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Abstract

We characterize the coarsening dynamics associated with a convective Cahn-Hilliard equation (cCH) in one space dimension.
First, we derive a sharp-interface theory through a matched asymptotic analysis. Two types of phase boundaries (kink and
anti-kink) arise, due to the presence of convection, and their motions are governed to leading order by a nearest-neighbors
interaction coarsening dynamical system (CDS). Theoretical predictions onCDS include:

• The characteristic lengthLM for coarsening exhibits the temporal power law scalingt1/2; providedLM is appropriately
small with respect to thePecletlength scaleLP.

• Binary coalescence of phase boundaries is impossible.
• Ternary coalescence only occurs through thekink-ternaryinteraction; two kinks meet an anti-kink resulting in a kink.

Direct numerical simulations performed on bothCDS and cCH confirm each of these predictions. A linear stability analysis
of CDS identifies apinchingmechanism as the dominant instability, which in turn leads to kink-ternaries. We propose a
self-similar period-doublingpinch ansatzas a model for the coarsening process, from which an analytical coarsening law
for the characteristic length scaleLM emerges. It predicts both the scaling constantc of the t1/2 regime, i.e.LM = ct1/2,
as well as the crossover to logarithmically slow coarsening asLM crossesLP. Our analytical coarsening law stands in good
qualitative agreement with large-scale numerical simulations that have been performed on cCH.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The kinetics ofdriven phase-ordering systems offers new and rich possibilities in phenomenology. To model
a driven system one must identify both the energetics and the dynamics of phase boundaries, in distinction with
equilibrium phase separation[1], where energetics alone suffices. A paradigm of this distinction arises in the
first-order phase transformation of a melt in contact with its solid. Here, sufficient undercooling of the melt breaks
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thermodynamic equilibrium at the interface and then a dynamic condition expressing the systems response is also
required; e.g. the Gibbs-Thomson condition withkinetic undercooling.

The Cahn-Hilliard equation (CH) governs thespinodal decompositionof binary alloys under isothermal condi-
tions[2], in one space dimension:

qt = [W ′(q) − ε2qxx]xx, (1)

whereq(x, t) is thephase fraction(order parameter) at the spatial locationx at time t, W(q) a symmetricdou-
ble well with minima atq = ±1, andε a dimensionlessinterfacial width. The coarsening dynamics of CH
serves as an archetypal example of an equilibrium phase separation process. Here, an initially spatially homo-
geneous mixture,q ≡ 0, is driven to segregate by a uniform reduction in temperature (quenching). A fine-grained
phase mixture is initially formed, and this morphology subsequently coarsens into larger-scale structures with a
characteristic length scaleL(t). Among the properties of the CH theory are the phase selection rule for the mix-
ture through a bi-tangent construction onW(q) [3], and the logarithmically slow coarsening rate in one space
dimension[4]:

L(t) ∼ ln t.

The process ofthermal faceting, in which a planar crystalline surface breaks up into hill (anti-kink) and val-
ley (kink) structures following a change in temperature, is analogous to spinodal decomposition. In particu-
lar, the faceting of a thermodynamically unstable planar surface whichrelaxeswithout net growth (anneals)
has also been modeled with equations of CH type[5,6]; the analogy is exact in 1D situations, but important
distinctions arise in higher dimensions[7]. Here, the orientation of the local tangent plane serves as a (vec-
tor) order parameter and the surface tension induces an effective free energy. Furthermore, the surface tension
is sufficiently anisotropic that certain crystal surfaces are thermodynamically unstable and hence missing in
the crystal equilibrium state (Wulff shape[8]). A stable pair of facets corresponds to bi-tangent points of the
surface free energy, and the hill-valley structures coarsen with a rate depending on the mechanism of surface
relaxation[9], the effective dimensions of the structure, and also the symmetry group of the crystal surface
[7,10].

When thermal faceting of a crystal surface involves netgrowth into its melt (or vapor), then convective terms
augment the CH structure[9,11,12]; roughly, the net growth of facets in their normal direction convects the order
parameter. Now provided the strength of convection is small enough, spinodal decomposition reminiscent of CH
again arises. However, the coarsening rates that have been observed numerically are significantly faster than the
non-growth counterparts; e.g. one regime of the 1D convective Cahn-Hilliard equation gives[11,13]:

L(t) ∼ t1/2.

Remark 1. Large-enough growth rates may arrest coarsening or even induce spatio-temporal chaos of the crystal
surface[14].

In this paper, we study the coarsening dynamics of a convective Cahn-Hilliard equation (cCH) in one space
dimension, in dimensionless form:

qt − qqx = (q3 − q − ε2qxx)xx. (2)

Leung[15] proposed it as a continuum description of phase separation of alattice gas drivenby an applied field.
In a similar spirit, Emmot and Bray[13] proposed it as a model for spinodal decomposition of a binary alloy in an
external field. In both cases, an assumed order parameter dependence of themobility couples to the external field,
thereby inducing the Burgers convection term.
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Fig. 1. Schematic representation of a faceted 2D crystal growing into its (hypercooled) melt. The local slopeq of the crystal–melt interface is
measured relative to a frame of referencex − y co-moving with the direction of solidification. The rounded corners between facets have width
O(ε), and the hill and valley corners are denoted askinksandanti-kinks, respectively.

