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Abstract
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of a powerful weakly nonlinear analysis method to a minimalistic model characterized by the
conservation of mass of the protein governing the polarization dynamics.
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1 Introduction

Rho GTPases are conserved regulators of various cellular processes, such as polarization, motility,
and asymmetric cell division. In general, they exert their role in these processes by controlling the
timing and location of activation of cytoskeleton components. This includes the control over actin
polymerization, actomyosin contraction, cell adhesion, and microtubule constancy [1]. Rho GTPases
are active when bound to GTP, and inactive when bound to GDP. The exchange of GDP for GTP is
catalyzed by their respective guanine nucleotide exchange factors (GEFs), while hydrolysis of GTP
to GDP is accomplished through activity of GTPase activating proteins (GAPs). The localization
of Rho GTPases is governed by membrane diffusion and various vesicular and cytosolic trafficking
mechanisms. Understanding the mechanisms that control the location and activity of Rho GTPases
is critical for our understanding of cellular processes that must be spatially restricted to be effective.

The study of this process, starting from the symmetry breaking leading to polarization [2], is
far from complete due to large number of interacting components involved. Theoretical analysis of
cell polarization is mainly focused on simple models describing dynamics of a selected few proteins
[3, 4]. In the extreme case the corresponding models consider only a single protein such as Cdc42
GTPase in both active and inactive form with the assumption that the total amount of this protein
is conserved. These minimalistic models [5]-[7] take into account the simple kinetics of two protein
forms together with their diffusion and thus they belong to mass-conserved reaction-diffusion model.
They are characterized by different reaction terms but have one important common feature, namely,
the diffusion coefficients for two forms of the protein are at different scales, so their ratio strongly
differs from unity.

Standard analysis of such models starts with linear stability analysis of the basic uniform steady
state. Linear stability analysis is based on an assumption of smallness of the perturbation amplitude
compared to that of the basic state [8, 9]. This step enables one to find conditions for which
the stability of the uniform state is compromised and the system evolves to a new steady state
corresponding to a polarized cell and also determines the characteristic size (wavelength) of the
fastest growing perturbation. If it is much larger in comparison to the characteristic domain size one
has a transition to a new spatially uniform state. When the perturbation wavelength is comparable
or smaller than the domain size, one has Turing type instability leading to formation of spatially
nonuniform structure.

By its nature the linear analysis makes no prediction about the transition process itself, as it
describes only the initial phase of small perturbation growth. This is the reason why the transition
to the new spatially nonuniform state is usually simulated numerically so that the dependence of
the emerging state characteristics on the model parameters can be obtained by performing a large
number of simulations. This approach was used in [4] where all the mentioned models had been
considered. It should be noted that the models in [5] and [6] were shown to demonstrate Turing
type instability that leads to emergence of periodic structure with finite wavelength. On the other
hand, the model considered in [7] is known to have a different behavior called wave-pinning leading
to establishment of sharp spatial boundary between two stable states. In this case the activation
wave initiated at the domain edge starts to move towards the other edge, slows down and eventually
stops inside the domain. As a result, the detectable difference in protein activity level is created in
two compartments of the cell.

The numerical simulation approach is understandably limited in the ability to predict the dynam-
ics of a perturbed state as a function of the model parameter values. This method is indispensable in
the case when the perturbation grows infinitely, so that the assumption about its smallness used in
linear analysis is no longer valid. In other cases when the perturbation amplitude eventually reaches
some finite (saturation) value the amplitude dynamics of this new stationary nonuniform state can
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be obtained by means of weakly nonlinear analysis [8, 10]. This approach provides an approximate
analytical description of the perturbation dynamics based on the Galerkin method. The spatial
profile is presented as a superposition of several spatial modes with different wavelengths where
each mode has its own time dependent amplitude. The method’s main goal is to obtain a system of
differential equations describing the amplitudes dynamics. As a result the original spatio-temporal
model represented by partial differential equations reduces to a system of ordinary differential equa-
tions (ODEs) that can be solved much faster with higher precision. In some cases this system of
ODEs can be reduced even further down to a single Landau equation that represents the dynamics
of amplitude of the fastest growing mode found at the linear stability analysis step.

The Landau equation implies that the perturbation amplitude change has both linear and non-
linear (usually cubic) contributions. The linear term is always positive, and the amplitude dynamics
strongly depends on the sign of the nonlinear term. If this term is positive too, the perturbation
grows infinitely so that the assumption of amplitude smallness breaks.

When the nonlinear term is negative its contribution would balance the linear term and the
perturbation amplitude reaches some constant saturation value that depends on both linear and
nonlinear term coefficient. In this case one can find a dependence of this saturation amplitude on
all model parameters. It is important to underline that analysis of the Landau equation produces
conditions on the parameters for which the saturation can happen.

