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Resonant two-dimensional patterns in optical cavities with a rotated beam
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We describe selection and dynamics of transverse patterns in a nonlinear feedback cavity with a rotated
beam. The symmetry of the patterns, described by composite modes, is determined by the image rotation angle
within the loop. Complex quasicrystalline patterns sustained by resonant interactions arise under conditions
when wave and Turing composite modes are excited simultaneously. It is shown that the excited patterns may
be saturated even by the action of quadrétizee-wave interactions only. Exact resonance involves three
composite modes, and may exhibit periodic amplitude modulation on a slow time scale. Another possibility is
a strained resonance leading to stabilization of the pattern in a wider parametric domain. Finally, wave-Turing
resonance may be complemented by resonance among Turing tfigle@&0-294{®7)09211-1]

PACS numbdis): 42.65.Sf

I. INTRODUCTION wave numbers, leading to still more complicated quasicrys-
talline patterns.

Recent experiments based on nonlinear optical cavities Quasicrystalline patterns in experiments with a rotated
with a rotated image beaii-5] showed a variety of trans- optical beam may be viewed in a longer perspective of a
verse patterns, including rolls, hexagons, rotating spirals, anquest for nonequilibrium patterns that have a complicated
various multipetal structures. Liquid crystals were chosen aspatial structure but are well ordered in the Fourier space. It
a nonlinear medium in all these experiments. Observation dfias been long expected that a variety of patterns of this kind
transverse patterns in real time was facilitated by the strongray be constructed by considering interaction of competing
nonlinearity and slow response times of liquid crystals. wave modes near a symmetry-breaking bifurcation paiht

Akhmanovet al.[1] investigated both experimentally and It was predicted that such patterns may also exhibit complex
numerically transverse patterns in a ring cavity containing alynamics of amplitude modulation on a slow time scale due
nonlinear element and a fiber bundle enabling one to rotatep phase locking between noncollinear standing wd@s
shift, or dilate an optical image. In their simulations, they Another possible source of quasicrystalline patterns is a su-
used a parabolic equation for the nonlinear phase shift in thperposition of two resonant triplets of stationaffuring)
nonlinear medium valid in the high absorption limit. This modes[9]. Conditions whereunder such patterns might be
equation described various spatial transformations of the opselected in reaction-diffusion or convective systems are ap-
tical image(rotation, shift, dilation, and their combinations parently very rare, and are not easy to locate because of
as well as a time delay of the optical image in the feedbaclkechnical difficulties in evaluation of mode interaction coef-
loop, but neglected diffraction. Linear stability analysis of ficients. Quasicrystalline patterns of Turing type were, how-
this model, showing possible excitation of a variety of sta-ever, observed in experiments with parametric excitation of
tionary (Turing) and wave modes with different symmetry, surface wavegl0,11]. Selection of unforced quasicrystalline
was carried out by Adachihara and F§&]. The experiment Turing patterns was discussed for model equatjd2} they
[1] demonstrated excitation of rotating multipetal spiralwere also shown to be one possible state of Marangoni con-
structures, and their coexistence and hysteresis. vection in a layer with a deformable interfaf®3]. Optical

In the experiments reported by Pampaloni and co-workersystems may show more possibilities for formation of com-
[2-5], a liquid crystal light valvgLCLV) was used to close plex patterns. Selection of quasicrystalline patterns in a feed-
up the feedback loop. LCLV imitates a Kerr-like nonlinearity back cavity has been recently demonstrated analytically and
converting an amplitude deviation in the light beam into anumerically by Leducet al. [14].
phase modulation. In its turn, diffraction in a free propaga- Optical systems with a rotated beam offer a most straight-
tion section of the optical cavity converts a phase shift intoforward way to controlled spatiotemporal complexity, since
an amplitude modulation. The feedback loop is completed byere the symmetry of the pattern is imposed externally rather
a fiber bundle rotating the image by a certain angle. Thehan being subject to a stringent selection process. Interac-
experiment showefl2] that in the absence of rotation only tion among simultaneously excited modes of different wave-
hexagonal patterns are stable, while rotationsbleads to a  lengths[4] is an additional way to greatly enhance complex-
stable roll structure. It was further shoy/8] that periodic ity. In this case, pattern selection depends, however, on
and quasiperiodic structures can be generated by rotating thmnlinear interactions as in all “natural” nonequilibrium
image by an anglé& =2=/N with an integeN>4. Any of  patterns.
these structures corresponds to a familyNofplane waves Concerted selection of several modes is most likely when
with the same wave number equispaced in Fourier space ey are mutually enhanced as a result of resonant interac-
the angleA. Recent experimen{#,5] demonstrated simulta- tions[5]. Le Berreet al.[15] used this property to generate
neous excitation of phase-locked families with differentquasicrystalline Turing patterns with eightfold symmetry in a
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special case when modes with the wave number rg@fBo is a constant phase shift, aRd is the attenuation coefficient
were excited simultaneously. Dynamical resonant patterndue to the absorption in the layer.
may occur when a Turing and wave mode are excited simul- Propagation and diffraction of the beam in the free part of
taneously. This is quite likely to occur in nonlinear optical the cavity is described by the diffractional transfortn
cavities[16]. Logvin et al.[17] noticed a possibility of reso- which is obtained in the paraxial approximatif?il] as the
nance between Turing and wave mode. This resonance hagsolvent of the parabolic equation
also been detected in Marangoni convectih]. . 5