Golovin et al.[11] derived(2) as a model for kinetically controlled growth of two-dimensional crystals; see also
Smilauer et al.[12] for a closely related model arising in epitaxial growth. Watson[16] has subsequently identified
(2) as asmall slopeapproximation to the geometric crystal-growth model derived by Gurtin et al.[19,20]; their
geometric model takes the form of aa driven anisotropic Willmore flow1. In the small slope setting,q denotes the
slope (phase) of the crystal surface, andε a non-dimensional width of the high curvature corners (phase boundaries);
seeFig. 1. The broken up-down symmetry due to crystal growth is captured by the Burgers convection,qqx, which
breaks the symmetryx → −x in (2). In turn, the valley corner (kink) and hill corner (anti-kink) are not symmetrically
related. In addition, thebi-tangentconstruction for the identification of the slopes (phases) far from the hill and valley
corners is broken; valley slopes are steeper than the expectedq = ±1, while hill slopes are shallower[11,13,15].
The failure of this thermodynamic construction marks cCH as adrivenphase-ordering system.

We perform a matched asymptotic analysis of cCH,Eq. (2), asε → 0+, that leads to a sharp-interface the-
ory of kink/anti-kink interaction[17,18]. It shows that the asymmetry between a kink and anti-kink induces a
convective–diffusive flux of the order parameter between them. This is turn drives these discontinuities in a manner
given by the Rankine-Hugoniot relation; recall thatq is a conserved quantity. The result is a nearest-neighbor in-
teraction dynamical system for the kink/anti-kink locations. Our theory generalizes that of Emmot and Bray[13],
which is valid only for dimensionless length scalesε � L� 1, to all length scalesε � L.

The average separation (morphological length scale) LM between successive phase boundaries grows in time as
coalescing kinks and anti-kinks annihilate one another. We develop a theory for thiscoarsening dynamical system
(CDS) which rigorously establishes

(i) The characteristic lengthLM exhibits the temporal scalingt1/2, providedLM is appropriately small with
respect to thePecletlength scaleLP.

(ii) Binary coalescence of phase boundaries is impossible.
(iii) Ternary coalescence of phase boundaries may only occur through akink-ternary; two kinks meet an anti-kink

resulting in a kink.

The unusual coarsening mechanisms described in (ii) and (iii) are novel, and stand in marked contrast with the
coarsening dynamics of the CH,Eq. (1), where binary coalescence of phase boundaries is generic[4,22,23]. We
present direct numerical simulations of cCH which confirm (ii) and (iii). Further, our predicted coarsening law (i)
coincides with the direct numerical simulations of cCH[14].

1 The Willmore flow arises in differential geometry[21].
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A linear stability analysis of a spatially periodic kink/anti-kink array identifiespinchingas the dominant instability;
pairs of kinks move towards the intervening anti-kink. We note also that the “opposite” maneuver, whereby two
anti-kinks move pairwise towards the intervening kink, is the most stable disturbance. Both these results follow
directly from the spectral properties of a new class of matrices,alternating circulant matrices[24], which are
related to circulant matrices[25]. Following the pinch instability into the nonlinear regime yields, via kink-ternary
coalescence, a periodic array of twice the initial separation.

We propose a self-similar (spatial-) period-doublingpinchingansatz as a description of the coarsening process.
It involves application of a scale-invariant initial disturbances on spatially periodic arrays of kink/anti-kinks in the
pinch direction; i.e. the dominant linear-instability eigenvector. As noted, this results in an array of twice the initial
period, upon which we iterate the procedure. Our motivation for the ansatz is twofold. First, the non-existence
of ternary coalescence involving two anti-kinks and a kink (see (iii)) is a reflection of the repulsive interaction
between anti-kinks. We assume that this repulsion enforces a “near-periodicity” of anti-kinks during throughout
the evolution, which in turn highlights the relevance of thepinch instability. Second, we recall the self-similarity
of the length scale distribution observed by[13] (valid even for “early times”), and note also that our simulations
qualitatively display marked “self-similarity” in thecoarsening path. The scale-invariant disturbance component of
our ansatz is intended to capture the scale-invariant deviations of the full system from periodicity.

An analytical coarsening law for cCH is derived from our pinch ansatz forCDS, which is valid over all mor-
phological length scalesLM � ε. It qualitatively captures all the essential features of the numerically calculated
coarsening law[14]. In particular, it identifies the crossover to logarithmically slow coarsening to occur when
LM ∼ LP, thereby clarifying this numerically observed transition. Furthermore, since we have specified the
coarsening path, we are also able to identify the scaling constantc of thet1/2 regime; namely,

LM =
√

3
4
√

2(η2 − 2 ln η − 1)1/2
ε1/2t1/2, ε � LM � 1,

where 0< η � 1 is the scale-invariant disturbance parameter of our period-doubling coarsening ansatz.

2. The convective Cahn-Hilliard equation

We consider the following one-dimensional convective Cahn-Hilliard equation (cCH):

qt̄ − Vqq̄x = µ(q3 − q − ν2qx̄x̄)x̄x̄, (3)

where the dimensionless order parameterq(x̄, t̄) is a function of dimensional spacex̄ ∈ R and timet̄, V a speed
([V ] = LT−1), µ a mobility ([µ] = L2T −1) andν a microscopic length scale ([ν] = L). Eq. (3)serves, e.g. as a
phenomenological model of faceting in kinetically controlled crystal growth[11,16].

