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Abstract

We characterize the coarsening dynamics associated with a convective Cahn-Hilliard equation (cCH) in one space dimension.
First, we derive a sharp-interface theory through a matched asymptotic analysis. Two types of phase boundaries (kink and
anti-kink) arise, due to the presence of convection, and their motions are governed to leading order by a nearest-neighbors
interaction coarsening dynamical systef®§). Theoretical predictions offDS include:

e The characteristic lengtfi ¢ for coarsening exhibits the temporal power law scalitig; provided v, is appropriately
small with respect to thPecletlength scaleCp.

e Binary coalescence of phase boundaries is impossible.

e Ternary coalescence only occurs throughkimk-ternaryinteraction; two kinks meet an anti-kink resulting in a kink.

Direct numerical simulations performed on b@BS and cCH confirm each of these predictions. A linear stability analysis
of CDS identifies apinching mechanism as the dominant instability, which in turn leads to kink-ternaries. We propose a
self-similar period-doublinginch ansatas a model for the coarsening process, from which an analytical coarsening law
for the characteristic length scalk,, emerges. It predicts both the scaling constaaf the r*/? regime, i.e.L = ct¥/?,

as well as the crossover to logarithmically slow coarsening gascrosseLp. Our analytical coarsening law stands in good
qualitative agreement with large-scale numerical simulations that have been performed on cCH.

© 2003 Elsevier Science B.V. All rights reserved.

PACS:05.45-a; 68.35.Ja; 81.10.A]
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1. Introduction

The kinetics ofdriven phase-ordering systems offers new and rich possibilities in phenomenology. To model
a driven system one must identify both the energetics and the dynamics of phase boundaries, in distinction with
equilibrium phase separatidii], where energetics alone suffices. A paradigm of this distinction arises in the
first-order phase transformation of a melt in contact with its solid. Here, sufficient undercooling of the melt breaks
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thermodynamic equilibrium at the interface and then a dynamic condition expressing the systems response is alsc
required; e.g. the Gibbs-Thomson condition wkthetic undercooling

The Cahn-Hilliard equation (CH) governs thginodal decompositioof binary alloys under isothermal condi-
tions[2], in one space dimension:

qt = [W/(C]) - 826]xx]xxa 1)

whereg(x, f) is the phase fraction(order parameter) at the spatial locatiomt time¢, W(g) a symmetricdou-

ble well with minima atg = +1, ande a dimensionlesinterfacial width The coarsening dynamics of CH
serves as an archetypal example of an equilibrium phase separation process. Here, an initially spatially homo-
geneous mixturey = 0, is driven to segregate by a uniform reduction in temperatjuer{ching. A fine-grained

phase mixture is initially formed, and this morphology subsequently coarsens into larger-scale structures with a
characteristic length scalé(r). Among the properties of the CH theory are the phase selection rule for the mix-
ture through a bi-tangent construction #f{(g) [3], and the logarithmically slow coarsening rate in one space
dimension4]:

L)~ Inzt

The process othermal facetingin which a planar crystalline surface breaks up into hill (anti-kink) and val-

ley (kink) structures following a change in temperature, is analogous to spinodal decomposition. In particu-
lar, the faceting of a thermodynamically unstable planar surface wiglelxeswithout net growth §nneal3

has also been modeled with equations of CH t{fé]; the analogy is exact in 1D situations, but important
distinctions arise in higher dimensiofig]. Here, the orientation of the local tangent plane serves as a (vec-
tor) order parameter and the surface tension induces an effective free energy. Furthermore, the surface tensio
is sufficiently anisotropic that certain crystal surfaces are thermodynamically unstable and hence missing in
the crystal equilibrium state (Wulff shag8]). A stable pair of facets corresponds to bi-tangent points of the
surface free energy, and the hill-valley structures coarsen with a rate depending on the mechanism of surface
relaxation[9], the effective dimensions of the structure, and also the symmetry group of the crystal surface
[7,10].

When thermal faceting of a crystal surface involves grewthinto its melt (or vapor), then convective terms
augment the CH structuf®,11,12} roughly, the net growth of facets in their normal direction convects the order
parameter. Now provided the strength of convection is small enough, spinodal decomposition reminiscent of CH
again arises. However, the coarsening rates that have been observed numerically are significantly faster than th
non-growth counterparts; e.g. one regime of the 1D convective Cahn-Hilliard equatiohldiyE3}

L) ~ 2.

Remark 1. Large-enough growth rates may arrest coarsening or even induce spatio-temporal chaos of the crystal
surface[14].

In this paper, we study the coarsening dynamics of a convective Cahn-Hilliard equation (cCH) in one space
dimension, in dimensionless form:

qr — 99, = (5]3 —q— 826]xx)xx~ 2

Leung[15] proposed it as a continuum description of phase separatiofattiGe gas driverby an applied field.

In a similar spirit, Emmot and BrajL 3] proposed it as a model for spinodal decompoasition of a binary alloy in an
external field. In both cases, an assumed order parameter dependencmobiiity couples to the external field,
thereby inducing the Burgers convection term.



S.J. Watson et al./Physica D 178 (2003) 127-148 129

Anti-kink
Y

Direction of T ¥
€ solidification

(hyper-cooled) Melt

Crystalline solid

Crystal-Melt
interface

Thermodynamically
preferred slopes

Fig. 1. Schematic representation of a faceted 2D crystal growing into its (hypercooled) melt. The local &ldipe crystal-melt interface is
measured relative to a frame of reference y co-moving with the direction of solidification. The rounded corners between facets have width
O(e), and the hill and valley corners are denotediagsandanti-kinks respectively.