It is the aim of this paper to analyze dynamics of patterns iE,=V°E. 2
generated through resonant interaction among families of bi-

- . . Here the coordinate in the direction of propagation is
furcating modegor composite modeof different type. Af- i .
ter formulating the basic equations in Sec. I, we reiterate ir‘?‘Caled by the length of the diffractional path, and the trans-

Sec. Il the linear analysis of the model discussed in [&f. Verse coordinate32 by the diffractional I_engﬁ, where\ is

emphasizing simultaneous bifurcation of wave and TuringN€® wavelengthV® denotes the two-dimensional tr?nsverse

composite modes. Following the nonlinear analysis and deri-aPlacian. Formally, one can writ®(z) =exp(-izV*), so

vation of amplitude equationéSec. V), we investigate in thatD(2) =exp(zk’) when it operates upon a pure mode with

Sec. V long-time dynamics of composite patterns. a transverse wave numbkr . .
A specific feature of the system in question is a possibility ~Before closing the loop, the image is rotated by a certain

of stabilization of a pattern by quadratic interactions only.2ngleA. The rotation is described by the operator

Simple resonant patterns like a hexagonal one require for . _

their stability a cubidfour-wave interaction term to be in- JA): TANr by =ir, ¢+ A} 3)

cluded becayse quadrat(mree—wa_\{ée tt_arms alone cann_ot The resulting output field, can be written as

ensure amplitude saturation. Stabilization by quadratic inter-

actions has been de_zscribed before for restricting conditions Eo(r)=J(A)RD(1L)E;(r)exd —ix(r)+iQ], (4)

of exact subharmonic resonan8—-20. We shall see that

composite patterns formed by two resonantly interactingvhere the attenuation coefficieRtlumps all losses during a

families of modes may be stabilized by three-wave interacsingle round-trip.

tions in a wide parametric range, and show that the ampli- The model of material dynamics can be written, assuming

tudes of the constituent modes may undergo slow periodia Kerr-type nonlinearity, in the dimensionless fof22]

modulation resulting in complicated spatiotemporal pattern

dynamics. The exact resonance condition, verified by two x=8"V2x—x— k| Eo(x(r)|?. 5)
wave modes and a single Turing mode, leads to complicated ) o ) )
spatiotemporal patterns. The material response time is taken as the time séatethe

We shall also discusSec. IV Q a possiblestrainedreso- ratio of the photoca_rrier diffusion Ie_ngth to the diffra_ction
nance situation when only two composite modeave and  €ngth. Although typicallyd<1, the thin sample approxima-
Turing) survive. The wave mode is excited then with a wavelion can be retained, provided the diffusional length far ex-
number slightly different from the exact minimum of the C€€dsX, so that longitudinal wavelength scale grating is
neutral curve. Such a structure may be selected due to Yashed out by dgfusmn. Then E() retains only the trans-
strong mutual damping of modes directed at a small angle t¥erse Laplaciav<. Dynamics of the refractive index modu-
one another. Strained resonance generally simplifies dynanf@tion x depends on the strength of the nonlinearity,
ics, and only stationary patterns are observed under thed#ich is positive for a defocusing medium. o
conditions. A special case considered in Sec. IV D is rotation e shall assume that the material response time is much
by an angleA =27/3N (N odd) when the wave-Turing reso- larger than the round-trip time in the cavity. Under these

nance is complemented by the resonance among Turing trir_g:_onditions, the electric field envelope is quasistationary, be-
lets. ing slaved to the material variable. Combining the cavity

transform Eq.(4) with the appropriate feedback conditions
then allows expression @&(r) as a nonlinear functional of
the material fieldy(r). Now Eg.(5) is rewritten as