2.1. Scaling analysis

The convection balancing diffusion supplies thePecletlength scaleLP and associated time scaletP given by

LP := µ

V
, tP := µ

V 2
.

We now re-scale(3) through

x = x̄

LP
, and t = t̄

tP
(4)
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and arrive at the dimensionless form of cCH:

qt − qqx = (q3 − q − ε2qxx)xx, (5)

whereε := ν/LP .
Throughout the remainder of the paper, all length and time scales will be in the dimensionless form associated

with the scaling(4), unless otherwise stated.

2.2. Previous coarsening studies

Numerical simulations of cCH,Eq. (5), have been previously carried out in[13,14]in the regime2 ε � 1. We now
summarize the pertinent observations from these simulation studies. First, the spatially homogeneous stateq = 0 is
unstable and upon disturbance develops a periodic structure with a wavelengthλ consistent with that predicted by a
linear stability analysis; namely,λ = 2

√
2πε. The “wavelength” of the solution then increases until a well-defined

interfacial structure is apparent; then there are “extended” regions whereq � ±1, connected through rapid transition
layers (phase boundaries) of width O(ε). Looking in the direction of increasingx, the “step up” transition phase
boundary, whereq = −1 → q = 1, is referred to as akink, while the step down layer, where (q = 1 → q = −1)

is ananti-kink; seeFig. 3.
The average separation (morphological length scale) LM between successive phase boundaries continues to

grow in time through kink/anti-kink coalescence and their subsequent mutual annihilation. Three distinct regimes
in the scaling behavior of (the dimensionless)LM(t) may be discerned in the numerical studies of(5) appearing in
[13,14]. They are summarized in the following table:

Scaling regime Scaling law forLM(t)

ε � LM � 1 t1/2

LM � 1 Crossover
LM � 1 ln t

Recalling(4), one sees thatcrossoverscaling emerges when the morphological length scaleLM(t) is comparable
to the Peclet length scaleLP.

Remark 2. Whenε ∼ 1, the morphologies of solutions do not coarsen in time but rather display periodic patterns,
while for ε � 1 solutions becomerough [14]. This is related to the fact that formally the cCH approaches the
Kuramoto-Sivashinsky equation (KS) asε → ∞, and solutions of KS are known to display spatio-temporal chaos.

We now proceed to develop a sharp-interface theory for cCH from which we may deduce all of the above scaling
behavior.

3. Sharp-interface theory

The governingequation (5)is singularly perturbed in the limitε → 0+, with ∂/∂x = O(1). In this section, we
discuss the associated matched asymptotic expansions. Since the parameterε sets a length scale for transitions, we
shall see that the associated outer problem yields a sharp-interface theory.

2 SeeRemark 2.
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3.1. Matched asymptotic analysis asε → 0+

We refer to(5) as the outer equation, sinceε → 0+ with ∂/∂x fixed yields a singular perturbation. The inner
equation arises from re-scaling to the inner dimensionless length scaleε. Since the kinks and anti-kinks are in general
moving, we need to select an inner coordinate with respect to a moving frame. So, for the kink atx = k(t; ε), we
take the inner coordinateX to be

X = x − k(t; ε)

ε

and re-write(5) in terms of the inner solutionQ(X, t) = q(x, t) as

ε2Qt − εk̇QX − εQQX = (Q3 − Q − QXX)XX, (6)

similarly for the anti-kinka(t).

Remark 3. We give a complete matched asymptotic analysis through order O(ε) in Appendix A. Therein, we
establish that the kink velocitẏk(t) is of order O(ε), consistent with the fact thatε = 0 corresponds to stationary
solutions.

Since the kink and anti-kink velocities are of order O(ε) (see(A.9), (A.14) and (A.15)), it follows that (6) is
asymptotically equivalent through order O(ε) with the time-independent equation:

−εQQX = (Q3 − Q − QXX)XX. (7)

Now (7) has two exact solutionsK(X) andA(X), identified in[15], given by

K(X) :=
(

1 + ε√
2

)1/2

tanh

[(
1 + ε√

2

)1/2

X

]
(kink) (8)

and

A(X) := −
(

1 − ε√
2

)1/2

tanh

[(
1 − ε√

2

)1/2

X

]
(anti-kink). (9)

Remark 4. There is a family of stationary profiles associated with the transition from positive to negative values
of q (kinks), while the anti-kink profile(9) is the unique profile connecting negative to positive values ofq; see
[13,16]. However, the matching condition between theinner andouter problemsis independent of the choice of
inner kink solution[16]. For simplicity, we use the particular kink given by(8) in our analysis.

We note here that the asymptotic values asX → ∞ of K(X) andA(X) are

lim
X→±∞

K(X) = ±
(

1 + ε√
2

)1/2

, lim
X→±∞

A(X) = ∓
(

1 − ε√
2

)1/2

. (10)

We see that the presence of convection (ε �= 0) introduces a fundamental asymmetry between kinks and anti-kinks,
which is not present in the Cahn-Hilliard theory (ε = 0). In particular, the bi-tangent construction[3] for identifying
“co-existent phases” is destroyed, as evidenced by(10) [11,13,15]. On a deeper level, this is a reflection of the
non-equilibrium nature of the underlying phase-transformation process when convection is present.
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We now match these inner solutions to the outer solution, which we represent in the form:

q(x, t) = q0(x, t) + q1(x, t)ε + O(ε2).