Golovin et al.[11] derived(2) as a model for kinetically controlled growth of two-dimensional crystals; see also
Smilauer et al[12] for a closely related model arising in epitaxial growth. Watfl®] has subsequently identified
(2) as asmall slopeapproximation to the geometric crystal-growth model derived by Gurtin ¢18J20} their
geometric model takes the form ofadriven anisotropic Willmore flotv In the small slope setting, denotes the
slope (phase) of the crystal surface, atchon-dimensional width of the high curvature cornptsase boundarigs
seeFig. 1 The broken up-down symmetry due to crystal growth is captured by the Burgers convegtiomhich
breaks the symmetry— —xin (2). Inturn, the valley cornek{nk) and hill corner &nti-kink) are not symmetrically
related. In addition, thiei-tangentonstruction for the identification of the slopes (phases) far from the hill and valley
corners is broken; valley slopes are steeper than the expgetedt1, while hill slopes are shallowgt1,13,15]

The failure of this thermodynamic construction marks cCH dswaenphase-ordering system.

We perform a matched asymptotic analysis of c@&q, (2) ase — 0T, that leads to a sharp-interface the-
ory of kink/anti-kink interaction17,18] It shows that the asymmetry between a kink and anti-kink induces a
convective—diffusive flux of the order parameter between them. This is turn drives these discontinuities in a manner
given by the Rankine-Hugoniot relation; recall tlyais a conserved quantity. The result is a nearest-neighbor in-
teraction dynamical system for the kink/anti-kink locations. Our theory generalizes that of Emmot arjd Bray
which is valid only for dimensionless length scateg £ « 1, to all length scales « L.

The average separatiom¢rphological length sca)eC v, between successive phase boundaries grows in time as
coalescing kinks and anti-kinks annihilate one another. We develop a theory foo#ngening dynamical system
(CDS) which rigorously establishes

(i) The characteristic lengtif o, exhibits the temporal scaling’?, provided£ ., is appropriately small with
respect to th@ecletlength scaleCp.
(i) Binary coalescence of phase boundaries is impossible.
(iii) Ternary coalescence of phase boundaries may only occur throkigik-dernary two kinks meet an anti-kink
resulting in a kink.

The unusual coarsening mechanisms described in (ii) and (iii) are novel, and stand in marked contrast with the
coarsening dynamics of the CHg. (1) where binary coalescence of phase boundaries is ggde2iz,23] We
present direct numerical simulations of cCH which confirm (ii) and (iii). Further, our predicted coarsening law (i)
coincides with the direct numerical simulations of cQlH4].

1 The Willmore flow arises in differential geometig1].
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Alinear stability analysis of a spatially periodic kink/anti-kink array identifieehingas the dominantinstability;
pairs of kinks move towards the intervening anti-kink. We note also that the “opposite” maneuver, whereby two
anti-kinks move pairwise towards the intervening kink, is the most stable disturbance. Both these results follow
directly from the spectral properties of a new class of matria#iernating circulant matrice§24], which are
related to circulant matricg25]. Following the pinch instability into the nonlinear regime yields, via kink-ternary
coalescence, a periodic array of twice the initial separation.

We propose a self-similar (spatial-) period-doublpigchingansatz as a description of the coarsening process.

It involves application of a scale-invariant initial disturbances on spatially periodic arrays of kink/anti-kinks in the
pinch direction i.e. the dominant linear-instability eigenvector. As noted, this results in an array of twice the initial
period, upon which we iterate the procedure. Our motivation for the ansatz is twofold. First, the non-existence
of ternary coalescence involving two anti-kinks and a kink (see (iii)) is a reflection of the repulsive interaction
between anti-kinks. We assume that this repulsion enforces a “near-periodicity” of anti-kinks during throughout
the evolution, which in turn highlights the relevance of giech instability Second, we recall the self-similarity

of the length scale distribution observed i3] (valid even for “early times”), and note also that our simulations
qualitatively display marked “self-similarity” in theoarsening pathThe scale-invariant disturbance component of

our ansatz is intended to capture the scale-invariant deviations of the full system from periodicity.

An analytical coarsening law for cCH is derived from our pinch ansatZ1a$, which is valid over all mor-
phological length scale§( > ¢. It qualitatively captures all the essential features of the numerically calculated
coarsening law14]. In particular, it identifies the crossover to logarithmically slow coarsening to occur when
Ly ~ Lp, thereby clarifying this numerically observed transition. Furthermore, since we have specified the
coarsening pathwe are also able to identify the scaling constaof thes1/2 regime; namely,

. V3 £1/241/2
V202 —2Inn—1)1/2

where O< 5 « 1 is the scale-invariant disturbance parameter of our period-doubling coarsening ansatz.

Lpm = . e LK,

2. The convective Cahn-Hilliard equation

We consider the following one-dimensional convective Cahn-Hilliard equation (cCH):
i — VAt = n(g® — g — vVqin)ss, 3)
where the dimensionless order paramei@t, 7) is a function of dimensional spagec R and timez, V a speed

([V] = LT1), u a mobility ([u] = L?T~1) andv a microscopic length scaleW[= L). Eq. (3)serves, e.g. as a
phenomenological model of faceting in kinetically controlled crystal grgdih16]

2.1. Scaling analysis

The convection balancing diffusion supplies texletlength scaleCp and associated time scajegiven by

Lp .= —, tp =

1%
We now re-scalé3) through

t
and t= —

(4)

X
xX=—)
Lp

3
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and arrive at the dimensionless form of cCH:
_ /.3 2
qr —q% = (¢° — ¢ — €°qxx)xx (%)

wheree ;= v/Lp.
Throughout the remainder of the paper, all length and time scales will be in the dimensionless form associated
with the scaling4), unless otherwise stated.