In this review (which can also be viewed as a tutorial) we present a very detailed analysis
for a simple model proposed in [5] which is described in Section 2. The linear stability analysis
that includs the description of the fastest growing mode of perturbation is given in Section 3. We
show that the model dynamics in linear approximation depends on two dimensionless parameters
responsible for diffusive and reactive components of the system. In Section 4 we present weakly
nonlinear analysis of the model and derive the conditions for existence of the nonuniform periodic
steady state emerging due to symmetry breaking of Turing type. The main result of this Section
is a derivation and complete analysis of the Landau equation for the perturbation amplitude. We
show existence of four qualitatively different types of evolution of small perturbation depending
on the value of the bifurcation parameter. In Section 5 we compare analytical predictions of both
linear and weakly nonlinear analyses to results of numerical simulations and show that all predicted
regimes are actually observed in numerical experiment.

2 Mass-conserved reaction-diffusion model

In the model of Otsuji et. al. [5], six equations describing the relationship of activation and
localization of Rac, Cdc42, and RhoA are used. These equations include Cdc42 activation of Rac,
RhoA inhibition of Rac, and co-inhibition of RhoA by both Cdc42 and Rac. This inter-dependency
is important for various processes such as migrating epithelial cells or fibroblasts, where Rac and
Cdc42 drive cytoskeleton extension at the cell front that drives motility, and RhoA activation in
the back of the cell drives membrane retraction and loosening of cellular adhesions [1, 11]. The
model also includes the activation of these by their respective GEF’s and the inhibition by the
respective GAP’s. Each GTPase is assumed to be both cytosolic (GDP bound) and membrane
(GTP bound) forms. Furthermore, the GTP membrane form undergoes slower diffusion than the
GDP bound form. Following perturbation, the reaction-diffusion model was found to form a single
polarized distribution following perturbation. After an initial state with multiple polarized sites, a
final solution is acquired with distribution of active Rac overlapping with that of Cdc42, while Rho
accumulation was limited in the polarized area [5].

The authors simplified the system to describe a single protein with two equations, a mass con-
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served reaction-diffusion system. The membrane bound form is assumed to be inactive, and diffuse
more slowly than the inactive, cytosolic form. In addition to diffusion, another term, the reaction
term f(u, v), was necessary to transform a uniform distribution to a system with a singular polar-
ized distribution following perturbation. The authors showed that the numerical simulations of the
simplified model produce solutions similar to that of the original model. In [6] the authors presented
as eight-variable model that they also reduced to a mass-conserved reaction-diffusion system of two
equations only.

With a simplified mathematical system, it is possible to ask additional questions about the
relationship between the size of the perturbation and the resulting polarized state. In previous
models, linear analysis resulted in a perturbation that grew in time, always leading to a single
solution. However, we provide a tutorial to demonstrate that through non-linear analysis, this
system of two equations is able to predict oscillatory behaviors under some conditions. In the
context of biology, this result demonstrates how a reaction-diffusion system may lead to a periodic
polarized system.

The dynamics of two variables u and v representing the active and inactive form of the protein
is described by the one-dimensional reaction-diffusion equations in a region 0 ≤ x ≤ L

∂u

∂t
= Du

∂2u

∂x2
+ f(u, v), (1)

∂v

∂t
= Dv

∂2v

∂x2
− f(u, v), (2)

where it is assumed that the diffusion of the membrane-bound active form is much slower than the
inactive one: Du ≪ Dv. The function f(u, v) describes the reaction term depending on concentration
of both forms. A specific expression of the reaction term depends on the model but the dynamics of
at least the active form should be nonlinear to make symmetry breaking possible. As an example
we use the reaction model discussed in [5], which has a form

f(u, v) = a1

[

v − u+ v

(a2(u+ v) + 1)2

]

, (3)

where u and v denote active and inactive form of RhoGTPase protein. The first term in (3) stands
for the conversion of the inactive form into the active one with the rate a1, while the second term is
responsible for the reverse reaction described by a nonlinear function of total protein concentration;
a2 is the bifurcation parameter determining the stability of the basic uniform steady state.

Assuming no-flux (or periodic) boundary conditions on both ends of the interval one can sum
the equations (1,2) and integrate over the spatial variable to obtain the protein mass conservation
condition

∫ L

0

(u+ v)dx = CL = const, (4)

where the constant C is the model parameter representing the mean protein concentration.
The basic stationary spatially uniform positive solution {u0, v0} verifies the equation f(u0, v0) =

0. From (4) it follows that the basic solution satisfies the condition u0+v0 = C. Using this condition
we obtain for the basic solution

u0 =
A2(A2 + 2)C

(A2 + 1)2
, v0 =

C

(A2 + 1)2
, A2 = a2(u0 + v0) = a2C, (5)

It appears that for some parameter values this basic state can be unstable to small spatially
periodic perturbations. Linear stability analysis determines the range of parameters values in which
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the basic state stability is lost; it also produces the wavelength of the most unstable perturbation
and predicts its growth rate valid at the initial stage of perturbation evolution when its amplitude
is small compared to the basic state value.