It follows from the matched asymptotic analysis presented inAppendix Athat the combined approximationqc :=
q0 + q1ε is equivalent through order O(ε) with the conservation law

qc
t + Jx = 0 for (x, t) ∈ R × [0, ∞) (11)

with flux J given by

J =

−qc − 2qc

x, x ∈ (k(t), a(t)),

qc − 2qc
x, x ∈ (a(t), k(t)),

(12)

and subject to the Dirichlet boundary conditions:

qc(k(t)−) = −1 − 1

2
√

2
ε, qc(k(t)+) = 1 + 1

2
√

2
ε, qc(a(t)−) = 1 − 1

2
√

2
ε,

qc(a(t)+) = −1 + 1

2
√

2
ε, (13)

whereqc(k(t)−) andqc(k(t)+) denote the limiting values ofqc as the kink locationk(t) is approached from the left
and the right, respectively; similarly for the anti-kinks.

It follows from the conservation law(11)that the speed of the kink̇k(t) (k-shock) is given by the Rankine-Hugoniot
relation:

k̇(t)[q]k(t) = [J ]k(t), (14)

where [J ]k(t) and [q]k(t) denote, respectively, the jump in the fluxJ and the order parameterq across the kink at
x = k(t); similarly for the anti-kink.

Since the kink and anti-kink velocities are order O(ε), it follows that(11) is equivalent through order O(ε) with
the quasi-static condition:

Jx = 0. (15)

Utilizing the notation ofFig. 2, the functionqc can now be computed from(12), (13) and (15)yielding

qc(x) =




−1 − ε

2
√

2
+ ε√

2

1 − exp((x − al(t) − L−)/2)

1 − exp(−L−/2)
, al(t) ≤ x ≤ k(t),

1 + ε

2
√

2
− ε√

2

1 − exp((k(t) − x)/2)

1 − exp(−L+/2)
, k(t) ≤ x ≤ ar(t).

(16)

A summary of the outer problem (through O(ε)) is shown inFig. 2.
Inserting(16) into (12), we find that the fluxJ between a neighboring kinkk and anti-kinka is, through order

O(ε), given by

J = −1 + ε√
2

1

exp(L/2) − 1
, (17)

whereL = |k(t) − a(t)| is the distance between the neighboring kink and anti-kink.
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Fig. 2. The sharp-interface limit through O(ε). Hereal(t) andar(t) locate, respectively, the anti-kinks to the left and right of the kinkk(t). The
two curves are sketches of the outerq profile inserted to guide the eye.

Fig. 3. Structure of the matched asymptotic composite solution of a periodic profile for cCH with wavelengthλ = 2LM. Here we have plotted
the composite solution for the choiceLM = 1 (i.e. the Peclet length scale) for which diffusion balances convection in the outer regions. Also,
� and� denote the location of the kink and anti-kink, respectively.



S.J. Watson et al. / Physica D 178 (2003) 127–148 135

Remark 5. The O(ε) composite solution, obtained from matching inner and outer solutions, is plotted inFig. 3for
a choice of parameters associated with the regimeε � LM � 1. We note that the kink amplitude is suppressed by
convection, while the anti-kink amplitude is barely affected. This circumstance is either enhanced or diminished by
the respective increase or decrease of the separation between kink and anti-kink.

4. The coarsening dynamical system (CDS)

In this section we show, as a consequence of our sharp-interface theory, that kinks and anti-kinks evolve according
to a nearest-neighbor dynamical system. Thecoarsening lawof cCH that describes the outcome of a coalescence of
kinks and anti-kinks is then identified; theparity coarsening law. TheCDS emerges from combining kink/anti-kink
dynamics with thisparity coarseninglaw. We conclude by showing, through a simple scaling argument, thatCDS
obeys the scaling lawLM ∼ t1/2, in the regimeε � LM � 1.

We have envisioned the solutions to(3)as an alternating sequence of kinksK[X−k(t)] and anti-kinksA[X−a(t)],
which are matched through the outer variablex. We make a slight, but convenient abuse of terminology, by now
referring to the locationsk(t) anda(t) also as kinks and anti-kinks.

4.1. Kink/anti-kink dynamics

Here we identify the dynamical system associated with our sharp-interface theory for kink/anti-kink interaction.
As we shall see, kinks and anti-kinks follow different, but “skewrelated”, laws of motion. In anticipation of this, we
adopt the following useful index convention for these an alternating array of these phase boundaries which takes
advantage of this property.

4.1.1. Index convention
Given an alternating array of kink/anti-kink locations on the line, we adopt the (arbitrary) ordering convention

of letting kinks have odd indices, which in turn gives anti-kinks even indices.
Let xi(t) denote the location of theith phase boundary at timet, and setLi(t) := xi+1 − xi; the distance between

theith andi+1th phase boundary (Fig. 4). Recalling(13) and (17), we deduce from the Rankine-Hugoniot relation
(14) that through order O(ε):

dxi

dt
= (−1)i+1[J(Li) − J(Li−1)], (18)

where the (effective)flux functionJ(L) is given by

J(L) := ε

2
√

2

1

exp(L/2) − 1
. (19)

Remark 6. The skew-symmetry between the evolution equations for kink and anti-kink, reflects the broken mirror
symmetryx → −x of the cCH equation.