The successive transformations of the complex envelope . : .

of the electric fieldE;(r) of a light beam in a nonlinear X= V2 x—x—xJ M) lexp—iVA)exp(—ix)|?,  (6)
optical cavity include three stage@) point transformation
in the nonlinear medium, adding a phasdependent on the
transverse coordinate (b) diffraction in the empty part of
the cavity, described by some linear operaf@r and (c)

II. BASIC EQUATIONS

wherel denotes the input beam intensity arek «,R?.
Equation(6) always has a stationary homogeneous solu-
tion yo= — kI which, however, may lose stability when the

X i . input intensity exceeds a certain critical level. The critical
rotation .Of the image, d_escnbed by the QperanA). intensity, as well as the preferred transverse wavelength of
The first transformation takes place in a thin layer of a

. : S “the emerging pattern, is determined by the linear stabilit
nonlinear Kerr-type medium, which is assumed to be uni- ging p y y

: I L R analysis of the homogeneous solution.
form in the longitudinal direction. The field is transformed as y 9
E (1) —R.E;(r)exp —ix(r) +iQ), (1) Ill. LINEAR ANALYSIS
The standard procedure of linear analysis involves testing
wherey is the normalized refractive index of the mediufh, stability to arbitrary infinitesimal perturbations, usually plane
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waves. The rotation of the optical field mixes different Fou- A. EvenN

rier modes, and thereby limits the choice of basis functions. 6 owest positive value of the bifurcation paraméter
If the rotation angle is commensurate withm2 so that | o5ched af =N/2 and is

A=2mn/N (wheren andN are integers that do not have

common factorg one can use a rotationally invariant com- 1+ 6%9?

bination of N plane waves expg-r), where
|gj|=q=idem, and argg;)=Aj,j=0,1,..N—1, and their
complex conjugates. This combination corresponds to ghe corresponding eigenvectétl) with j=N/2 has real

regular pattern aN<4 or N=6, and to a quasicrystalline ComponentsiJN,zyk=(—l)k‘1, and the excited planform is
planform at otheN. Since the emerging pattern must be described by

stationary at the round-trip time scale, the amplitudes of all
constituent modes should have identical moduli, but their _
phases may be different. X1=akZl (=D Texplige-r)+c.c. (14)

We shall reiterate here in more detail the linear analysis a
outlined in Ref.[3] for the case of a commensurate rotation jare again two cases arise. The first one corresponds to
angle A=27/N with integer N. Proceeding in a standard n=4K with integerk, giving
way, we sety= xo+ ex1(r,t), wheree<1, and linearize Eq.

T 2k sing?’ (13

N

(6) presenting the linear termp, as the sum oN bifurcating N/2
modes with the wave vectors; (i=1,2,..,N) equally x1=AY (—1)* *cogq-r). (15
spaced by the angla, and their conjugates: k=1
N Another possibility isN=2(2K —1) with
X1=J_Zl ajexp(ig;-r+\t)+c.c. 7 Nio
Xa=A2, sin(gyr). (16)

The linear eigenvalue problem then reads

Lx1=[N+1+ 6202+ 2kl sin(g?) J(A)]x,=0. (g8 Inthe lasttwo formulas, the amplitudeis real.
xa=l a AT D We observe that for eveN the bifurcating planform is a

Because the action of the rotation operator has the forngombination ofN Turing modes. All these modes are excited

J(A)g; =041, the termJ(A) x; is expressed as simultaneously, so we consider a singlempositeTuring
N mode with the amplitude.
J(A))m:]z::1 ajexpigy 1 r+A+cc, ©) B. Odd N

The case of oddN is most interesting because it provides
a possibility of a resonance among composite modes bifur-
cating at different wavelengths. The lowest minima of posi-
tive branches may have close heights. Such minima are

where the indices are cyclic modud The amplitude vector
a comprised of the amplitudes; satisfies the eigenvalue
problem Ma=\a with a circulant matrixM, such that

M;i=—(1+6°0%) andM, ;_1=—2xl sing’ all other ele-  oached aj =(N+1)/2 andN, respectively.
ments ofM are zeroes. The set of eigenvalues of the matrix g, thej=N, the eigenvalue is real:
M is : :
A= —(1+8%9%) — 2« sing?. 1
Ni=— (14 8202+ 2« N Lsing?). (10 n= (o) " (7