3 Linear stability analysis

3.1 Perturbation dynamics

Consider stability of the basic state with respect to small perturbations. Define a perturbed state

u = u0 + u1(x, t), v = v0 + v1(x, t), (6)

where the perturbation amplitude of each component is much smaller than the corresponding basic
value: |u1| ≪ u0, |v1| ≪ v0. Substituting expressions (6) into equations (1,2), expanding them in
the Taylor series around the basic state and retaining the linear term in perturbations we find

∂u1
∂t

= Du

∂2u1
∂x2

+ fuu1 + fvv1, (7)

∂v1
∂t

= Dv

∂2v1
∂x2

− fuu1 − fvv1, (8)

where

fu =
∂f

∂u
=

a1(A2 − 1)

(1 +A2)3
, fv =

∂f

∂v
=

a1A2(A
2
2 + 3A2 + 4)

(1 +A2)3
,

denote partial derivatives of the reaction term computed at the basic solution. As we are interested
in the description of the structure of the finite spatial size (i.e., finite wavelength k) consider a
spatially periodic perturbation of the form

u1 = U exp(σt+ ikx), v1 = V exp(σt+ ikx),

where U, V denote the perturbation amplitude and σ is the growth rate.

3.2 Dispersion relation

Substitution of the above expressions into (7,8) transforms the partial differential equations into a
system of linear algebraic equations

σU = −k2DuU + fuU + fvV, (9)

σV = −k2DvV − fuU − fvV. (10)

Introducing the perturbation amplitude vector {U, V } we rewrite them as a vector equation

σ

(

U
V

)

=

(

fu −Duk
2 fv

−fu −fv −Dvk
2

)(

U
V

)

= J

(

U
V

)

, (11)

where J denotes the Jacobian matrix. The explicit form of this matrix reads:

J =
1

(1 +A2)3

(

a1(A2 − 1)− (1 +A2)
3Duk

2 a1A2(A
2
2 + 3A2 + 4)

−a1(A2 − 1) −a1A2(A
2
2 + 3A2 + 4)− (1 +A2)

3Dvk
2

)

. (12)

The values σ satisfying this equation are called eigenvalues of the square Jacobian matrix J, while
the corresponding vectors {U, V } are called eigenvectors of the same matrix.
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Equation (11) can be also written as

(J− σI)

(

U
V

)

=

(

0
0

)

, (13)

where I denotes the two-dimensional identity matrix. This equation has a nonzero solution only if
the determinant of the matrix in the l.h.s. of (13) equals zero:

det(J− σI) = 0. (14)

The last condition rewrites into
∣

∣

∣

∣

a1(A2 − 1)− (1 +A2)
3(Duk

2 + σ) a1A2(A
2
2 + 3A2 + 4)

−a1(A2 − 1) −a1A2(A
2
2 + 3A2 + 4)− (1 +A2)

3(Dvk
2 + σ)

∣

∣

∣

∣

= 0,

that relates the growth rate σ to the wavenumber k; it is called the dispersion relation. The explicit
form of the dispersion relation is given by the quadratic equation for the growth rate:

σ2 + σ(fv − fu + k2Du + k2Dv) + k2(Dufv −Dvfu + k2DuDv) = 0. (15)

This equation has two roots

σ± =
−a1 − k2(Du +Dv)±

√
D

2
, (16)

D = [a1 + k2(Dv −Du)]
2 + 4a1k

2(Dv −Du)
A2 − 1

(1 +A2)3
. (17)

Direct computation shows that the determinant D in (17) is always positive so that both eigenvalues
representing the growth rate are real. It means that the perturbation has a stationary spatially
periodic profile and the oscillatory perturbations are not allowed. Inspection of (16) shows that σ−
is always negative.

Substituting the eigenvalues σ± into (11) we find the corresponding eigenvectors {U±, V±}. Thus
the perturbations u1, v1 can be written as the linear superposition

u1 = A+U+ exp(σ+t+ ikx) +A−U− exp(σ−t+ ikx) + c.c., (18)

v1 = A+V+ exp(σ+t+ ikx) +A−V− exp(σ−t+ ikx) + c.c., (19)

where A± are the complex amplitudes, k is the perturbation profile wavenumber and c.c. denotes
complex conjugation. It should be underlined that in the linear stability analysis the amplitude
values are defined to the arbitrary nonzero factor.