Fig. 4. Herexi(t) denotes the location of theith phase boundary,Li(t) := xi+1 − xi is the distance between theith andi + 1th phase boundary,
and� and� denote kink and anti-kink, respectively; given our indexing convention,i in this figure is understood to be odd.
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In turn, when considering the evolution of distances between a neighboring kink/anti-kink pair, one observes two
types of intervals; depending on the sign of the order parameterq in the given interval. Noting thaṫLi = ẋi+1 − ẋi,
it follows from (18) that

dLi

dt
= (−1)i[J(Li+1) − J(Li−1)]. (20)

4.2. CDS and scaling laws

The outcome of encounters between kinks and anti-kinks is readily visualized via the faceted-crystal application.
First, if a pair meet, they annihilate since the interpolating facet disappears. Now in the case of coalescence of higher
order, e.g. the ternary collision, aparity lawarises. Namely, even groupings annihilate, and odd groupings result in
the appearance of the dominant type. So, for example, in the case of two kinks colliding with a single anti-kink, we
obtain a kink.

Definition 7 (CDS). We refer to the coarsening dynamical system that arises from the evolution of(18), subject to
theparity coarsening law outlined in the preceding paragraph, asCDS.

The average separation between neighboring defects, namely themorphologicallength scaleLM(t), grows as
CDS evolves due to coalescence of kinks and anti-kinks. Now, previous large-scale simulations ofCDS have been
carried out in Emmot and Bray[13] for the specific choiceJ(L) = 1/L. They found thatLM ∼ t1/2, and also
that the distribution functionP(L, t) (the fraction of domains which have sizeL at timet) scales in a self-similar
manner; i.e.

P(L, t) = 1

LM(t)
P̂

(
L

LM(t)

)

for some numerically determined function̂P . They noted furthermore, that this self-similar scaling ofP(L, t)

occurred even for “early times”; in distinction with standard equilibrium phase separation where self-similar scaling
occurs at “late times” only.

In our theory, the scaling lawLM(t) ∼ t1/2, which arises in the regimeε � LM � 1, may be understood
by the following simple scaling argument. First, we note that the flux functionJ(L), Eq. (19), has the asymptotic
form:

J(L) ∼ 1

L
as L → 0+. (21)

It follows, in the regimeε � LM � 1, that(20) is (asymptotically) invariant with respect to the scaling

t → λ2t, L → λL. (22)

Hence, if we assume that the distribution functionP(L, t) scales in a self-similar manner, it follows that

LM(t) ∼ t1/2 for ε � LM � 1.

5. Numerical simulations of CDS and cCH

In order to better understand thecoarsening pathwayof CDS, a numerical simulation has been written using
Mathematica. The problem ofn kink/anti-kink pairs on a line of lengthL with periodic boundary conditions is
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Fig. 5. Numerical simulation ofCDS on domain of length 1 with periodic boundary conditions andε = 0.005. The kink trajectories are marked
in red and the anti-kink trajectories in blue. Note that the kink markedk1 coalesces with the anti-kink markeda1 due to the periodicity of the
boundary conditions.

treated forε � 1. For initial conditions inCDS, we take an evenly spaced array of defects (kink alternating with
anti-kink) with separationd := L/2n, and then perturb each location by a random distance taken from a normal
distribution centered at 0 with covarianced/20. Coalescence of defects is identified when the distance between
them comes within the prescribed tolerance,ε/10.

We present inFig. 5 the result of our such a simulation ofCDS for 25 kink/anti-kink pairs placed on a do-
main of unit length withε = 0.005. One notes that there are no binary events. Furthermore, we see that the
sole coarsening event is a specific ternary coalescence; two kinks coalesce with an anti-kink resulting in a kink.
Larger-scale simulations (not presented here) also display a marked degree of self-similarity during coarsening.
Finally, the coarsening stops at the appearance of a single kink/anti-kink pair, which subsequently preserves a fixed
separation.

To validate the unusual coarsening features exhibited byCDS, a direct numerical simulation of cCH withε = 0.1
was carried out by Prof. A.A. Golovin; a pseudo-spectral explicit in time method on a periodic domain. The initial
condition involved a small random (Gaussian) perturbation of the unstable homogeneous stateq = 0. The simulation
results are presented inFig. 6, where the plotted length scale is the inner scaleX = x/ε, and the time scalet has
been re-scaled tot → t/ε2; note that the in the inner scale, the interfacial layers have width 1. One initially
observes spinodal decomposition with a wavelength consistent with the dominant linear instability of the system.
An interfacial regime subsequently emerges, and coarsening then proceeds solely viakink-ternariesas predicted by
CDS.

6. CDS theory

We now present a theoretical study ofCDS which explains the coarsening features that have been observed in
the simulations.
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Fig. 6. Simulation of the cCH evolution equation forε = 0.1, courtesy of A.A. Golovin. The color scheme is red forq = 1 through yellow,
q = 0, to blue forq = −1. Note that the graphic is shown with respect to theinner length scaleX = x/ε and the re-scaled timet → t/ε2.

6.1. The “pinch instability”

First, we perform a linear stability analysis of(18) for an alternating array of equally spaced kink/anti-kinks on a
periodic domain. We find that spectral properties are independent of domain size, and conclude that the dominant
instability for the periodic domain (or unbounded line) involves a four-periodic “pinching”; two kinks “pinch” the
intervening stationary anti-kink.