2.2. Previous coarsening studies

Numerical simulations of cCHEQ. (5) have been previously carried ou{ir8,14]in the regimé ¢ <« 1. We now
summarize the pertinent observations from these simulation studies. First, the spatially homogenepus@iate
unstable and upon disturbance develops a periodic structure with a wavelerggtbistent with that predicted by a
linear stability analysis; namely, = 2+/27¢. The “wavelength” of the solution then increases until a well-defined
interfacial structure is apparent; then there are “extended” regions whete1, connected through rapid transition
layers phase boundarig=f width O(¢). Looking in the direction of increasing the “step up” transition phase
boundary, wherg = —1 — ¢ = 1, is referred to as kink, while the step down layer, wherg £ 1 — ¢ = —1)
is ananti-kink seeFig. 3.

The average separatiom@rphological length scajel s between successive phase boundaries continues to
grow in time through kink/anti-kink coalescence and their subsequent mutual annihilation. Three distinct regimes
in the scaling behavior of (the dimensionle£s)(r) may be discerned in the numerical studie$®fappearing in
[13,14] They are summarized in the following table:

Scaling regime Scaling law faf o (7)
e Ly <1 11/2

Ly >~1 Crossover

Lpm>1 Int

Recalling(4), one sees thatrossoverscaling emerges when the morphological length s€algr) is comparable
to the Peclet length scalép.

Remark 2. Whene ~ 1, the morphologies of solutions do not coarsen in time but rather display periodic patterns,
while for ¢ > 1 solutions becomeough [14]. This is related to the fact that formally the cCH approaches the
Kuramoto-Sivashinsky equation (KS) as> oo, and solutions of KS are known to display spatio-temporal chaos.

We now proceed to develop a sharp-interface theory for cCH from which we may deduce all of the above scaling
behavior.

3. Sharp-interface theory
The governingequation (5)s singularly perturbed in the limig — OF, with 9/ax = O(1). In this section, we

discuss the associated matched asymptotic expansions. Since the pasaattarlength scale for transitions, we
shall see that the associated outer problem yields a sharp-interface theory.

2 SeeRemark 2
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3.1. Matched asymptotic analysisas> 0™

We refer to(5) as the outer equation, sinee— 0T with 9/9x fixed yields a singular perturbation. The inner
equation arises from re-scaling to the inner dimensionless lengthes&ifee the kinks and anti-kinks are in general
moving, we need to select an inner coordinate with respect to a moving frame. So, for the kigkidt; ¢), we
take the inner coordinat® to be

_x—k(r;8)
N e

X
and re-write(5) in terms of the inner solutio® (X, 1) = ¢(x, ¢) as

e?Q; — ekQx — eQQx = (0% — 0 — Ox0xx. (6)
similarly for the anti-kinka(z).
Remark 3. We give a complete matched asymptotic analysis through ordex i® Appendix A Therein, we

establish that the kink velocitfy(t) is of order (), consistent with the fact that= 0 corresponds to stationary
solutions.

Since the kink and anti-kink velocities are of ordefsD(see(A.9), (A.14) and (A.15), it follows that(6) is
asymptotically equivalent through ordef£) with the time-independent equation:

—eQQx = (0% - 0 — Oxxx- (1)
Now (7) has two exact solution§(X) and.A(X), identified in[15], given by
e \ 12 e \1/2
K(X) = (1+ 72) tanh [(1—1— 72> X} (kink) (8)
and
e \1/2 e \1/2
AX) = — (1 — 72> tanh |:<1 — E) X:| (anti-kink). (9)

Remark 4. There is a family of stationary profiles associated with the transition from positive to negative values
of ¢ (kinks), while the anti-kink profil€9) is the unique profile connecting negative to positive valueg; aee
[13,16] However, the matching condition between theer andouter problemss independent of the choice of
inner kink solution16]. For simplicity, we use the particular kink given £8) in our analysis.

We note here that the asymptotic valuestas> oo of K(X) and.A(X) are

1/2 1/2
& &
lim X)=x+(14+— lim X) = 1-— . 10
X—L:I:ooIC( ) ( + ﬁ) ’ X—I>:|:ooA( ) + ( ﬁ) ( )
We see that the presence of convectiog(0) introduces a fundamental asymmetry between kinks and anti-kinks,
which is not present in the Cahn-Hilliard theoey=£ 0). In particular, the bi-tangent constructi@j for identifying
“co-existent phases” is destroyed, as evidenced1y [11,13,15] On a deeper level, this is a reflection of the
non-equilibrium nature of the underlying phase-transformation process when convection is present.
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We now match these inner solutions to the outer solution, which we represent in the form:
q(x, 1) = go(x, 1) + q1.(x, e + O(e?).

It follows from the matched asymptotic analysis presentetidpendix Athat the combined approximatief :=
qo0 + q1¢ is equivalent through order @) with the conservation law

gc+J,=0 for (x,n) eR x[0,00) (11)

with flux J given by

_.C_o.C
/- q°—2q3, x e k@), a()), 12)

g —245,  x € (a@), k@),

and subject to the Dirichlet boundary conditions:

¢Ckt)y") =—-1— ie ) =1+ i8 ¢“la®)™)=1— if?
22 V2 2V2 "

1
Clat) = -1+ ——¢, 13
q-(a®™) NG (13)
whereg®(k(r)™) andg®(k(r)*) denote the limiting values @f° as the kink locatiork() is approached from the left
and the right, respectively; similarly for the anti-kinks.

It follows from the conservation lagi 1)that the speed of the kiriKr) (k-shock) is given by the Rankine-Hugoniot
relation:

k0)lqlke = k- (14)

where [k and flie) denote, respectively, the jump in the fluxand the order parametgracross the kink at
x = k(¢); similarly for the anti-kink.

Since the kink and anti-kink velocities are ordeeQ) it follows that(11) is equivalent through order®) with
the quasi-static condition:

Je = 0. (15)

Utilizing the notation ofFig. 2, the functiong® can now be computed frofi2), (13) and (15Yielding

£ il—exp((x—cq(t) —L7)/2)

. -t BT iepil gy A0 SFSkO. "
g (x) =
£ il—exp((k(t) —x)/2) k() < x < ar(t).