The eigenvalue σ− is always negative, so that the corresponding perturbation component de-
creases with time and can be completely neglected at large times t ≫ 1/|σ−|. When the other
eigenvalue σ+ is positive the corresponding component grows, the dynamics of its amplitude A+ is
the subject of weakly nonlinear analysis presented below.

3.3 Fastest growing mode

As it seen from Figure 1(a) the dependence of the growth rate σ+ on the wavenumber k is non-
monotonous and has a maximum σ+ = σm which corresponds to the fastest growing mode.

It is instructive to find the value km of the wavenumber at which this maximum σm is reached.
At this point the derivative vanishes σ′(km) = 0. Differentiating the dispersion relation (15) with
respect to square of wavenumber k and equating it to zero we find

σ(Du +Dv) +Dufv −Dvfu + 2k2DuDv = 0,
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Figure 1: (a) The dispersion relation curve determines the dependence of the growth rate σ+(k) on
the wavenumber for a1 = 1, A2 = 2, Du = 0.1, Dv = 10. The dot shows the maximal growth rate
σm of the fastest growing mode. (b) The function g(A2) in (22) reaches maximum gmax = 0.033 at
A2 = 2. The diffusion ratio Du/Dv cannot exceed this value in order to have symmetry breaking
possible.

from which we arrive at the relation

σm =
Dvfu −Dufv − 2k2mDuDv

Du +Dv

. (20)

Equating the expression for σ+ given by (16) to the maximal value σm in (20) we find the relation
for km

k2m =
(Dv +Du)

√
fvfu − (fu + fv)

√
DvDu

(Dv −Du)
√
DvDu

(21)

=
a1

(A2 + 1)3
· (Dv +Du)

√

A2(A2
2
+ 3A2 + 4)(A2 − 1)− [(A2 + 1)3 + 2(A2 − 1)]

√
DvDu

(Dv −Du)
√
DvDu

.

As the denominator in (21) is positive due to difference of the diffusivities of the protein forms
Du ≪ Dv, we have to require positiveness of the numerator to obtain nonzero real value for the
fastest growing mode wavenumber. This condition can be written as

DvDu

(Dv +Du)2
≈ Du

Dv

<
fvfu

(fv + fu)2
=

A2(A
2
2 + 3A2 + 4)(A2 − 1)

[(A2 + 1)3 + 2(A2 − 1)]2
= g(A2), (22)

where we neglect Du compared to Dv in the left fraction denominator. The function g(A2) shown in
Figure 1(b) reaches its maximum gmax = 28/841 ≈ 0.033 at A2 = 2, so that this value determines
the maximal value of the diffusivities ratio Du/Dv for which one can observe symmetry breaking.

Substitution of the expression (21) into the formula (20) gives a simple symmetric formula for
the maximal growth rate

σm =

(√
Dvfu −

√
Dufv

)2

Dv −Du

. (23)

The numerator in (20) should be positive that implies a condition

Dvfu > Dufv. (24)
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Introduce two positive parameters ǫ and φ given by the ratios

ǫ2 =
Du

Dv

, 0 < ǫ ≪ 1, φ2 =
fv
fu

=
A2(A

2
2 + 3A2 + 4)

A2 − 1
> 0. (25)

The value of φ depends on the only bifurcation parameter A2 and it is real for A2 > 1, while
ǫ is determined by the diffusivities of the protein forms, so that these parameters describe two
independent (reactive and diffusive) parts of the model system. The maximal growth rate σm in
(20) can be rewritten as

σm =
Dvfu(1−

√

Dufv/Dvfu)
2

Dv −Du

= fu
(1− ǫφ)2

1− ǫ2
≈ fu(1 − ǫφ)2 =

a1(A2 − 1)

(1 +A2)3
(1− ǫφ)2. (26)

This result implies that one has linear instability of the basic solution at A2 > 1. The relation (21)
for the wavenumber km reads in the same approximation

k2m =
fu
Dv

· (1− ǫφ)(φ − ǫ)

ǫ
=

fu
Du

· ǫφ(1− ǫφ) =
a1(A2 − 1)

Du(1 +A2)3
· ǫφ(1− ǫφ). (27)

The condition (24) reduces to ǫφ < 1, while from (22) we find

ǫ <
φ

1 + φ2
⇒ ǫφ <

φ2

1 + φ2
< 1,

so that the condition (24) satisfied identically.
Thus the symmetry breaking condition (22) for the Turing type bifurcation in the mass-conserved

reaction-diffusion system has form

ǫ <
φ

1 + φ2
. (28)

It establishes the relation between the diffusion (ǫ) and reaction (φ) part of the model required for
the symmetry breaking. From the equation (11) at k = km and σ = σ± find the eigenvectors

{U+, V+} = {φ/ǫ,−1}, {U−, V−} = {ǫφ,−1}. (29)

It can be checked by direct computation that the minimal value of φ is reached for A2 = 2 and it
equals to φmin = 2

√
7 ≈ 5.29, so that the ratio of perturbation amplitudes for the active u and

inactive v forms is φ/ǫ which is larger than φ2 = 28.