Let l0 be the separation of an equally spaced alternating array of kink/anti-kinks on periodic domain
of length 4nl0 (n ∈ N). Linearizing the 4n-dimensional dynamical system(18) about this state yields the 4n × 4n
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matrixA:

A := −J ′(l0)




2 −1 0 · · · 0 −1

1 −2 1 0 · · · 0

0 −1 2 −1 0 · · · 0

0 1 −2 1 0 0

· · ·
· · ·

0 · · · 0 −1 2 −1

1 0 · · · 0 1 −2




,

whose eigenvalues determine the instability of the uniform state. Notice that each successive row is a simple cyclic
permutation of the previous row followed by multiplication by−1, and also that−J ′(l0) > 0.

We now present a characterization of the eigenvalues and eigenvectors ofA in terms of the complex 4nth roots
of unity:

rj := ei(π/2n)j, where j = 0, 1, . . . , 4n − 1.

First, for eachj = 0, 1, . . . , we define thekth component of the vectorsu(j), v(j) ∈ C
4n as follows:

u(j)

k = (rj)k, v(j)

k = (−rj)k, k = 1, . . . , 4n.

We claim for eachj = 1, . . . , 2n − 1, that the vectorse+
j , e;−

j given by

e+
j :=

[
1 + cos

(
jπ

2n

)]1/2

uj +
[
1 − cos

(
jπ

2n

)]1/2

vj,

e−
j :=

[
1 + cos

(
jπ

2n

)]1/2

uj −
[
1 − cos

(
jπ

2n

)]1/2

vj

are eigenvectors ofA with associated eigenvaluesλj and−λj, respectively, where

λj = 2 sin

(
jπ

2n

)
.

This follows from a general theorem onalternating circulant matrices[24], motivated by this work, and which is
related to the spectral properties of circulant matrices; see, e.g.[25]. Furthermore, the vectorsu0, v0 are generalized
eigenvectors ofA with eigenvalue 0, and the set of vectors

{u0, v0, e+
1 , . . . , e+

2n−1, e−
1 , . . . , e−

2n−1}
constitute a basis forC4n.

The largest (positive) eigenvalue of 2 is attained whenj = n, and the associated eigenvector is the four-periodic
vector:

d = [1, 0, −1, 0, . . . ]. (23)

We note that in this most unstable direction the anti-kinks remain fixed and the kinks are “pinched” pairwise. Also,
the structure of this unstable mode is independent ofn; i.e. of the length of the periodic domain. Hence, we conclude
that this is the most unstable mode for the unbounded line as well.
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Fig. 7. Sketch of the impossible binary coalescence. Here,L1 denotes the separation of the assumed coalescing pair, whileL0, L2 andL3 denote
the separations of neighboring pairs.� and� denote kink and anti-kink, respectively.

6.2. The impossible binary and the unique kink-ternary

Here we present an analysis of the dynamics ofCDS in the fully nonlinear regime. We prove that isolated binary
coalescence of phase boundaries is impossible, and furthermore that only one type of ternary event is permitted (two
kinks meet an anti-kink), which we refer to as thekink-ternarysince it results in a kink. These theoretical predictions
are vividly confirmed inFigs. 5 and 6which relate to numerical simulations ofCDS and cCH, respectively. This
behavior stands in marked contrast with the well-established prevalence of binary coalescence for the Cahn-Hilliard
equation.

Theorem 8 (The impossible binary).Isolated binary coalescence events are impossible forCDS.

Proof. We proceed by contradiction and suppose there exists a kink,x1(t), which coalesces at timeT with an
anti-kink, x2(t), while the neighbors remain separated throughout a preceding time interval (seeFig. 7); without
loss of generality we have supposed the kink to be to the left of the anti-kink, and for convenience have re-indexed.
So we have

lim
t→T −

L1(t) = 0 (24)

and

L0(t), L2(t), L3(t) ≥ d > 0 for all t ∈ (T − δ, T ] (25)

for somed > 0 and someδ > 0. Now from(20) and (25)we conclude that on the time interval(T − δ, T ]:

dL1

dt
= b1(t), (26)

dL2

dt
= −J(L1) + b2(t), (27)

where the functionsb1(t) := J(L0(t)) − J(L2(t)) andb2(t) := J(L3(t)) are necessarily bounded due to assumption
(25), i.e.

max
t∈(T−δ,T ]

|b1(t)| = M1 < ∞ and max
t∈(T−δ,T ]

|b2(t)| = M2 < ∞. (28)

Now (24), (26) and (28)imply

L1(t) ≤ M1(T − t), t ∈ (T − δ, T ], (29)

Noting thatJ(L) is monotone decreasing inL, while recalling(21), we deduce from(27)–(29)that

dL2

dt
≤ − 1

M1(T − t)
+ M2 + O(1) as t → T −. (30)

But since 1/(T − t) is not integrable atT , we deduce from(30) that there exists a timeτ ∈ (T − δ, T) such that
L2(τ) = 0. This contradicts(25), thereby establishing the theorem. �
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Theorem 9 (The kink-ternary). The coalescence of two kinks with an anti-kink is the only possible ternary coars-
ening event forCDS.