1 —"_ T — 9
202 2 1l—exp—Lt/2)
A summary of the outer problem (through)) is shown inFig. 2

Inserting(16) into (12), we find that the flux/ between a neighboring kinkand anti-kinka is, through order
O(e), given by

1 £ 1
= J2expL/2) — 1

whereL = |k(¢) — a(?)| is the distance between the neighboring kink and anti-kink.

J= (17)
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Fig. 2. The sharp-interface limit through(9. Herea, () anda, (r) locate, respectively, the anti-kinks to the left and right of the Kirk. The
two curves are sketches of the ouggurofile inserted to guide the eye.
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Fig. 3. Structure of the matched asymptotic composite solution of a periodic profile for cCH with waveleadti »,. Here we have plotted
the composite solution for the choigky, = 1 (i.e. the Peclet length scale) for which diffusion balances convection in the outer regions. Also,
@ andO denote the location of the kink and anti-kink, respectively.
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Remark 5. The O(¢) composite solution, obtained from matching inner and outer solutions, is plotegl. i&for

a choice of parameters associated with the regirge £ ~ 1. We note that the kink amplitude is suppressed by
convection, while the anti-kink amplitude is barely affected. This circumstance is either enhanced or diminished by
the respective increase or decrease of the separation between kink and anti-kink.

4. The coar sening dynamical system (CDS)

In this section we show, as a consequence of our sharp-interface theory, that kinks and anti-kinks evolve according
to a nearest-neighbor dynamical system. ¢barsening lavof cCH that describes the outcome of a coalescence of
kinks and anti-kinks is then identified; tparity coarsening lawTheCDS emerges from combining kink/anti-kink
dynamics with thigparity coarseningaw. We conclude by showing, through a simple scaling argumentCih&t
obeys the scaling laWl o ~ /2, in the regime: « L < 1.

We have envisioned the solutiong&) as an alternating sequence of kifsX — k(z)] and anti-kinksA[ X —a(?)],
which are matched through the outer variabl&Ve make a slight, but convenient abuse of terminology, by now
referring to the location&(r) anda(z) also as kinks and anti-kinks.

4.1. Kink/anti-kink dynamics

Here we identify the dynamical system associated with our sharp-interface theory for kink/anti-kink interaction.
As we shall see, kinks and anti-kinks follow different, bekéwrelated”, laws of motion. In anticipation of this, we
adopt the following useful index convention for these an alternating array of these phase boundaries which takes
advantage of this property.

4.1.1. Index convention

Given an alternating array of kink/anti-kink locations on the line, we adopt the (arbitrary) ordering convention
of letting kinks have odd indices, which in turn gives anti-kinks even indices.

Let x;(r) denote the location of thigh phase boundary at timeand set’; (¢) := x;+1 — x;; the distance between
theith andi + 1th phase boundary¥{g. 4). Recalling(13) and (17)we deduce from the Rankine-Hugoniot relation
(14) that through order @):

dx; ;
= = DML - L), (18)
where the (effectiveflux functionJ(£L) is given by
1
JL) = —2 (19)

2 /2expL/2) — 1’

Remark 6. The skew-symmetry between the evolution equations for kink and anti-kink, reflects the broken mirror
symmetryx — —x of the cCH equation.

L 4 L;

O o O

Ti-1 z;(t) Ti+1

Fig. 4. Herex;(¢) denotes the location of théh phase boundary,; (r) ;= x;1+1 — x; is the distance between tith andi + 1th phase boundary,
and® andO denote kink and anti-kink, respectively; given our indexing conventiamthis figure is understood to be odd.
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In turn, when considering the evolution of distances between a neighboring kink/anti-kink pair, one observes two
types of intervals; depending on the sign of the order paramétethe given interval. Noting that; = ;1 — &;,
it follows from (18) that
dL;

= = (—=D'[J(Liy1) — J(Li—1)]. (20)

4.2. CDS and scaling laws

The outcome of encounters between kinks and anti-kinks is readily visualized via the faceted-crystal application.
First, if a pair meet, they annihilate since the interpolating facet disappears. Now in the case of coalescence of highel
order, e.g. the ternary collision parity law arises. Namely, even groupings annihilate, and odd groupings result in
the appearance of the dominant type. So, for example, in the case of two kinks colliding with a single anti-kink, we
obtain a kink.

Definition 7 (CDS). We refer to the coarsening dynamical system that arises from the evolu{ibp8)c$ubject to
the parity coarsening law outlined in the preceding paragrapliZas.

The average separation between neighboring defects, namatyottpdologicallength scaleC v (7), grows as
CDS evolves due to coalescence of kinks and anti-kinks. Now, previous large-scale simulati@s love been
carried out in Emmot and Braji 3] for the specific choicg(L) = 1/L. They found thatC s ~ /2, and also
that the distribution functiorP(L, ) (the fraction of domains which have sizeat timer) scales in a self-similar
manner; i.e.

P(L,t) =

1 f’( L )
L) \Lm@)

for some numerically determined functidh They noted furthermore, that this self-similar scalingRst, r)
occurred even for “early times”; in distinction with standard equilibrium phase separation where self-similar scaling
occurs at “late times” only.

In our theory, the scaling law v((r) ~ /2, which arises in the regime < £, < 1, may be understood
by the following simple scaling argument. First, we note that the flux functi@n, Eq. (19) has the asymptotic
form:

J(L) ~ % as L — 0. (21)
It follows, in the regimes « L < 1, that(20)is (asymptotically) invariant with respect to the scaling

1 — A%, L — AL. (22)
Hence, if we assume that the distribution functi®(d, r) scales in a self-similar manner, it follows that

L@ ~ 172 for ek Ly < 1.