4 Weakly nonlinear analysis

4.1 Galerkin expansion

To determine the approximate dynamics of the perturbation we use the Galerkin method [12] and
start with the extended expansions of the protein concentrations into superposition of basic uniform
profile, spatially periodic wave of the leading spatial wavenumber km corresponding to the fastest
growing mode and an additional component:

u = u0 +A+(t)U+ exp(ikmx) +A−(t)U− exp(ikmx) + u2(t) exp(2ikmx) + c.c., (30)

v = v0 +A+(t)V+ exp(ikmx) +A−(t)V− exp(ikmx) + v2(t) exp(2ikmx) + c.c., (31)

where u2(t) and v2(t) denote the contribution to the perturbation corresponding to double harmon-
ics. The expressions (30,31) are substituted into the original equations (1,2) expanded into series
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up to the second order in perturbation amplitude. This expansion contains second order partial
derivatives of the reaction term computed at the basic solution. Direct computation shows that all
these derivatives are equal to each other and given by

F = fuu = fvv = fuv = fvu = −2a1A2(A2 − 2)

C(1 +A2)4
.

Collecting the coefficients of the leading harmonics exp(ikmx) we obtain a set of ordinary differential
equations (ODEs) for the functions A+(t), A−(t) presented below

A′
+U+ +A′

−U− = σmA+ + σ−A− + FM, (32)

A′
+V+ +A′

−V− = σmA+ + σ−A− − FM, (33)

where prime denotes time derivative and the parameter M is given by

M = (u2 + v2)[(U+ + V+)A
∗
+ + (U− + V−)A

∗
−]. (34)

Retaining the double harmonic terms proportional to exp(2ikmx) we have the ODEs for u2(t), v2(t)
dynamics

u′2 = (fu − 4k2mDu)u2 + fvv2 + FN, (35)

v′2 = −fuu2 + (−fv − 4k2mDv)v2 − FN, (36)

N = [(U+ + V+)A+ + (U− + V−)A−]
2/2. (37)

The system of four equations (32,33,35,36) with initial conditions A+(0) = A+0 ≪ 1, A−(0) =
A−0 ≪ 1, u2(0) = v2(0) = 0, can be solved numerically to find the dynamics of the perturbation
amplitudes. This is great simplification as the numerical solution of ODEs is much faster and more
stable than the direct simulation of the original problem.

Nevertheless one can go even further along the road of perturbation dynamics analysis and
obtain a closed equation describing the evolution of the basic perturbation amplitude A+ only.

4.2 Derivation of Landau equation

Assuming that the dynamics of the second harmonics components reaches its steady state much
faster than the leading perturbation does, we set the derivatives of the amplitudes u2, v2 equal to
zero and find these amplitudes

u2 = DvKA2
+, v2 = −DuKA2

+, K =
F (U+ + V+)

2

2(4k2mDuDv +Dufv −Dvfu)
, (38)

where we neglected the vanishing terms proportional to A−.
Using methods of linear algebra from the equations (32,33) one can find the equation for the

amplitude A+ of the fastest growing mode. In order to do it we first note that the l.h.s. of equations
(32,33) can be written in the matrix form

(

A′
+U+ +A′

−U−

A′
+V+ +A′

−V−

)

=

(

U+ U−

V+ V−

)(

A′
+

A′
−

)

= P

(

A′
+

A′
−

)

,

where the matrix P is made of the eigenvectors of the Jacobian matrix. The equations (32,33) read

P

(

A′
+

A′
−

)

= σmA+

(

U+

V+

)

+ σ−A−

(

U−

V−

)

+ F

(

M
−M

)

. (39)
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Multiplying (39) from the left by the inverse matrix P
−1 we find the solution

(

A′
+

A′
−

)

= σmA+P
−1

(

U+

V+

)

+ σ−A−P
−1

(

U−

V−

)

+ FP
−1

(

M
−M

)

, (40)

Denote the elements of the matrix P
−1

P
−1 =

(

p̂11 p̂12
p̂21 p̂22

)

.