Proof. We proceed by contradiction. Suppose that two anti-kinks,x2(t) andx4(t), coalesce with the intervening
kink, x3(t), at timeT , while the neighboring kinksx1(t) andx5(t) remain at some finite distance. Proceeding as
before, we have

(i) lim
t→T −

L2(t) = 0, (ii ) lim
t→T −

L3(t) = 0, (31)

while in some preceding time interval [T − δ, T ], δ > 0,

dL2

dt
= J(L3) + b1(t), (32)

where the functionb1(t) := −J(L1(t)) is bounded:

max
t∈(T−δ,T ]

|b1(t)| = M1 < ∞. (33)

But, since limL→0+J(L) = ∞, it follows from part (ii) of (31) and (33)applied to(32) that there exists a time
τ ∈ (T − δ, T) for which

dL2

dt
> 0 for all t ∈ [τ, T ].

This contradicts part (i) of(31)and concludes the proof. �

Note that the preclusion of binary coalescence hinges on the non-integrability of the fluxJ(L) atL = 0. Whereas,
the exclusion of the two anti-kinks meeting a kink requires only thatJ(L) → ∞ asL → 0+. Conversely, one may
show that these conditions are also necessary for the associated properties to emerge. However, we also claim that
though binary coalescence is not theoretically precluded for an integrable choice forJ in CDS (e.g.J(L) = 1/Lq,
with 0 < q < 1), the generic coarsening event will still be an “approximate kink-ternary”; two kinks converging
on an anti-kink, with one kink possibly annihilating the anti-kink “just before” the other arrives.

Remark 10 (The kink-ternary structure). The generic kink-ternary coarsening event displays a parabolic local
structure in the shape of the paths of the coalescing kinks. Specifically, lettingL1(t), L2(t) denote the separation of
the two coalescing kinks from the intervening anti-kink, one may show that

L1(t) = 4
√

2ε1/2(T − t)1/2 + o((T − t)1/2) = L2(t) as t → T −,

whereT is the coalescence time.

7. Analytical coarsening law for CDS

We introduce here acoarsening ansatzfor CDS. It is based on several working hypotheses:

• Anti-kinks repel one another, as evidenced by the impossibility of the ternary event involving two anti-kinks
meeting a kink. We assume that this repulsive interaction yields an “effectively periodic” structure to the coarsening
system.

• Thepinch instability identified for the idealized periodic array is the dominant mode for coarsening.
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• The length scale distribution,P(L, t), is self-similar throughout the coarsening process; we recall here that Emmott
and Bray numerically observed self-similarity even at “early times”[13].

• A scale-invariant perturbation of a periodic array faithfully models the coupling of “effective periodicity” with
the scale-invariance ofP(L, t) in the coarsening process.

Based on this ansatz, we deduce a theoretical coarsening law for the average length scale as a function of time. It
stands in excellent agreement with results obtained from direct simulation of cCH[14]. A precise description follows.

7.1. The coarsening ansatz

An equally spaced array of kink/anti-kinks on a domainI (periodic or unbounded) is an unstable critical point for
the dynamical system(18). Motivated by the linear stability analysis ofSection 6.1, we study the initial-value problem
associated with a scale-invariant disturbanceη of this state in the direction of the most unstable eigenvector,Eq. (23),
d. Specifically, we fix the location of the anti-kinks while pairwise pinching the kinks together by a scale-invariant
distanceηl0, wherel0 is the initial separation andη > 0 is a small dimensionless constant; seeFig. 8.

It follows from the symmetry of the initial data that the solution is a periodic extension of the elementary
initial-value problem involving two pairs of kinks and anti-kinks on a periodic domain of length 4l0, subject to the
dynamics given by(18); this reduced initial-value problem is illustrated inFig. 9. One sees that the anti-kinks will
remain fixed as the solution evolves, while the two kinks move towards the initially closer anti-kink (here, the upper
one). They subsequently coalesce at the (upper) anti-kink, leaving a kink, in a finite timeT characterized by the
simple target-time problem:

ds

dt
= [J(l0 − s) − J(l0 + s)], s(0) = ηl0, lim

t→T −
s(t) = l0. (34)

Referring toFig. 8, we see that the an initial morphological length scalel0 will be doubled in thedoubling timeT .
We may explicitly calculate the doubling timeT of (34), as a function of the initial lengthl0 and perturbation

constantη, upon recalling(19):

T = T̂ (l0, η) =
∫ l0

ηl0

ds

J(l0 − s) − J(l0 + s)

= 4
√

2

ε

[
(el0/2 + e−l0/2)[arctanh(e−ηl0/2) − arctanh(e−l0/2)] + (1 − η)

l0

2
+ ln

(
eηl0 − 1

el0 − 1

)]
. (35)

Fig. 8. The length scale doubling ansatz:� and� denote the kink and anti-kink, while⊗ denotes the location of the kink prior to the small
offset perturbation in the most unstable directionηd; recall Eq. (23). The subsequent temporal evolution of kinks and anti-kinks locations is
marked with arrows, concluding withkink-ternarycoarsening events at timeT .
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Fig. 9. The elementary period-doubling pinch event:� and� denote the kink and anti-kink, while⊗ denotes the location of the kink prior to
the small offset perturbation in the most unstable directionηd; recallEq. (23).

Remark 11. We view the dimensionless parameterη as measuring the deviation of lengths in the coarsening
structure from the mean length. Our ansatz implicitly assumes that the distribution of lengths around the mean is
scale-invariant throughout the coarsening. One may choose to go beyond self-similarity and assume a dependence
of η on the length scalel.