) ) The neutral curve is given by

The componentdJ; , of the corresponding eigenvectdds

are I 1+ 6%g° 18

=T 5 -7
_ i ) 2
U =rkt=e2miN, =1, N (11) e sinq

. . The amplitudes of the elementary modes are equal to one
wherer; denotes thgth root of unity ofNth degree. P y a

another:
The basic statg loses stability at Rg=0, which deter-
mines the location of the neutral curve: Uyk=1, aj=a. (19
_ 1+ 6%g? As the result a composite Turing mode is excited:
l=— A D Ay (12)
2k sing“cogAj) N
The positive branches of this curve give the critical value of Xlzagl exp(igg-r)+c.c. (20
the bifurcation parametey, corresponding to excitation of a
planform with the wave numbeq. The selected type of In the casg = (N+1)/2, the eigenvalue is complex:
planform and the wave number correspond to the absolute
minimum of 1 (q). NN+ 1= — (1+8%0%) + 2kl sing®exp(iAf2).  (21)

The cases of even and odd valueNoghould be consid-
ered separately. The critical value of the bifurcation parameteis
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0.55 modes are shown in Fig. 1. Their minima are close one to the
other, and both may be excited simultaneously.
0.545
IV. WEAKLY NONLINEAR ANALYSIS
A. Multiscale expansion
0.54 T . . .
" Following the standard method of multiscale expansion,
we introduce a hierarchy of time scales:
0.535 )
alat= ol dty+ el Ity + €29l ty+- -+, (28
and expand in Taylor series the phase variable and the bifur-
1 1.2 1.4 1.6 1.8 2 2.2 2.4 cation parameter:
! X=X0+EX1+€2X2+"', |:|0+€|1+62|2+"'.
FIG. 1. First two positive branches of the neutral curve for (29)

N=11, corresponding to a composite wave moa@,(and a com-

posite Turing modeT). In order to exclude the dependence of the basic solygpn

on the bifurcation parameter, we shift the variable
X— X~ Xo: then Eq.(6) becomes

1+ 6292
| = —. (22 C_2w2. w2 N2
2k cog A/2)sing x=08Vox—x—xJ(A)l|exp(—iV)exp —ix)[“+«l,
(30)
The emerging structure can be characterized as a composite o ) )
wavemode with a nonzero frequency with the trivial basic solutiony=0. _
Using the above expansions in E§0) we recover in the
w=(1+8°g>)tan(A/2). (23 first order ine the linear eigenvalue proble(B). In the next
order, we arrive at the following inhomogeneous linear prob-
The eigenvectof11l) has complex-valued components: lem:
Uins pyox=(— €43k 1, (24) Lx2=—dx113t,— 2kl oSIP(VZ2) T(A) x5
The last result implies the relation between the amplitudes of +2xk14SIN(V?) J(A) X1, (3D

the adjacent modes where L is defined in Eq(8). Amplitude equations are ob-

a_.=—ge A2 (25) tained as solvability conditions of E(1), i.e., conditions of
-1 I ' . . . . .
orthogonality of the inhomogeneity to all eigenfunctions of
Finally, the excited composite wave mode is the adjoint linear problem. A nontrivial solvability condition
is obtained when the quadratic tefmproduct of two eigen-
N functions, say,#; and i,) is in resonancewith another

xi=aeety, (—1)k telkDA2eypiq,.-r)+c.c. (26)  eigenmode, sayy,. This requires that the frequencies and
k=1 wave numbers of the three modes involved satisfy the con-
ditions
C. Degenerate bifurcations
i i Lo k1+k2:k0, w1+w2=w0. (32)
In the diffractional limit, 5<2#/q, all branches have
minima at g>=(2m-+1)#/2 with integer m. Only first A resonance triplet may involve therefore either three Turing
branches which have the lowest minima are relevant for thenodes or two wave modes from the same fanilg., with
pattern selection. The wave mode has the lowest minimum atlentical frequencigsand one Turing mode.
q= w2, while the first positive minimum of the Turing

mode is located afj= /37/2. B. Exact resonance

: It can pe shown that for smal! odd the composite Tgr— A possible resonant structure that may be excited at odd
ing mode is most dangerous, while for lafge¢he composite N consists of two wave modes with a wave numbeand

wave mode has the lowest threshold. It is easy to determine Tur q ith th ber— \/§ N h
the critical value ofN when both modes can be excited si- °"€ 'Uring mode wi € wave num Q= y3q. suc
multaneously. This value is given by modes must be present to satisfy the imposed rotational sym-

metry. The pattern in the Fourier space is builf\bfdentical
1+2/(78%) isosceles triangles with acute angles equatrté (and their
Ner= (1/7T)ar0005m- (27)  conjugates produced by rotating the original trianglesmy
The triangles are spaced by the angjle 277/N. Altogether,