5. Numerical simulations of CDS and cCH

In order to better understand thearsening pathwagf CDS, a numerical simulation has been written using
Mathematica. The problem af kink/anti-kink pairs on a line of lengtli. with periodic boundary conditions is
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2.5 5 7.5 10 125 15 175 7/
t

Fig. 5. Numerical simulation afDS on domain of length 1 with periodic boundary conditions anel 0.005. The kink trajectories are marked
in red and the anti-kink trajectories in blue. Note that the kink makgecbalesces with the anti-kink markeg due to the periodicity of the
boundary conditions.

treated fore « 1. For initial conditions irCDS, we take an evenly spaced array of defects (kink alternating with
anti-kink) with separatio@ := L/2n, and then perturb each location by a random distance taken from a normal
distribution centered at 0 with covariandg20. Coalescence of defects is identified when the distance between
them comes within the prescribed tolerancg,0.

We present irFig. 5 the result of our such a simulation 6DS for 25 kink/anti-kink pairs placed on a do-
main of unit length withe = 0.005. One notes that there are no binary events. Furthermore, we see that the
sole coarsening event is a specific ternary coalescence; two kinks coalesce with an anti-kink resulting in a kink.
Larger-scale simulations (not presented here) also display a marked degree of self-similarity during coarsening.
Finally, the coarsening stops at the appearance of a single kink/anti-kink pair, which subsequently preserves a fixed
separation.

To validate the unusual coarsening features exhibitetfhy, a direct numerical simulation of cCH with= 0.1
was carried out by Prof. A.A. Golovin; a pseudo-spectral explicit in time method on a periodic domain. The initial
condition involved a small random (Gaussian) perturbation of the unstable homogeneaps=sateEhe simulation
results are presented fig. 6, where the plotted length scale is the inner scale- x/e, and the time scalehas
been re-scaled to — 1/¢2; note that the in the inner scale, the interfacial layers have width 1. One initially
observes spinodal decomposition with a wavelength consistent with the dominant linear instability of the system.
An interfacial regime subsequently emerges, and coarsening then proceeds sdielg-teanariesas predicted by
CDS.

6. CDS theory

We now present a theoretical study@®S which explains the coarsening features that have been observed in
the simulations.



138 S.J. Watson et al./Physica D 178 (2003) 127-148

X 10

1200 1400 1600 1800

1000

600

400

Fig. 6. Simulation of the cCH evolution equation foe= 0.1, courtesy of A.A. Golovin. The color scheme is red §o& 1 through yellow,
g = 0, to blue forg = —1. Note that the graphic is shown with respect toitirer length scaleX = x/¢ and the re-scaled time— #/&2.

6.1. The “pinch instability”

First, we perform a linear stability analysis(@B) for an alternating array of equally spaced kink/anti-kinks on a
periodic domain. We find that spectral properties are independent of domain size, and conclude that the dominan
instability for the periodic domain (or unbounded line) involves a four-periodic “pinching”; two kinks “pinch” the
intervening stationary anti-kink.

Let lp be the separation of an equally spaced alternating array of kink/anti-kinks on periodic domain
of length 4l (n € N). Linearizing the 4-dimensional dynamical systefh8) about this state yields thei4< 4n
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matrix A:
(2 —1 0 0 —1]
1 -2 1 0
0O -1 2 -1 0
, 0 1 -2 10

A= —J(lo) ,
0 .o 0 -1 2 -1
|1 0 0 1 -2]

whose eigenvalues determine the instability of the uniform state. Notice that each successive row is a simple cyclic
permutation of the previous row followed by multiplication by, and also thatJ’'(lg) > O.

We now present a characterization of the eigenvalues and eigenvectbiia térms of the complexth roots
of unity:

ri:=€e®@2i  where j=0,1,...,4n— 1.

First, for eachj = 0, 1, . .., we define théith component of the vectotg”, v e C* as follows:
u =t v ==k, k=1, 4
We claim foreachy =1, ... ,2n — 1, that the vectore}r, e;j’ given by

. 1/2 . 1/2
. J J
e = [1+ COS(E)] uj + [1— cos<z>] v,
.\ 71/2 -\ 71/2
_ T T
e = [1+ COS(Z)] u; — [1— cos(z)] 7

are eigenvectors of with associated eigenvalugg and—A ;, respectively, where

. [T
Ai=2sin| =— ).

This follows from a general theorem afternating circulant matrice$24], motivated by this work, and which is
related to the spectral properties of circulant matrices; seg2&]gFurthermore, the vectous, vg are generalized
eigenvectors ofA with eigenvalue 0, and the set of vectors

+ + ~ ~
{u05V07e17-”aezn_lael"‘-7e2n_1}

constitute a basis fat*".
The largest (positive) eigenvalue of 2 is attained wienn, and the associated eigenvector is the four-periodic
vector:

d=[1,0-1,0,...]. (23)
We note that in this most unstable direction the anti-kinks remain fixed and the kinks are “pinched” pairwise. Also,

the structure of this unstable mode is independent bé. of the length of the periodic domain. Hence, we conclude
that this is the most unstable mode for the unbounded line as well.
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A supposed isolated binary coalescence
— -

& o
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zo(t) L[] z1(t) Ll z2‘(-1;') L2 J:aﬁ) LSM() ¥

o
©

Fig. 7. Sketch of the impossible binary coalescence. Hereenotes the separation of the assumed coalescing pair, kfhile, andL3 denote
the separations of neighboring pai@®.andO denote kink and anti-kink, respectively.

6.2. The impossible binary and the unique kink-ternary

Here we present an analysis of the dynamicS§ in the fully nonlinear regime. We prove that isolated binary
coalescence of phase boundaries is impossible, and furthermore that only one type of ternary event is permitted (twc
kinks meet an anti-kink), which we refer to as #iek-ternarysince it results in a kink. These theoretical predictions
are vividly confirmed inFigs. 5 and 6vhich relate to numerical simulations 6DS and cCH, respectively. This
behavior stands in marked contrast with the well-established prevalence of binary coalescence for the Cahn-Hilliard
equation.

