wave and
Turing! survive. The wave mode is excited then with a wa
number slightly different from the exact minimum of th
neutral curve. Such a structure may be selected due
strong mutual damping of modes directed at a small angl
one another. Strained resonance generally simplifies dyn
ics, and only stationary patterns are observed under th
conditions. A special case considered in Sec. IV D is rotat
by an angleD52p/3N (N odd! when the wave-Turing reso
nance is complemented by the resonance among Turing
lets.

II. BASIC EQUATIONS

The successive transformations of the complex envel
of the electric fieldEi(r ) of a light beam in a nonlinea
optical cavity include three stages:~a! point transformation
in the nonlinear medium, adding a phasen dependent on the
transverse coordinater ; ~b! diffraction in the empty part of
the cavity, described by some linear operatorD, and ~c!
rotation of the image, described by the operatorJ(D).

The first transformation takes place in a thin layer o
nonlinear Kerr-type medium, which is assumed to be u
form in the longitudinal direction. The field is transformed

Ei~r !→R1Ei~r !exp~2 ix~r !1 iV!, ~1!

wherex is the normalized refractive index of the medium,V
s
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is a constant phase shift, andR1 is the attenuation coefficien
due to the absorption in the layer.

Propagation and diffraction of the beam in the free part
the cavity is described by the diffractional transformD
which is obtained in the paraxial approximation@21# as the
resolvent of the parabolic equation

iEz5¹2E. ~2!

Here the coordinatez in the direction of propagation is
scaled by the lengthL of the diffractional path, and the trans
verse coordinates by the diffractional lengthALl, wherel is
the wavelength;¹2 denotes the two-dimensional transver
Laplacian. Formally, one can writeD(z)5exp(2iz¹2), so
thatD(z)5exp(izk2) when it operates upon a pure mode wi
a transverse wave numberk.

Before closing the loop, the image is rotated by a cert
angleD. The rotation is described by the operator

J~D!: J~D!$r ,f%5$r ,f1D%. ~3!

The resulting output fieldEo can be written as

Eo~r !5J~D!RD~1!Ei~r !exp@2 ix~r !1 iV#, ~4!

where the attenuation coefficientR lumps all losses during a
single round-trip.

The model of material dynamics can be written, assum
a Kerr-type nonlinearity, in the dimensionless form@22#

ẋ5d2¹2x2x2k1uEo„x~r !…u2. ~5!

The material response time is taken as the time scale;d is the
ratio of the photocarrier diffusion length to the diffractio
length. Although typicallyd!1, the thin sample approxima
tion can be retained, provided the diffusional length far e
ceedsl, so that longitudinal wavelength scale grating
washed out by diffusion. Then Eq.~5! retains only the trans-
verse Laplacian¹2. Dynamics of the refractive index modu
lation x depends on the strength of the nonlinearityk1 ,
which is positive for a defocusing medium.

We shall assume that the material response time is m
larger than the round-trip time in the cavity. Under the
conditions, the electric field envelope is quasistationary,
ing slaved to the material variable. Combining the cav
transform Eq.~4! with the appropriate feedback condition
then allows expression ofE(r ) as a nonlinear functional o
the material fieldx(r ). Now Eq. ~5! is rewritten as

ẋ5d2¹2x2x2kJ~D!I uexp~2 i¹2!exp~2 ix!u2, ~6!

whereI denotes the input beam intensity andk5k1R2.
Equation~6! always has a stationary homogeneous so

tion x052kI which, however, may lose stability when th
input intensity exceeds a certain critical level. The critic
intensity, as well as the preferred transverse wavelength
the emerging pattern, is determined by the linear stabi
analysis of the homogeneous solution.

III. LINEAR ANALYSIS

The standard procedure of linear analysis involves tes
stability to arbitrary infinitesimal perturbations, usually pla
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4266 56BORIS Y. RUBINSTEIN AND LEN M. PISMEN
waves. The rotation of the optical field mixes different Fo
rier modes, and thereby limits the choice of basis functio
If the rotation angle is commensurate with 2p, so that
D52pn/N ~where n and N are integers that do not hav
common factors!, one can use a rotationally invariant com
bination of N plane waves exp(iqj•r ), where
uqj u5q5 idem, and arg(qj )5D j , j 50,1,...,N21, and their
complex conjugates. This combination corresponds to
regular pattern atN<4 or N56, and to a quasicrystalline
planform at otherN. Since the emerging pattern must b
stationary at the round-trip time scale, the amplitudes of
constituent modes should have identical moduli, but th
phases may be different.