From the definition of the inverse matrix it is easy to check by direct computation that p̂11U+ +
p̂12V+ = 1 and p̂11U− + p̂12V− = 0. It leads to the explicit expressions

p̂11 = − V−

V+U− − U+V−

, p̂12 =
U−

V+U− − U+V−

. (41)

Then from (40) we find

A′
+ = σmA+ + (p̂11 − p̂12)FM = σmA+ − U− + V−

V+U− − U+V−

FM. (42)

Neglecting the amplitude A− we set it equal to zero to find

M = (u2 + v2)(U+ + V+)A
∗
+.

Using here the expressions (38) we obtain

M = (Dv −Du)(U+ + V+)K|A+|2A+, (43)

where

K =
F (U+ + V+)

2(Dv −Du)

2[4(Dv +Du)
√
DuDvfufv −D2

ufv −D2
vfu − 3DuDv(fu + fv)]

.

Substituting the relation (43) into (42) we obtain the amplitude Landau equation

A′
+ = σmA+ + κ|A+|2A+, (44)

where the coefficient of the nonlinear term κ is called the Landau coefficient. The explicit expression
of the coefficient reads

κ = −(U− + V−)(U+ + V+)
3

V+U− − U+V−

· F 2(Dv −Du)
2

2[4(Dv +Du)
√
DuDvfufv −D2

ufv −D2
vfu − 3DuDv(fu + fv)]

. (45)

The expressions (45) and (29) imply that the Landau coefficient is homogeneous function of the
diffusion coefficients Du,Dv. It is instructive to represent it through the ratios ǫ and φ. The first
factor in the expression (45) reads

(U− + V−)(U+ + V+)
3

V+U− − U+V−

= −(φ− ǫ)3(1− ǫφ)

(1− ǫ2)ǫ2φ
≈ −(φ− ǫ)3(1− ǫφ)

ǫ2φ
,

while the second one converts into

F 2(1− ǫ2)2

2fu[4(1 + ǫ2)ǫφ− ǫ4φ2 − 1− 3ǫ2(1 + φ2)]
≈ − F 2

2fu(1− ǫφ)(1 − 3ǫφ)
.
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The final expression for the Landau coefficient reads

κ = −F 2 (φ− ǫ)3

2fuǫ2φ(1 − 3ǫφ)
. (46)

Recalling the expression (26) for the maximal growth rate we find the value of the Landau coefficient

κ = − 2a1a
2
2(A2 − 2)2

(A2 − 1)(1 +A2)5
· (φ− ǫ)3

ǫ2φ(1 − 3ǫφ)
= − F 2

2σm
· (φ− ǫ)3(1− ǫφ)2

ǫ2φ(1− 3ǫφ)
. (47)

When A2 = 2 the Landau coefficient vanishes and one has to use expansion to higher harmonics to
find the equation governing the perturbation dynamics; we do not consider this degenerate case as
it goes beyond the scope of this communication.

4.3 Amplitude equation analysis

As the Landau coefficient is a real number one can replace the complex perturbation amplitude by
its real part and the Landau equation reads

A′
+ = σmA+ + κA3

+, (48)

where both the linear growth rate σm and amplitude A+ are positive. The sign of the Landau
coefficient κ determines the perturbation amplitude dynamics. For the positive κ the amplitude
undergoes infinite growth that eventually breaks the assumption about the smallness of the pertur-
bation. In this case actual emerging steady state (if it exists) can be found by the direct numerical
simulations of the original problem (1,2).

In addition to this qualitative statement one can sometimes make important quantitative pre-
dictions. For example, in hydrodynamics of thin liquid films the uniform basic state corresponds
to the film of constant thickness. Such a film can lose stability to small periodic perturbations
with amplitude governed by the Landau equation with positive nonlinear term. It means that the
perturbation will grow and its amplitude eventually will reach the initial film thickness at which
moment the film ruptures. Using the Landau equation it is possible to estimate rupture time and
its dependence of the systems parameters [12].

The negative Landau coefficient implies that the linear growth of the perturbation is balanced
by the nonlinear term and eventually the amplitude saturates at the value

As =
√

−σm/κ. (49)

Using formula (47) one obtains its explicit expression

As =
σm
|F |

√

2ǫ2φ(1− 3ǫφ)

(φ− ǫ)3(1− ǫφ)2
=

(A2
2 − 1)C

A2|A2 − 2|
ǫ(1− ǫφ)

φ− ǫ

√

2φ(1− 3ǫφ)

φ− ǫ
. (50)

which appears to scale with the linear growth rate σm. In this case the steady state is established
representing a periodic structure with the wavelength equal to Lm = 2π/km. As the value As

corresponds to the steady state perturbation amplitude of the inactive form, the corresponding
value for the active form can be computed using (29) to give Asφ/ǫ. Thus the steady state solution
predicted by the weakly nonlinear analysis reads

u = u0 +
Asφ

ǫ
cos kmx, (51)

v = v0 −As cos kmx. (52)
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If the size of the cell L is much larger than Lm one can expect to observe a multiple peak periodic
structure as the result of symmetry breaking. The decrease of the cell size to the value lower than
2Lm leads to survival of the unimodular profile.