Theorem 8 (The impossible binary)lsolated binary coalescence events are impossibl€1s.

Proof. We proceed by contradiction and suppose there exists a kitik, which coalesces at timg with an
anti-kink, x2(7), while the neighbors remain separated throughout a preceding time intervfligség without

loss of generality we have supposed the kink to be to the left of the anti-kink, and for convenience have re-indexed.
So we have

lim L1(r) =0 (24)
t—T-
and
Lo(t), L2(f), L3(t) >d >0 forall re (T —34,T] (25)
for somed > 0 and some > 0. Now from(20) and (25)we conclude that on the time inten@l — §, T7:
dL,
—= = b1(D), 26
TR (26)
dL
= = (LD + b, 27)

where the functions (r) := J(Lo(f)) — J(L2(#)) andba(¢) := J(L3(t)) are necessarily bounded due to assumption
(25), i.e.

max |b1(t)| = M1 < oo and max |b2(f)| = M2 < oo. (28)
(T—35.,T] 1e(T—38,T)

Now (24), (26) and (28imply

Noting thatJ(L) is monotone decreasing i, while recalling(21), we deduce fron27)—(29)that
dL, 1 _
?S—m"er-i-O(l) as t—> T . (30)

But since ¥(T — 1) is not integrable af’, we deduce fron{30) that there exists a time € (T — 3, T) such that
L»(7) = 0. This contradict$25), thereby establishing the theorem. O
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Theorem 9 (The kink-ternary. The coalescence of two kinks with an anti-kink is the only possible ternary coars-
ening event fo€DS.

Proof. We proceed by contradiction. Suppose that two anti-kink&;) andx4(¢), coalesce with the intervening
kink, x3(¢), at time T, while the neighboring kinks1(r) andxs(f) remain at some finite distance. Proceeding as
before, we have

(i) lim Ly(r) =0, @iy lim L3 =0, (31)
t—>T~ t—>T—
while in some preceding time interval [ 8, 7], § > 0,
dL
= = L)+ ba(o). (32)

where the functiob (¢) := —J(L1(?)) is bounded:

max |b1(¢)| = M1 < oo. (33)
te(T—-4,T]

But, since liny _, g+ J(L) = oo, it follows from part (ii) of (31) and (33)applied to(32) that there exists a time
Tt € (T — 6,1 for which

dL
d—tz >0 forall relr,T).
This contradicts part (i) of31) and concludes the proof. O

Note that the preclusion of binary coalescence hinges on the non-integrability of thiéfluaxt L = 0. Whereas,
the exclusion of the two anti-kinks meeting a kink requires only #ia) — oo asL — 0*. Conversely, one may
show that these conditions are also necessary for the associated properties to emerge. However, we also claim tha
though binary coalescence is not theoretically precluded for an integrable choitaf6DS (e.g.J(L) = 1/L4,
with 0 < ¢ < 1), the generic coarsening event will still be an “approximate kink-ternary”; two kinks converging
on an anti-kink, with one kink possibly annihilating the anti-kink “just before” the other arrives.

Remark 10 (The kink-ternary structure). The generic kink-ternary coarsening event displays a parabolic local
structure in the shape of the paths of the coalescing kinks. Specifically, |tting L2(r) denote the separation of
the two coalescing kinks from the intervening anti-kink, one may show that

Li(t) = V23T — Y2 + o((T - Y2 = Lo(p) as t— T,

whereT is the coalescence time.

7. Analytical coarsening law for CDS

We introduce here eoarsening ansatior CDS. It is based on several working hypotheses:

e Anti-kinks repel one another, as evidenced by the impossibility of the ternary event involving two anti-kinks
meeting a kink. We assume that this repulsive interaction yields an “effectively periodic” structure to the coarsening
system.

e Thepinchinstability identified for the idealized periodic array is the dominant mode for coarsening.
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e Thelength scale distributio®(L, 7), is self-similar throughout the coarsening process; we recall here that Emmott
and Bray numerically observed self-similarity even at “early tin{&s].

e A scale-invariant perturbation of a periodic array faithfully models the coupling of “effective periodicity” with
the scale-invariance d?(L, ) in the coarsening process.

Based on this ansatz, we deduce a theoretical coarsening law for the average length scale as a function of time. |
stands in excellent agreement with results obtained from direct simulation dflei.tA precise description follows.

7.1. The coarsening ansatz

An equally spaced array of kink/anti-kinks on a dontaiiperiodic or unbounded) is an unstable critical point for
the dynamical syste(d.8). Motivated by the linear stability analysis®éction 6.1we study the initial-value problem
associated with a scale-invariant disturbamoéthis state in the direction of the most unstable eigenveEmpr(23)

d. Specifically, we fix the location of the anti-kinks while pairwise pinching the kinks together by a scale-invariant
distancenlo, wherelg is the initial separation angl > 0 is a small dimensionless constant; §&g 8.