We shall reiterate here in more detail the linear analy
outlined in Ref.@3# for the case of a commensurate rotati
angle D52p/N with integer N. Proceeding in a standar
way, we setx5x01ex1(r ,t), wheree!1, and linearize Eq.
~6! presenting the linear termx1 as the sum ofN bifurcating
modes with the wave vectorsqi ( i 51,2,...,N) equally
spaced by the angleD, and their conjugates:

x15(
j 51

N

ajexp~ iqj•r1lt !1c.c. ~7!

The linear eigenvalue problem then reads

Lx1[@l111d2q212kI sin~q2!J~D!#x150. ~8!

Because the action of the rotation operator has the f
J(D)qi5qi 11 , the termJ(D)x1 is expressed as

J~D!x15(
j 51

N

ajexp~ iqj 11•r1lt !1c.c., ~9!

where the indices are cyclic moduloN. The amplitude vector
a comprised of the amplitudesaj satisfies the eigenvalu
problem Ma5la with a circulant matrix M , such that
M i ,i52(11d2q2) andM i ,i 21522kI sinq2; all other ele-
ments ofM are zeroes. The set of eigenvalues of the ma
M is

l i52~11d2q212kIr j
N21sinq2!. ~10!

The componentsUj ,k of the corresponding eigenvectorsUj
are

Uj ,k5r j
k21[e2p i j /N, j 51,...,N ~11!

wherer j denotes thej th root of unity ofNth degree.
The basic statex0 loses stability at Relj50, which deter-

mines the location of the neutral curve:

I 52
11d2q2

2k sinq2cos~D j !
. ~12!

The positive branches of this curve give the critical value
the bifurcation parameterI cr corresponding to excitation of
planform with the wave numberq. The selected type o
planform and the wave number correspond to the abso
minimum of I (q).

The cases of even and odd values ofN should be consid-
ered separately.
-
s.

a

ll
ir

is

m

x

f

te

A. Even N

The lowest positive value of the bifurcation parameterI is
reached atj 5N/2 and is

I 5
11d2q2

2k sinq2 . ~13!

The corresponding eigenvector~11! with j 5N/2 has real
componentsUN/2,k5(21)k21, and the excited planform is
described by

x15a(
k51

N

~21!k21exp~ iqk•r !1c.c. ~14!

Here again two cases arise. The first one correspond
N54K with integerK, giving

x15A(
k51

N/2

~21!k21cos~qk•r !. ~15!

Another possibility isN52(2K21) with

x15A(
k51

N/2

sin~qk•r !. ~16!

In the last two formulas, the amplitudeA is real.
We observe that for evenN the bifurcating planform is a

combination ofN Turing modes. All these modes are excite
simultaneously, so we consider a singlecompositeTuring
mode with the amplitudea.

B. Odd N

The case of oddN is most interesting because it provide
a possibility of a resonance among composite modes bi
cating at different wavelengths. The lowest minima of po
tive branches may have close heights. Such minima
reached atj 5(N11)/2 andN, respectively.

For the j 5N, the eigenvalue is real:

lN52~11d2q2!22kI sinq2. ~17!

The neutral curve is given by

I 52
11d2q2

2k sinq2 . ~18!

The amplitudes of the elementary modes are equal to
another:

UN,k51, aj5a. ~19!

As the result a composite Turing mode is excited:

x15a(
k51

N

exp~ iqk•r !1c.c. ~20!

In the casej 5(N11)/2, the eigenvalue is complex:

l~N11!/252~11d2q2!12kI sinq2exp~ iD/2!. ~21!

The critical value of the bifurcation parameterI is



os

s

th

i
i-

rt

av

the

on,

ifur-

le

b-

-

of
n

d
on-

ing

odd

ym-

fo

56 4267RESONANT TWO-DIMENSIONAL PATTERNS IN . . .
I 5
11d2q2

2k cos~D/2!sinq2 . ~22!