It should be underscored that the existence of the stable periodic structure resulting in symmetry
breaking of Turing type is possible when a certain condition on the parameters is met. This condition
follows from the positiveness of the fraction under square root in (50). Assuming φ > ǫ we write
the existence condition for the stable periodic profile as

ǫφ < 1/3. (53)

The last relation determines the perturbation saturation condition and it can be expressed in the
original parameters as

DuA2(A
2
2 + 3A2 + 4)

Dv(A2 − 1)
<

1

9
. (54)

Observation of the stable periodic profile also strongly depends on the initial and boundary condi-
tions as well as on the value of the bifurcation parameter A2. Analysis of (51) shows that in order to
observe a multipeak periodic solution one has to satisfy a condition u0 > Asφ/ǫ, so that the value
of the active form distribution never reaches zero.

Using (5) and (50) we obtain the condition of existence of the periodic steady state solution

A2(A2 + 2)C

(A2 + 1)2
≥ (A2

2 − 1)C

A2|A2 − 2|
φ(1− ǫφ)

φ− ǫ

√

2φ(1 − 3ǫφ)

φ− ǫ
,

which leads to

A2
2|A2

2 − 4|
(A2 − 1)(A2 + 1)3

≥ φ(1− ǫφ)

φ− ǫ

√

2φ(1− 3ǫφ)

φ− ǫ
. (55)

Neglecting ǫ compared to φ we rewrite the condition (55) as

A2
2|A2

2 − 4|
(A2 − 1)(A2 + 1)3

≥ (1− ǫφ)
√

2(1− 3ǫφ). (56)

The ratio φ itself depends on A2 as shown in (25) so that the last condition for given value of ǫ
determines the range of φ values for which the periodic steady state solution exists as depicted in
Figure 2.

For u0 < Asφ/ǫ the multipeak periodic solution breaks as in such a case the value u of active
form can reach zero and the assumption (30) about periodic solution fails. When the problem (1-4)
is simulated numerically, strong nonlinearities of a transient solution arising in computation lead to
removal of majority of the peaks and the steady state solution has one or two peaks (depending on
the size of the cell). The single peak steady state solution was reported in both [5] and [4] where
the authors restrict consideration to the linear stability analysis and numerical simulations only.

5 Numerical simulations

To confirm conclusions of weakly nonlinear analysis in this section we present results of numerical
simulations of the model (1-4) for different sets of problem parameters corresponding to four types
of qualitatively distict solutions. The whole range of the bifurcation parameter A2 value can be
split into four respective regions. Below we discuss these regions and their characteristic solutions.
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Figure 2: Computation of the bifurcation parameter A2 range where the periodic steady state
solution exists for ǫ = 0.01. A solid line represents the l.h.s. of the inequality (56); the r.h.s. of
this condition is shown by a dashed curve. The inset shows enlarged and rescaled left portion of the
main figure. There are two ranges of allowed values of the bifurcation parameter – a very narrow
one between the empty circles with A2 ≈ 1 (see inset) and a larger one between the filled circles
with A2 ≫ 1. The definition of the critical values A−

2
= 1.26 A+

2
= 13.86 and A∗

2 = 31.2 are given
in the text.

1. 0 < A2 < 1. In this region the basic solution is linearly stable to small perturbations. This
behavior is shown in Figure 3(a).

2. A2 > A∗
2, where A∗

2 satisfies the relation 3ǫφ(A∗
2) = 1. This range corresponds to linear insta-

bility but the saturation condition (54) does not hold. It leads to growth of small perturbation
beyond the limitations of weakly nonlinear analysis, so the steady state can be determined by
numerical simulations only. An example is given in Figure 3(b).

3. A−
2

< A2 < A+
2
, where A±

2
satisfy the equality in relation (56). In this case the saturation

condition (54) holds, but the saturated amplitude of the perturbation of active form is larger
than the basic value u0. As the result a small initial amplitude of periodic multipeak profile
grows until the amplitude reaches zero at some location. At this moment small nonlinearity
is replaced by a larger one, the profile is no longer harmonic. As the resluts of strong nonlin-
earities arising in numerical simulation due to numerical errors nearly all peaks of the initial
multipeak profile may disappear and only a single peak survives. This behavior was reported
in numerical simulations in [5, 4]. When the cell size L is much larger compared to the periodic
structure wavelength may also can observe more than one peak in the steady state solution.
The corresponding dynamics is presented in Figure 3(c).