The calculations using the values of the parameters reportdis resonant planform is built of plane wave modes:
in [3] give the best fit integer valubl=11. The first two

positive branches of the neutral curMeq) for the composite Y1= 2 {ajein~r+eiwt(bjeiqj-r+Cjeikj-r)}+C_C_, (33)
wave and Turing modes each comprised of 11 plane wave j=1

=z
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crystalline structure. Since the plane waves comprising the
pattern are out of phase hy/2, the pattern exhibits rota-
tional motion at each location.

In order to derive dynamic equations for the amplitudes
aj, bj, andc;, one has to substitute E(33) in the right
hand side of Eq(31), and then to project it on the adjoint
eigenvectorU" satisfying £'UT=0, where £LT=,* is the
operator adjoint ta’.

Using the relationg34) we arrive after some algebra at
the following system of amplitude equations:

aj= — 2kl oSiM(Q4/2)bjc} — 2kl 1,8iNQ%a; ,
by=e~ "2« Sin’(g%/2)a;c; + 2«1 1,,8ing7b; ],
¢j=e M 2kl osirP(g2/2)ak bj+ 2«1 1,sing2c;]. (35)

Here |5 and |4, denote small deviations from the critical
value |, for the Turing (stationary and wave composite
modes, respectively. These deviations may have different
® signs due to different values of the corresponding minima of
L the neutral curve. Further on, we choose them to be of the
° opposite sign. This means that one of the composite modes is
subcritical and the other one is supercritical. This case is

PY oo P (] most interesting, as it allows us to prevent both decay to the
1 L trivial state and runaway to large amplitudes through the
P action of quadratic interactions.
0\/. Recalling thatq?= /2 and Q?=3w/2 we rewrite the
above system as
° - T e — @ _
[ ) (] ajZMSaJ_VbjCik s
o [ J [ ’ —iAf2
PY P bjz(,LLij+V8.jCj)e s
e o * &=+ varb)e 12 (36)

wherev=«lg, us=2«l.5, and p,,=2k«lq,,. A similar dy-

o namical system has been obtained in the context of Ma-

rangoni convectiof18], although there the setting was one

dimensional, and therefore the resonance occurred only un-
FIG. 2. The planform(33) with N=11. () A snapshot of a real der conditions 'When the wave number of thg Turing mode

space(near field image. The values or the amptlitudes correspond\’_\’aS Qxactly tW'Ce that of the wave mode. This _r_estrlctlon IS

to the periodic solution at= — 1/20 (Fig. 4) taken att=178. (b liited in two dimensions, as the resonance conditig® can

The structure in the Fourier spatfar field image. The inner circle D€ satisfied in a wide range of wave number ratios by choos-

corresponds to wave modes, and the outer circle to Turing mode#1d an appropriate angle between the wave vectors.

Complex conjugate modes are omitted. One of the resonant isosce-

les triangles is shown, and the participating Turing mode is indi- C. Strained resonance

cated by the dashed line.

(b)

One can also envisage a structure based on a single com-
posite wave mode and a single composite Turing mode. It is
clear that, while in this structure all resonant triangles remain
isosceles, the acute angles have slightly different values, and

where the complex conjugate is added for oddl
q=k=Q/+/3, and the following relations are satisfied:

q—ki=Q;, a,,=a, the wavelengths must be different from the exact minima of
P : the neutral curve. We call it therefores&rainedresonance.
bji1= _eiA/ij , Cj41= —e‘Alch- i (34) Excitation of a strained planform is likely for the follow-