It follows from the symmetry of the initial data that the solution is a periodic extension of the elementary
initial-value problem involving two pairs of kinks and anti-kinks on a periodic domain of lengttsdbject to the
dynamics given by18); this reduced initial-value problem is illustratedhig. 9. One sees that the anti-kinks will
remain fixed as the solution evolves, while the two kinks move towards the initially closer anti-kink (here, the upper
one). They subsequently coalesce at the (upper) anti-kink, leaving a kink, in a finité tamaracterized by the
simple target-time problem:

g =[Jlo—s)— Jlo+5)],  s(0) = nlo, lim_s(t) = lo. (34)
t—T—
Referring toFig. 8 we see that the an initial morphological length sé¢ghill be doubled in thedoubling timeT'.
We may explicitly calculate the doubling tin¥e of (34), as a function of the initial lengthy and perturbation

constant), upon recalling19):

A o ds
T=T(o,n) = f
"= e To—s) — Jlo+ 9)
42 I glo — 1
- 42 [(elf’/ 2 4 e~ 0/2)[arctankie™"0/2) — arctantie™0/?)] + (1 — n)EO +1In (m)} ) (35)
8 [—
t
Doubling time Final morphological length scale
-—————

f Pinch Event 2l

T+

= X

Kink T
©

@
<3 =
-

-
e Anti-kink T
nlo

- -
nlo nlo Ly _ il
Kinks are initially [nitial morphological length scale

pairwise pinched.

Fig. 8. The length scale doubling ansa@®:andO denote the kink and anti-kink, whil® denotes the location of the kink prior to the small
offset perturbation in the most unstable directigh recall Eq. (23) The subsequent temporal evolution of kinks and anti-kinks locations is
marked with arrows, concluding witkink-ternarycoarsening events at tinfe
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Anti—kink

Kink Kink

——“bl

Anti-kink

P

Fig. 9. The elementary period-doubling pinch evdtandO denote the kink and anti-kink, whil® denotes the location of the kink prior to
the small offset perturbation in the most unstable direchidrrecall Eq. (23)

Remark 11. We view the dimensionless parameteas measuring the deviation of lengths in the coarsening
structure from the mean length. Our ansatz implicitly assumes that the distribution of lengths around the mean is
scale-invariant throughout the coarsening. One may choose to go beyond self-similarity and assume a dependence

of n on the length scale

7.2. Theoretical coarsening law

Assuming self similarity in the coarsening process, we may iterate this period-doubling ansatz. This yields a
geometric increase in the length scale in a known time period. Idealizing the initial length scale to be infinitesimally
small relative to the observed length scales, we deduce the following (implicit) theoretical coarsening law for the
morphological length scalé v, as a function of time:

i=00 ) EM
I=ZT<7,71). (36)

i=1
A numerical log—log plot of this theoretical scaling law is shown (with re-scaled timeginLOfor the choicey =
0.001. It displays the scaling (1) ~ 11/2, expected from the earlier self-similar scaling analysiSegtion 4.4n
theregime « L <« 1. Acrossoverregime, in which the coarsening rate slows, emerges when the (dimensionless)
morphological length scalé s ~ 1. Recalling(4), we understand that this crossover occurs at the Peclet length
scale, where convection is balancing diffusion. Finally, the coarsening becomes logarithmically Slgw-asoo,
consistent with the convergence of the cCH to CH in this limit.

Since ourpinch ansatanvolves a description of theoarsening pathwe are also able to identify the scal-

ing constant associated with th&?2 coarsening regime. First, the doubling tini@5) has the asymptotic
form:

. 1
Tlon) = ——m%—2Inn—102 as Ilp— Ot
(lo, m zﬁs(n n 0 0
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In Ly

Converges to
Ly~1nt

et — Inct
15

Fig. 10. Numerical plot of the theoretical scaling 1686) exhibiting the scaling of the morphological lengifi, versus the re-scalesfow time
7 := et for the choice ofdisturbance parametey = 0.001. Note that crossover scaling arises when the dimensionless morphological length
scaleL s ~ O(1); i.e. at the Peclet length scafi (4).

Hence, the theoretical scaling 14@6) yields

- V3 /2,172
V2?2 —21Inn - Y2

Note that the scaling pre-factor of2 appearing in(37), c(5), is monotone increasing in the intervake (0, 1),

and furthermore

as Ly — 0", (37)

L m

limc(n) =0 and limc(n) = oo.
n—0t n—1-

One may thus envision determinindrom a numerical simulation of either cCH@DS, by identifying the scaling
constant associated with th€2 coarsening regime.

8. Conclusions

We have considered the coarsening dynamics of a convective Cahn-Hilliard equation (cCH) in one space di-
mension. A sharp-interface theory for the evolutiorpbfse boundariess derived through a matched asymptotic
expansion arising when the phase boundary width- 0*. Due to convection, two non-symmetrically related
phase boundaries emerge (kink and anti-kink), which then interact to leading order through a convection—diffusion
flux of the order parameter. This yields a dynamical syst€mS) for kink/anti-kink locations, which coarsens in
time through their coalescence. Our theory is valid for all morphological (characteristic) length 8galss «;

i.e. whenever the system enters thterfacial regime Novel coarsening properties 6DS have been identified,;
binary coalescence is impossible, and there is a unique ternary coalestenk@k-ternary. FurthermoreCDS
predicts the temporal scaling lafn, ~ /2, provideds « L < 1. All of the above have been confirmed by
direct numerical simulations on cCH ag®sS.
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A pinching mechanisrhas been identified as the dominant linear instability of an alternating periodic array
of kink/anti-kinks. A self-similar period-doubling ansatz, involving a scale-invariant recursion of the elementary
pinching mechanism, is subsequently proposed as a description of the entire coarsening path. This yields, in turn, a
theoretical coarsening law for the morphological length s€algas a function of time. It stands in good qualitative
agreement with both the direct computatiaiiS, and also the numerical simulations of cCH].

The coarsening dynamical system approach developed here offers a flexible framework for the identification
of coarsening laws in 1D systems where localized structures (defects) interact. It embodies the principle that the
evolution of structure is essentially determined by the local structure of the defects and their mutual interaction.
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Appendix A. Matched asymptotic analysis

The governingquation (5)s singularly perturbed in the limit — O, and so is referred to as the outer equation.
In this section, we perform the associated matched asymptotic expansions. Since the parsetetelength scale
for transitions, we shall see that the associated outer problem yields a sharp-interface theory.