The emerging structure can be characterized as a comp
wavemode with a nonzero frequency

v5~11d2q2!tan~D/2!. ~23!

The eigenvector~11! has complex-valued components:

U~N11!/2,k5~2eiD/2!k21. ~24!

The last result implies the relation between the amplitude
the adjacent modes

aj 2152aje
2 iD/2. ~25!

Finally, the excited composite wave mode is

x15aeivt(
k51

N

~21!k21ei ~k21!D/2exp~ iqk•r !1c.c. ~26!

C. Degenerate bifurcations

In the diffractional limit, d!2p/q, all branches have
minima at q25(2m11)p/2 with integer m. Only first
branches which have the lowest minima are relevant for
pattern selection. The wave mode has the lowest minimum
q5Ap/2, while the first positive minimum of the Turing
mode is located atq5A3p/2.

It can be shown that for small oddN the composite Tur-
ing mode is most dangerous, while for largeN the composite
wave mode has the lowest threshold. It is easy to determ
the critical value ofN when both modes can be excited s
multaneously. This value is given by

Ncr5~1/p!arccos
112/~pd2!

312/~pd2!
. ~27!

The calculations using the values of the parameters repo
in @3# give the best fit integer valueN511. The first two
positive branches of the neutral curveI (q) for the composite
wave and Turing modes each comprised of 11 plane w

FIG. 1. First two positive branches of the neutral curve
N511, corresponding to a composite wave mode (w), and a com-
posite Turing mode (T).
ite
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modes are shown in Fig. 1. Their minima are close one to
other, and both may be excited simultaneously.

IV. WEAKLY NONLINEAR ANALYSIS

A. Multiscale expansion

Following the standard method of multiscale expansi
we introduce a hierarchy of time scales:

]/]t5]/]t01e]/]t11e2]/]t21••• , ~28!

and expand in Taylor series the phase variable and the b
cation parameter:

x5x01ex11e2x21••• , I 5I 01eI 11e2I 21••• .
~29!

In order to exclude the dependence of the basic solutionx0
on the bifurcation parameter, we shift the variab
x→x2x0 ; then Eq.~6! becomes

ẋ5d2¹2x2x2kJ~D!I uexp~2 i¹2!exp~2 ix!u21kI ,
~30!

with the trivial basic solutionx50.
Using the above expansions in Eq.~30! we recover in the

first order ine the linear eigenvalue problem~8!. In the next
order, we arrive at the following inhomogeneous linear pro
lem:

Lx252]x1 /]t122kI 0sin2~¹2/2!J~D!x1
2

12kI 1sin~¹2!J~D!x1 , ~31!

whereL is defined in Eq.~8!. Amplitude equations are ob
tained as solvability conditions of Eq.~31!, i.e., conditions of
orthogonality of the inhomogeneity to all eigenfunctions
the adjoint linear problem. A nontrivial solvability conditio
is obtained when the quadratic term~a product of two eigen-
functions, say,c1 and c2! is in resonancewith another
eigenmode, say,c0 . This requires that the frequencies an
wave numbers of the three modes involved satisfy the c
ditions

k11k25k0 , v11v25v0 . ~32!

A resonance triplet may involve therefore either three Tur
modes or two wave modes from the same family~i.e., with
identical frequencies! and one Turing mode.

B. Exact resonance

A possible resonant structure that may be excited at
N consists of two wave modes with a wave numberq and
one Turing mode with the wave numberQ5A3q. N such
modes must be present to satisfy the imposed rotational s
metry. The pattern in the Fourier space is built ofN identical
isosceles triangles with acute angles equal top/6 ~and their
conjugates produced by rotating the original triangles byp).
The triangles are spaced by the angleD52p/N. Altogether,
this resonant planform is built of 6N plane wave modes:

x15(
j 51

N

$aje
iQj •r1eivt~bje

iqj •r1cje
ik j •r !%1c.c., ~33!

r
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where the complex conjugate is added for oddN,
q5k5Q/A3, and the following relations are satisfied:

qj2k j5Qj , aj 115aj ,

bj 1152eiD/2bj , cj 1152eiD/2cj . ~34!