ing reason. The smallest angle between two wave modes
The first of these is the resonance conditiB@). The three involved in the exact resonant planform corresponds to a
recurrency relations imposed by the rotational symmetry folimismatch betweems/N andn/6, wherem,n are integers,
low from Egs.(19) and(24). and comes foN=11 to a meren/66, i.e., less than 3°.
A snapshot of the pattern defined by E83) and the Modes at very small acute angles are expected to be strongly
corresponding structure in the Fourier space are shown imutually damping by cubic interactions. Generally, we ex-
Fig. 2. The planform has a complicated nonstationary quasipect that cubic interaction coefficients smoothly depend on
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the angle between the modes, and therefore interactions at a
small angle do not differ very much from interactions at zero
angle. The self-interaction coefficient is, for combinatorial
reasons, exactly one-half the interaction coefficient of two
modes at zero angle, and therefore waves at small angles
would tend to “merge.” Although cubic interactions are
weaker than quadratic ones at small amplitudes, and we do
not consider them here explicitly, we may expect that the
system might choose to reduce the number of modes and
adjust to the resonance by straining the wavelength slightly
off the optimal value.

We assume that the vectors of the composite wave mode
g;j andq; ; , are in resonance with the vectQy of the Turing
composite modeQ;+q;,,=0;. If the vectorg; is at an
angle a to Q;, then the vecton;,, must be at the angle
m—a t0 Qj, so thatm—2a=2mn/N with integern. At the
same time, the value af should be as close as possible to
/6. Then a/7=1/2—n/N, which leads ton~N/3. Any
odd integer may be presentedMs 3m=1, or N=3m with
integerm. Then the required value is=m, and we find
a=m[1/2-=m/(3m=1)] for N=3m=1, and a= /6 ex- L &
actly for N=3m. ForN=11, n=m=4, one can choose the
negative sign, arriving ak=3#/22. The required value can g
be achieved by reducing the wave number of the wave mode
from q to q(1—€y), whereey<<1 depends oM. The cal- Py PY
culation forN=11 givese;;~0.048.

A strained resonant pattern has a simpler structure than |®
the exact resonant planform because it is built up of oMy 4 \/
plane waves, and contains only two independent amplitudes: | T« _ _ _ _ _ _ °

N
Xl:J-E_:l [ajein-r+bjeiwteiql'vr]_*_c.c., (37) ®

where the amplitudes satisfy the following relations:

aj+1=4qj, bj+1:_eiA/2bj. (38)

A snapshot of the planform defined by E&7) and the cor- ®
responding structure in the Fourier space structure are shown
in Fig. 3. FIG. 3. Strained resonant pattern defined by &) with N
At first sight, the amplitude equations appear to be more™ 11. (a) The real space image._The values or the amplitud_es cor-
involved in this case, since each elementary wave rrq;de respond to the statlonary solution p,tf: —.1/4. (b) The Fourier
takes part in two resonant triangle§,=q;—q; ., and space structure. Explanations are as in Fig. 2.
Qn+j-n=0n+j-n—0;- In order to derive the dynamic equa- . ) . .
tions for the amplitudes; andb; in the planform(37), we bj=2xl,sing’e”'4"?b; — 2kl ¢sin(q%/2)
have to repeat the procedure used in the preceding subsec- A/ N—1 | % A/ N—n—1
. L . Xb.[a.(— *(_ .
tion. This yields the following result: bi[a;(—e™H)™ "+ ay (—e™) . 0
_ Taking into account that {e'“)N=1, and denoting
aj=— 2kl sin?(Q?/2)b;b¥, . — 2kl siNQ%a; _ 1, A=a;e"*? and B=b;, we arrive at the following simple
dynamical system:

bJ: _2K|03ir\2(q2/2)(ajbj+n,l+ a}k bN+j*n*l) AZIU,SA‘I' VS|B|2,

—2kl4,sing?b;_;. 39 : i i
1wSINg~0j -1 39 B=u,e '22B+ e A2B(A+A%), (41)

Recalling the relation§38) we rewrite the above system as \ypere
a,=— 2kl 1sinQ%a; +2( — 1)"* 1kl (SinA(Q%/2) ve=(—1)"" 2kl gsin’(Q?/2),
xe M2 bt v (—1)"2k1 GSir(612),
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ws=—2k118INQ%, =2kl 1,SiNg°. (42) 1 [~ 1oy COLA/2)
Po=% N cod 6+ Al2)cosd’