4. 1 < A2 < A−
2

and A+
2

< A2 < A∗
2. This case is characterized by the establishment of

the steady state periodic multipeak profile with the amplitude predicted by weakly nonlinear
analysis formula (50). The amplitude of the active form profile is smaller than the basic value
u0. The growth of small initial amplitude saturates and the multipeak profile survives. The
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corresponding dynamics is shown in Figure 3(d).
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Figure 3: Evolution of numerical solution for the active form amplitude u of the system (1-4) with
periodic boundary conditions and initial conditions (5) with the following parameter values are
a1 = 1, a2 = 0.8, L = 50, ǫ = 0.01, Dv = 1, Du = ǫ2. (a) The basic state is linearly stable and
small periodic perturbations decrease fast (C = 1, A2 = 0.8). (b) The perturbation amplitude does
not staturate that leads to emergence of nonlinear periodic profile (C = 45, A2 = 36). (c) Small
periodic perturbation grows until it reaches zero at some location leading to strong nonlinearity
followed by disappearance of some peaks (C = 2, A2 = 1.6). (d) Small periodic perturbation grows
until it saturates at steady state multipeak periodic profile with the amplitude predicted by weakly
nonlinear theory (C = 35, A2 = 28).

6 Discussion

The choice of the model describing cell polarization following symmetry breaking is dictated by
several principles among which are simplicity of the model and its ability to predict the observed
behavior of live cells. The first principle requires a selection of the major players in a system of
interacting proteins that determine the polarization process. Usually the original model is based on
several interacting elements of complex biochemical nature that are determined by known physical
interactions at a given physiological stage of the cell. Most of these components are assumed to
be driven by a few proteins governing the system dynamics. The extreme version of this approach
involves selection of a single protein existing in two forms – active and inactive. For instance,
the active form can be associated with the cell membrane while the inactive one belongs to the
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cytosolic pool, so the diffusivity of these two forms may differ by several orders of magnitude. The
important natural feature of these models is the mass conservation of the governing protein. It was
shown in previous publications that the mass-conserved reaction-diffusion models demonstrate a
rich spectrum of dynamics including the Turing type bifurcation and the wave-pinning mechanism
of symmetry breaking. It should be noted that these minimalistic models, despite being an extreme
simplification of the cell dynamics, still grasp some important features of polarization process.
However, it is important to find out boundaries of applicability of such models for description of
real biological cellular systems, as well as to develop new realistic models of this type.

Dynamics stability analysis of theoretical models describing symmetry breaking leading to cell
polarization is important for verification of the model applicability. It consists of several consecutive
steps starting with determination of the basic uniform steady state and linear analysis of stability
of this basic state. The result of this step is a set of conditions imposed on the model parameters
required for symmetry breaking. The dynamics of the perturbation to the basic state can be
considered analytically using the weakly nonlinear analysis approach. This step enables prediction
of the parameter values for which the amplitude of the perturbation saturates to some finite value
leading to establishment of the new stationary periodic structure. It can be done by analysis of the
nonlinear term in the Landau equation for the perturbation amplitude.

Application of the linear and weakly nonlinear analyses to the mass-conserved reaction-diffusion
model is possible due to the mathematical simplicity of this model. In this communication using the
model proposed in [5] as an example we derive the conditions required for the Turing type symmetry
breaking and determine the linear growth rate for a finite wavelength periodic perturbation. We
also determine the range of parameter values defining the diffusive properties of both protein forms
as well as the reaction part of the model for which the saturation of the perturbation amplitude can
be reached. We find the explicit expression for the saturation amplitude and show that it is linearly
proportional to the linear growth rate determined at the linear stability analysis step.

The weakly nonlinear analysis presented in this communication assumes that the perturbation
amplitude is spatially uniform and its spatial modulation can be neglected. This assumption can
be dropped and the resulting equation will have form of more general Ginzburg-Landau equation

having additional amplitude diffusion term. This equation is widely used in systems analysis [13]
including pattern formation so important in nonlinear science. The Ginzburg-Landau equation
admits the spatially uniform solution presented in this communication, but now the stability of this
solution can be broken due to presence of the diffusive term. In order to figure out the conditions of
this secondary instability one has to perform the linear stability analysis on the Ginzburg-Landau
equation itself.

The weakly nonlinear analysis for reaction-diffusion model with larger number of variables or in
higher spatial dimension is much more complicated compared to one presented here, as it requires
very cumbersome computations. One possible approach to resolve this complexity issue is the usage
of modern computer algebra software to perform this analysis in general form [14] and then to apply
the general formulas to a specific model.
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