The first of these is the resonance condition~32!. The three
recurrency relations imposed by the rotational symmetry
low from Eqs.~19! and ~24!.

A snapshot of the pattern defined by Eq.~33! and the
corresponding structure in the Fourier space are show
Fig. 2. The planform has a complicated nonstationary qu

FIG. 2. The planform~33! with N511. ~a! A snapshot of a rea
space~near field! image. The values or the amptlitudes correspo
to the periodic solution atm521/20 ~Fig. 4! taken att5178. ~b!
The structure in the Fourier space~far field image!. The inner circle
corresponds to wave modes, and the outer circle to Turing mo
Complex conjugate modes are omitted. One of the resonant iso
les triangles is shown, and the participating Turing mode is in
cated by the dashed line.
l-

in
i-

crystalline structure. Since the plane waves comprising
pattern are out of phase byD/2, the pattern exhibits rota
tional motion at each location.

In order to derive dynamic equations for the amplitud
aj , bj , and cj , one has to substitute Eq.~33! in the right
hand side of Eq.~31!, and then to project it on the adjoin
eigenvectorU† satisfyingL†U†50, whereL†5L* is the
operator adjoint toL.

Using the relations~34! we arrive after some algebra a
the following system of amplitude equations:

ȧ j522kI 0sin2~Q2/2!bjcj* 22kI 1ssinQ2aj ,

ḃ j5e2 iD/2@2kI 0sin2~q2/2!ajcj12kI 1wsinq2bj #,

ċ j5e2 iD/2@2kI 0sin2~q2/2!aj* bj12kI 1wsinq2cj #. ~35!

Here I 1s and I 1w denote small deviations from the critica
value I 0 for the Turing ~stationary! and wave composite
modes, respectively. These deviations may have diffe
signs due to different values of the corresponding minima
the neutral curve. Further on, we choose them to be of
opposite sign. This means that one of the composite mod
subcritical and the other one is supercritical. This case
most interesting, as it allows us to prevent both decay to
trivial state and runaway to large amplitudes through
action of quadratic interactions.

Recalling thatq25p/2 and Q253p/2 we rewrite the
above system as

ȧ j5msaj2nbjcj* ,

ḃ j5~mwbj1najcj !e
2 iD/2,

ċ j5~mwcj1naj* bj !e
2 iD/2, ~36!

wheren5kI 0 , ms52kI 1s , andmw52kI 1w . A similar dy-
namical system has been obtained in the context of M
rangoni convection@18#, although there the setting was on
dimensional, and therefore the resonance occurred only
der conditions when the wave number of the Turing mo
was exactly twice that of the wave mode. This restriction
lifted in two dimensions, as the resonance condition~32! can
be satisfied in a wide range of wave number ratios by cho
ing an appropriate angle between the wave vectors.

C. Strained resonance

One can also envisage a structure based on a single c
posite wave mode and a single composite Turing mode.
clear that, while in this structure all resonant triangles rem
isosceles, the acute angles have slightly different values,
the wavelengths must be different from the exact minima
the neutral curve. We call it therefore astrainedresonance.

Excitation of a strained planform is likely for the follow
ing reason. The smallest angle between two wave mo
involved in the exact resonant planform corresponds t
mismatch betweenmp/N andnp/6, wherem,n are integers,
and comes forN511 to a merep/66, i.e., less than 3°.
Modes at very small acute angles are expected to be stro
mutually damping by cubic interactions. Generally, we e
pect that cubic interaction coefficients smoothly depend

d
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ce-
i-



a
ro

ia
w
g
e

th
a
ht

o

to

e
n
od

ha
4
de

o

or
e

-

s

s

cor-

56 4269RESONANT TWO-DIMENSIONAL PATTERNS IN . . .
the angle between the modes, and therefore interactions
small angle do not differ very much from interactions at ze
angle. The self-interaction coefficient is, for combinator
reasons, exactly one-half the interaction coefficient of t
modes at zero angle, and therefore waves at small an
would tend to ‘‘merge.’’ Although cubic interactions ar
weaker than quadratic ones at small amplitudes, and we
not consider them here explicitly, we may expect that
system might choose to reduce the number of modes
adjust to the resonance by straining the wavelength slig
off the optimal value.