D. Double resonance

The interactions of composite waves are more compli- p :E \/ _MS“WCOS(A/Z)_
cated whenN is divisible by 3. In this case, one has to ¢ v Vcog6—Al2)cosd
include also additional resonant terms corresponding to in- ) - .
teraction of Turing modes comprising the Turing composite! "€ Stationary value of the phageverifies the following
mode. The resonant conditions for these modes have tHzAuation:
form Qj+Qj+m+ Qj+2m=0, where m=N/3. It must be
noted that the resonance involving one Turing and two wave
modes becomes in this case exact, i.e., it is excited at the
values of wave numbers corresponding to the minima of the ) ) .
neutral curve. where u= u,,cosA/2)/us. A simple solution of this equa-

Repeating the derivation procedure and recalling thaion satisfies sif=0, yielding 6= at negatives, and

Q?=3n/2 andg?= /2, we arrive at the set of equations 6=0 for positive valu_e ofws. This is a symmetric solution
with  equal amplitudes of the wave modes:

) sin20
@I+ 1 o= Al2)cod 6+ A2)

Ms

) =0, (49

a;= 2kl 58— klo[ (—1)Me” M2, b* +a’* ], Po=pc=\— sitw/ V. Applying the Routh-Hurwitz stability
criterion one can check that the stability conditions of the
bj = — 2kl 1We—iA/2bj —l Obj[aj(—em’z)m‘l symmetric solution are
+ar (—etNTml], 43 1
i € ) ] “3 pw>0, p> =14, pe<—5 coS(A/2). (49

Taking into account that e'*2N=1 denoting

A=a;e™"2 andB=b;, and rescaling the time variable by  Another solution of Eq(48) verifies the relation
klq yields a simple dynamical system:

, Sin?(A/2)
A=2uA+(|B|2+AZ), cos 6= EFC (50)
B=Be 424, — (A+A*)], (44) It is immediately seen that the solution exists provided
w>—1/2 and H 2u=sir?(A/2), which leads to the condi-
whereps=11s/1o, uw=1l1u/l0o- tion u=—13 co(A/2). It is required for positiveness of the
amplitudes that co$(-A/2)cos@+A/2)>0. This inequality
V. AMPLITUDE DYNAMICS can be rewritten in the formu sir’(A/2)<0, and hence,

n<0. Equation(50) defines in fact a pair of asymmetric
solutions which are transformed to one another by inter-

The amplitude equations involving three compositechanging the amplitudes of the wave modes. This pair bifur-

modes have most mterespng dynamics. It is advar_1tageous antes from the symmetric solution at= —  co€(A/2). The
use the polar representation of the complex amplitudes,

bifurcation is supercritical gt.> — 3.
a=psea bi=p,eh c =p.ee (45) At still higher values ofu, the asymmetric solutions un-
= Pac % D= ppe s L= pe - . ) . )
dergo a supercritical Hopf bifurcation. The bifurcation locus
Then Eqs.(36) are reduced to the following system of four in the plane(A,uw) is given implicitly by the relation
real equations including a single phase combination

0= 0+ 0.— 0 —(1+4u)(1+5u+8u?)sint(A/2)
: +[3+8u(pm+2)(1+2u)]siP(AI2)[ 2+ coS(A/2)]

Pa= MsPa~ VPpPcCOY,
+3(4+7p+4p®)[2p+coS(A2)]?=0.

A. Dynamics of three composite modes

Pb= MwPpCOLA/2) + vpap.COL 6—A/2),
The additional stability condition ig<<0.
o A pair of asymmetric periodic solutions further merges
Po= HupcCOS A12) - vpapyCOS 0+ A12), into a symmetric attractor as a result of a homoclinic bifur-
Pope Paph PaPe cation. We were unable to determine the locus of this bifur-
v| —— sing— —— sin( 6+ A/2) — —— sin( 6— A/2)> . cation exactly because of a very complicated dynamics in the
Pa Pec Po vicinity of a saddle point in the four-dimensional phase
(46) space. This is a saddle focus with two-dimensional stable
and unstable manifolds, both oscillatory. Near this boundary,
the dynamics is apt to be chaofit8]. The behavior of the
periodic orbit rather close to the saddle-loop bifurcation is
cogA/2) seen in Fig. 4. Near_the sad_dle point, one (_)f the amplitudes
pa= Hw , (47 becomes nearly extinct, while the composite phase under-
v\coq 6— A/2)coq O+ A/2) goes sharp oscillations. Our numerical estimates suggest that

-6:

The stationary values of the amplitudes,py,p. can be
expressed as
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ite Turing modeR=Re A and the modulus of the wave mode
. P=|B|2. Transforming to these variables we obtain the sys-
tem of two real equations only:

. R= R+ vsP, P=2P(u,+2v,R)cOgA/2). (51)