We assume the asymptotic expansiorfftakes the form:

qg=qgo(x) +gq1(x)e +--- (outer expansion k(t, €) = ko(t) + k1(H)e + ---  (kink expansiop,
a(t,e) = ao(t) + a1(t)e +--- (anti-kink expansion
The inner equation arises from re-scaling to the inner length scéile units Lp). Since the kinksk(z; ¢) and

anti-kinksa(t; ) are in general moving, we need to select an inner coordinate with respect to a moving frame. So,
for the kink atx = ki (z; ), we take the inner coordinafeto be

X = k(t; e)
o &
and re-write(5) in terms of the inner solutio@ (X, 1) = ¢(x, t) as

€20, — ek(t; £)Qx — £QQx = (0% — O — OxXxx. (A1)

We proceed in a similar fashion for the anti-kiak).
Now ¢ satisfies the conservation law

X

g+ Jx = o,
where
J=-W(gx+ %8512 + %Gy (A2)

Hence, across the kinks and anti-kinks we have the Rankine-Hugoniot relation:

k(’)[‘]]k(t;s) = [J]k(t;a)a (A3)
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where [li.) and gl denote, respectively, the jump in the fllband the order parametgiacross the kink at
x = k(t; &); similarly for the anti-kink.

Before proceeding with the matching, we convert the free boundary-value problem associated with the outer
solution to a fixed domain by introducing the following coordinate transformation. Assume that the initial distribution
of kink and anti-kink locations is given by, @’ € R (i € Z), where

K <d <kt viez.
We define? : R x [0, T) x [0, &) — R, through
ai(tv 8) - ki(t’ 8)
al —ki

ki(t,e) —ai_1(t, €) .
ai-1(t €) + = (y—ai-1), x € (ai-1, k).
—ai-1

ki(t, ) + (v — k", x e (k,d),

Uy, t,e) =

Now we introduce the velocity fieltl(y, t; &) ;= ¥;(y, t, &):
ai(t, &) — ki(1, &)
al — ki
ki(t, &) — ai—1(t, €)
ki —aj—1

ki(t, &) + (v — kY, x e (k,d),

V(y, t;e) =

ai-1(t, &) + (y—ai-1), x € (ai-1k"),

and the piecewise constant (instretch functionS(y, t; ¢):

ai — ki c (kt i)
1 alte) ke 0
Sy, t;8) ' = —— = )

0w/ dy K — iy Woan

9 € s Ui— .

kit.o) —aiate) 0

The outerequation (5then takes the form:

qr — Vay — Sday = S W' (q) — £*Sqyylyy (A.4)

on each open intervak’, «') and(a’, k'*+1).
A.1. Asymptotic match to O(1)

Settinge = 0 we deduce fronfA.1) that the inner solution has the form:
Qo(X) := tanhX (A.5)
about the kinkk(z; ), and similarly, across the anti-kinkz; ) we deduce
Qo(X) := —tanhX. (A.6)

We now match the leading-order inner solutigAs5) and (A.6)to the outer solution. Taking first a kink/anti-kink
interval (K, ') and matching to order O(1) we deduce, fr¢f4)—(A.6), the following boundary-value problem:

aly (1) — ki1 aly (1) — k{0

2
(q0): — ki qo0(q0)y = (W) [(90)® — qolyys qolk', 1] = 1 = qold', 1],
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from which we conclude that

go(y,n =1 for ye (k' d). (A.7)
We deduce in a similar manner that

gy, ) =—1 for ye (@, k. (A.8)
Noting (A.2), (A.7) and (A.8) it follows from the Rankine-Hugoniot relatigii.3) that

k() =0 and ) =0. (A.9)

A.2. Asymptotic match to @)

From(A.9), we see that the kink and anti-kink velocities are of ordér)@nd thereforgA.1) is asymptotically
equivalent through order @) with the time-independent equation:
—£QQx = (0% — 0 — Ox)xx- (A.10)
Now (7) has two exact solution§(X) and.A(X) given by

e \1/2 e \1/2
K(X) = <1+ E) tanh|:<1+ 72) X] (kink)

and

e \1/2 e \ 12
AX) = — <1 - 72) tanh |:(1 - 72) X:| (anti-kink)

which will be matched to the outer solution. We note here that the asymptotic val¥essaso of IC(X) and. A(X)
are

. e \¥?
im0 =+ (1 + ﬁ) , (A.11)
e \ 2
im A0 =7 (1 - 72) . (A.12)

Returning ta(A.4), we note thatS = 1 + O(¢) sincek(z; £) = O(e) = a(t; ¢). So, it follows from(A.4), (A.7) and
(A.8) and the Q<) matching with(A.11) and (A.12)Xhatq; satisfies the following boundary-value problem:
: 1 , 1
(q1): — (q1)y = [2q1lyy, qu(k', 1) = 2_«/2 for qi1(d', 1 = _2_\/2'
Also, proceeding in a similar manner for the anti-kink/kink intexvé) +1), we arrive at the companion boundary-value
problem:

. 1 . 1
+ (q)x = [2q1] %% in=—"— for Kty =——.
(gD + (gD x = [2q1]xx qi(a', 1) /3 q1( ) Wi
We conclude that
1 1 1—expl-(y—£k)/2] ; ;
22 Pl-expl@ k2 V=
q1(y, ) = q1(y) = (A.13)

11 1-exply -2
22 " V21— expl- (il —a)/2]’

ai <y< ki+l‘
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Now expanding the Rankine-Hugoniot relati¢h.3) in powers ofe, utilizing (A.2) and (A.13)and the O(1)
conditions, yields upon matching theg4) terms:

.. 1 . . . n .
iy — T F iy — F — gt A.14
1D 2\/é[f(a ) — f( a=)] ( )
and
i) = Z—jima" k) P ], (A15)
where
oo 1
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