We assume that the vectors of the composite wave m
qj andqj 1n are in resonance with the vectorQj of the Turing
composite mode:Qj1qj 1n5qj . If the vector qj is at an
angle a to Qj , then the vectorqj 1n must be at the angle
p2a to Qj , so thatp22a52pn/N with integern. At the
same time, the value ofa should be as close as possible
p/6. Then a/p51/22n/N, which leads ton'N/3. Any
odd integer may be presented asN53m61, or N53m with
integer m. Then the required value isn5m, and we find
a5p@1/22m/(3m61)# for N53m61, and a5p/6 ex-
actly for N53m. For N511, n5m54, one can choose th
negative sign, arriving ata53p/22. The required value ca
be achieved by reducing the wave number of the wave m
from q to q(12eN), whereeN!1 depends onN. The cal-
culation forN511 givese11'0.048.

A strained resonant pattern has a simpler structure t
the exact resonant planform because it is built up of onlyN
plane waves, and contains only two independent amplitu

x15(
j 51

N

@aje
iQj •r1bje

ivteiqj •r#1c.c., ~37!

where the amplitudes satisfy the following relations:

aj 115aj , bj 1152eiD/2bj . ~38!

A snapshot of the planform defined by Eq.~37! and the cor-
responding structure in the Fourier space structure are sh
in Fig. 3.

At first sight, the amplitude equations appear to be m
involved in this case, since each elementary wave modqj
takes part in two resonant triangles:Qj5qj2qj 1n and
QN1 j 2n5qN1 j 2n2qj . In order to derive the dynamic equa
tions for the amplitudesaj andbj in the planform~37!, we
have to repeat the procedure used in the preceding sub
tion. This yields the following result:

ȧ j522kI 0sin2~Q2/2!bjbj 1n* 22kI 1ssinQ2aj 21 ,

ḃ j522kI 0sin2~q2/2!~ajbj 1n211aj* bN1 j 2n21!

22kI 1wsinq2bj 21 . ~39!

Recalling the relations~38! we rewrite the above system a

ȧ j522kI 1ssinQ2aj12~21!n11kI 0sin2~Q2/2!

3e2 inD/2bjbj* ,
t a

l
o
les

do
e
nd
ly

de

e

n

s:

wn

e

ec-

ḃ j52kI 1wsinq2e2 iD/2bj22kI 0sin2~q2/2!

3bj@aj~2eiD/2!n211aj* ~2eiD/2!N2n21#. ~40!

Taking into account that (2eiD/2)N51, and denoting
A5aje

inD/2 and B5bj , we arrive at the following simple
dynamical system:

Ȧ5msA1nsuBu2,

Ḃ5mwe2 iD/2B1nwe2 iD/2B~A1A* !, ~41!

where

ns5~21!n112kI 0sin2~Q2/2!,

nw5~21!n2kI 0sin2~q2/2!,

FIG. 3. Strained resonant pattern defined by Eq.~37! with N
511. ~a! The real space image. The values or the amplitudes
respond to the stationary solution atm521/4. ~b! The Fourier
space structure. Explanations are as in Fig. 2.
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ms522kI 1ssinQ2, mw52kI 1wsinq2. ~42!

D. Double resonance

The interactions of composite waves are more com
cated whenN is divisible by 3. In this case, one has
include also additional resonant terms corresponding to
teraction of Turing modes comprising the Turing compos
mode. The resonant conditions for these modes have
form Qj1Qj 1m1Qj 12m50, where m5N/3. It must be
noted that the resonance involving one Turing and two w
modes becomes in this case exact, i.e., it is excited at
values of wave numbers corresponding to the minima of
neutral curve.

Repeating the derivation procedure and recalling t
Q253p/2 andq25p/2, we arrive at the set of equations

ȧ j52kI 1saj2kI 0@~21!me2 imD/2bjbj* 1aj
2* #,

ḃ j522kI 1we2 iD/2bj2kI 0bj@aj~2eiD/2!m21

1aj* ~2eiD/2!N2m21#. ~43!