The stationary solution is

R:_ﬂ, p— Mwts
1 2vy, 2vy,vg

. (52)

110 120 130 140 150 160 170 t ACCOI’ding to Eq(42), VWVS<Q,- al’ld the .abOVe SO|U1‘i0n -eX'
o _ ists only if w,,us<0. The stability conditions of the solution
FIG. 4. Periodic solution Of the SyStem E(q16) for N=11 at are’us<0, ,U«w> O, and CO%/2)>O Thus the Stablhty reglon
tw! ps=—1/20. The composite phaséremains nearly constant s greatly enlarged, compared to the exact resonance, and
during a larger part of each half period, and undergoes sharp OSC'EncompasseS now the entire quadrant0, 0<A< in

lations before and after switching to the alternative level. Oscilla-g; ; L . e
) ) . . ig. 5, while periodic long-time dynamics is not seen any-
tions of the two wave modes are identical but shifted by the hal{ngre P 9 y y

period relative to one another. Oscillations of the Turing mode

(thick line) have a smaller amplitude, and a twice shorter period. ]
C. Double resonance dynamics

the saddle-loop boundary is roughly defined by the relation Equations(44) including double resonance differ from

w=—mAl2. At u<—3 the system escapes to infinity, Eq. (41) only by the presence of a self-interaction term for

while at u>0, i.e., us<0 andu,, <0, the pattern decays to the Turing composite mode. This term is destabilizing, and,

the trivial featureless state. The bifurcation diagram in thein the case of pure Turing patterns, one needs to include

planeu,A is presented in Fig. 5. third-order terms dependent on four-wave interactions to en-
The actual pattern may be stabilized at large amplitudesure amplitude saturation. We shall see that, due to the qua-

by nonresonant cubic interactions. Confinement in the smalldratic wave-Turing resonance, the pattern can be stabilized

amplitude region by quadratic interactions is only possiblen the small-amplitude region. The system, however, still

when the Turing mode is subcritical and the wave mode isossesses a large-amplitude attractor.

supercritical but not too strongly. AN=11, the small- Setting in Eq.(44) A=re'?, B=pe'” yields

amplitude dynamics never relaxes to a stationary state. Long-

time oscillations of the type shown in Fig. 4 modulate the )

nonstationary quasicrystalline structure shown in Fig. 2. r=2ug +(pcosh+r’cosd),

B. Dynamics of two composite modes b=2p(,uw—r cosd)Cog A/2),
The dynamic behavior under conditions of strained reso- _
nance is much simpler. One can see that the relevant dy- 6= — (p3sind+r2sin30)/r. (53)

namic variables in Eqg41) are the real part of the compos-

The phase of the wave mode is irrelevant also in this case, so

0 ~ that the equation for is separated and may be dropped. The
~ 5 phase of the Turing mode relaxes to zero; thus the stationary
-0.1r ~ 13 ) solution is
~

-0.2} S 5 ] 6=0, r=py, P=—pus\—u(u+2), (54

= 0.3 where  u=p,/us. The solution exists at
) >0, us<0, 0>pu>—2. For stability analysis, it is suffi-
cient to consider a simplified system with=0:
-0.4} U
- r=2ud +p2+r?
0-5 0.2 0.4 0.6 0.8 1 pf TP
Al

FIG. 5. Bifurcation diagram of Eq46) in the parametric plane P=2p(4w=T)COYAL). (55)

(A,u). LettersS andA denote the regions of stable stationary sym-

metric and asymmetric solutionB; stands for a pair of asymmetric The trace of the linearized system is - u,,); thus a
periodic solutions, ant for a symmetric periodic solution or other Hopf bifurcation takes place gi=—1. This bifurcation is
symmetric dynamic attractor. The dashed line shows an approxisubcritical. The stationary state is stable at ©>—1 but
mate location of the saddle-loop bifurcation. the system always possesses an additional attractor



4272 BORIS Y. RUBINSTEIN AND LEN M. PISMEN 56

p—0,r—o. An unstable orbit which exists g>—1 point, that are very difficult to construct in other pattern-
bounds the attraction domain of the small-amplitude stationforming nonequilibrium systems, appear here in a very natu-
ary solution. Atu<—1, all trajectories are attracted to the ral way. The central point of this study is a primary role of
large-amplitude region, and taking into account higher-orderesonant interactions between wave and Turing modes.
terms is necessary to obtain finite solutions.
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