Taking into account that (2eiD/2)N51, denoting
A5aje

imD/2 and B5bj , and rescaling the time variable b
kI 0 yields a simple dynamical system:

Ȧ52msA1~ uBu21A2* !,

Ḃ5Be2 iD/2@2mw2~A1A* !#, ~44!

wherems5I 1s /I 0 ,mw5I 1w /I 0 .

V. AMPLITUDE DYNAMICS

A. Dynamics of three composite modes

The amplitude equations involving three compos
modes have most interesting dynamics. It is advantageou
use the polar representation of the complex amplitudes,

aj5raeiua, bj5rbeiub, cj5rce
iuc. ~45!

Then Eqs.~36! are reduced to the following system of fou
real equations including a single phase combinat
u5ua1uc2ub :

ṙa5msra2nrbrccosu,

ṙb5mwrbcos~D/2!1nrarccos~u2D/2!,

ṙc5mwrccos~D/2!1nrarbcos~u1D/2!,

u̇5nS rbrc

ra
sinu2

rarb

rc
sin~u1D/2!2

rarc

rb
sin~u2D/2! D .

~46!

The stationary values of the amplitudesra ,rb ,rc can be
expressed as

ra5
mwcos~D/2!

nAcos~u2D/2!cos~u1D/2!
, ~47!
i-

-
e
he

e
he
e

t

to

n

rb5
1

n
A2msmwcos~D/2!

cos~u1D/2!cosu
,

rc5
1

n
A2msmwcos~D/2!

cos~u2D/2!cosu
.

The stationary value of the phaseu verifies the following
equation:

msS tanu1m
sin2u

cos~u2D/2!cos~u1D/2! D50, ~48!

wherem5mwcos(D/2)/ms . A simple solution of this equa-
tion satisfies sinu50, yielding u5p at negativems , and
u50 for positive value ofms . This is a symmetric solution
with equal amplitudes of the wave mode
rb5rc5A2msmw/n. Applying the Routh-Hurwitz stability
criterion one can check that the stability conditions of t
symmetric solution are

mw.0, m.21/4, ms,2
1

2
cos2~D/2!. ~49!

Another solution of Eq.~48! verifies the relation

cos2u5
sin2~D/2!

112m
. ~50!

It is immediately seen that the solution exists provid
m.21/2 and 112m>sin2(D/2), which leads to the condi

tion m>2 1
2 cos2(D/2). It is required for positiveness of th

amplitudes that cos(u2D/2)cos(u1D/2).0. This inequality
can be rewritten in the formm sin2(D/2),0, and hence,
m,0. Equation~50! defines in fact a pair of asymmetri
solutions which are transformed to one another by int
changing the amplitudes of the wave modes. This pair bif

cates from the symmetric solution atm52 1
2 cos2(D/2). The

bifurcation is supercritical atm.2 1
4.

At still higher values ofm, the asymmetric solutions un
dergo a supercritical Hopf bifurcation. The bifurcation loc
in the plane~D,m! is given implicitly by the relation

2~114m!~115m18m2!sin4~D/2!

1@318m~m12!~112m!#sin2~D/2!@2m1cos2~D/2!#

13~417m14m2!@2m1cos2~D/2!#250.

The additional stability condition isms,0.
A pair of asymmetric periodic solutions further merg

into a symmetric attractor as a result of a homoclinic bifu
cation. We were unable to determine the locus of this bif
cation exactly because of a very complicated dynamics in
vicinity of a saddle point in the four-dimensional pha
space. This is a saddle focus with two-dimensional sta
and unstable manifolds, both oscillatory. Near this bounda
the dynamics is apt to be chaotic@18#. The behavior of the
periodic orbit rather close to the saddle-loop bifurcation
seen in Fig. 4. Near the saddle point, one of the amplitu
becomes nearly extinct, while the composite phase un
goes sharp oscillations. Our numerical estimates suggest
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the saddle-loop boundary is roughly defined by the relat
m52pD/2. At m,2 1

4, the system escapes to infinit
while at m.0, i.e.,ms,0 andmw,0, the pattern decays t
the trivial featureless state. The bifurcation diagram in
planem,D is presented in Fig. 5.

The actual pattern may be stabilized at large amplitu
by nonresonant cubic interactions. Confinement in the sm
amplitude region by quadratic interactions is only possi
when the Turing mode is subcritical and the wave mode
supercritical but not too strongly. AtN511, the small-
amplitude dynamics never relaxes to a stationary state. Lo
time oscillations of the type shown in Fig. 4 modulate t
nonstationary quasicrystalline structure shown in Fig. 2.

B. Dynamics of two composite modes

The dynamic behavior under conditions of strained re
nance is much simpler. One can see that the relevant
namic variables in Eqs.~41! are the real part of the compos

FIG. 4. Periodic solution of the system Eq.~46! for N511 at
mw /ms521/20. The composite phaseu remains nearly constan
during a larger part of each half period, and undergoes sharp o
lations before and after switching to the alternative level. Osci
tions of the two wave modes are identical but shifted by the h
period relative to one another. Oscillations of the Turing mo
~thick line! have a smaller amplitude, and a twice shorter perio

FIG. 5. Bifurcation diagram of Eq.~46! in the parametric plane
~D,m!. LettersS andA denote the regions of stable stationary sy
metric and asymmetric solutions;P stands for a pair of asymmetri
periodic solutions, andU for a symmetric periodic solution or othe
symmetric dynamic attractor. The dashed line shows an appr
mate location of the saddle-loop bifurcation.
n

e

s
ll-
e
is

g-

-
y-

ite Turing modeR5ReA and the modulus of the wave mod
P5uBu2. Transforming to these variables we obtain the s
tem of two real equations only:

Ṙ5msR1nsP, Ṗ52P~mw12nwR!cos~D/2!. ~51!

The stationary solution is

R52
mw

2nw
, P5

mwms

2nwns
. ~52!

According to Eq.~42!, nwns,0, and the above solution ex
ists only if mwms,0. The stability conditions of the solution
arems,0, mw.0, and cos(D/2).0. Thus the stability region
is greatly enlarged, compared to the exact resonance,
encompasses now the entire quadrantm,0, 0,D,p in
Fig. 5, while periodic long-time dynamics is not seen an
more.

C. Double resonance dynamics

Equations~44! including double resonance differ from
Eq. ~41! only by the presence of a self-interaction term f
the Turing composite mode. This term is destabilizing, a
in the case of pure Turing patterns, one needs to incl
third-order terms dependent on four-wave interactions to
sure amplitude saturation. We shall see that, due to the
dratic wave-Turing resonance, the pattern can be stabil
in the small-amplitude region. The system, however, s
possesses a large-amplitude attractor.

Setting in Eq.~44! A5reiu, B5pei t yields

ṙ 52msr 1~p2cosu1r 2cos3u!,

ṗ52p~mw2r cosu!cos~D/2!,

u̇52~p2sinu1r 2sin3u!/r . ~53!

The phase of the wave mode is irrelevant also in this case
that the equation fort is separated and may be dropped. T
phase of the Turing mode relaxes to zero; thus the station
solution is

u50, r 5mw , p52msA2m~m12!, ~54!

where m5mw /ms . The solution exists at
mw.0, ms,0, 0.m.22. For stability analysis, it is suffi-
cient to consider a simplified system withu50:

ṙ 52msr 1p21r 2,

ṗ52p~mw2r !cos~D/2!. ~55!

The trace of the linearized system is 2(ms1mw); thus a
Hopf bifurcation takes place atm521. This bifurcation is
subcritical. The stationary state is stable at 0.m.21 but
the system always possesses an additional attra
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-
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e

-
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p→0, r→`. An unstable orbit which exists atm.21
bounds the attraction domain of the small-amplitude stati
ary solution. Atm,21, all trajectories are attracted to th
large-amplitude region, and taking into account higher-or
terms is necessary to obtain finite solutions.

VI. CONCLUSION

The nonlinear optical cavity with a rotated beam has
versatile and easily controllable dynamics. Complex sm
amplitude patterns near a symmetry-breaking bifurcat
et

ch

d

y

y,

ev
-

r

a
l-
n

point, that are very difficult to construct in other patter
forming nonequilibrium systems, appear here in a very na
ral way. The central point of this study is a primary role
resonant interactions between wave and Turing modes.
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