7.2. Theoretical coarsening law

Assuming self similarity in the coarsening process, we may iterate this period-doubling ansatz. This yields a
geometric increase in the length scale in a known time period. Idealizing the initial length scale to be infinitesimally
small relative to the observed length scales, we deduce the following (implicit) theoretical coarsening law for the
morphological length scaleLM as a function of timet:

t =
i=∞∑
i=1

T̂

(
LM
2i

, η

)
. (36)

A numerical log–log plot of this theoretical scaling law is shown (with re-scaled time) inFig. 10for the choiceη =
0.001. It displays the scalingLM(t) ∼ t1/2, expected from the earlier self-similar scaling analysis ofSection 4.2in
the regimeε � LM � 1. A crossover regime, in which the coarsening rate slows, emerges when the (dimensionless)
morphological length scaleLM ∼ 1. Recalling(4), we understand that this crossover occurs at the Peclet length
scale, where convection is balancing diffusion. Finally, the coarsening becomes logarithmically slow asLM → ∞,
consistent with the convergence of the cCH to CH in this limit.

Since ourpinch ansatzinvolves a description of thecoarsening path, we are also able to identify the scal-
ing constant associated with thet1/2 coarsening regime. First, the doubling time(35) has the asymptotic
form:

T̂ (l0, η) = 1

2
√

2ε
(η2 − 2 ln η − 1)l20 as l0 → 0+.
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Fig. 10. Numerical plot of the theoretical scaling law(36)exhibiting the scaling of the morphological lengthLM versus the re-scaledslow time
τ := εt for the choice ofdisturbance parameterη = 0.001. Note that crossover scaling arises when the dimensionless morphological length
scaleLM ∼ O(1); i.e. at the Peclet length scaleLP (4).

Hence, the theoretical scaling law(36)yields

LM =
√

3
4
√

2(η2 − 2 ln η − 1)1/2
ε1/2t1/2 as LM → 0+. (37)

Note that the scaling pre-factor oft1/2 appearing in(37), c(η), is monotone increasing in the intervalη ∈ (0, 1),
and furthermore

lim
η→0+

c(η) = 0 and lim
η→1−

c(η) = ∞.

One may thus envision determiningη from a numerical simulation of either cCH orCDS, by identifying the scaling
constant associated with thet1/2 coarsening regime.

8. Conclusions

We have considered the coarsening dynamics of a convective Cahn-Hilliard equation (cCH) in one space di-
mension. A sharp-interface theory for the evolution ofphase boundariesis derived through a matched asymptotic
expansion arising when the phase boundary widthε → 0+. Due to convection, two non-symmetrically related
phase boundaries emerge (kink and anti-kink), which then interact to leading order through a convection–diffusion
flux of the order parameter. This yields a dynamical system (CDS) for kink/anti-kink locations, which coarsens in
time through their coalescence. Our theory is valid for all morphological (characteristic) length scalesLM � ε;
i.e. whenever the system enters theinterfacial regime. Novel coarsening properties ofCDS have been identified;
binary coalescence is impossible, and there is a unique ternary coalescence (the kink-ternary). Furthermore,CDS
predicts the temporal scaling lawLM ∼ t1/2, providedε � LM � 1. All of the above have been confirmed by
direct numerical simulations on cCH andCDS.
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A pinching mechanismhas been identified as the dominant linear instability of an alternating periodic array
of kink/anti-kinks. A self-similar period-doubling ansatz, involving a scale-invariant recursion of the elementary
pinching mechanism, is subsequently proposed as a description of the entire coarsening path. This yields, in turn, a
theoretical coarsening law for the morphological length scaleLM as a function of timet. It stands in good qualitative
agreement with both the direct computationsCDS, and also the numerical simulations of cCH[14].

The coarsening dynamical system approach developed here offers a flexible framework for the identification
of coarsening laws in 1D systems where localized structures (defects) interact. It embodies the principle that the
evolution of structure is essentially determined by the local structure of the defects and their mutual interaction.
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Appendix A. Matched asymptotic analysis

The governingequation (5)is singularly perturbed in the limitε → 0+, and so is referred to as the outer equation.
In this section, we perform the associated matched asymptotic expansions. Since the parameterε sets a length scale
for transitions, we shall see that the associated outer problem yields a sharp-interface theory.

We assume the asymptotic expansion of(5) takes the form:

q = q0(x) + q1(x)ε + · · · (outer expansion), k(t, ε) = k0(t) + k1(t)ε + · · · (kink expansion),

a(t, ε) = a0(t) + a1(t)ε + · · · (anti-kink expansion).

The inner equation arises from re-scaling to the inner length scaleε (in unitsLP ). Since the kinksk(t; ε) and
anti-kinksa(t; ε) are in general moving, we need to select an inner coordinate with respect to a moving frame. So,
for the kink atx = ki(t; ε), we take the inner coordinateX to be

X = x − k(t; ε)

ε

and re-write(5) in terms of the inner solutionQ(X, t) = q(x, t) as

ε2Qt − εk̇(t; ε)QX − εQQX = (Q3 − Q − QXX)XX. (A.1)

We proceed in a similar fashion for the anti-kinka(t).
Now q satisfies the conservation law

qt + Jx = 0,

where

J = −Ŵ ′(q)x + 1
2εq2 + ε2qxxx. (A.2)

Hence, across the kinks and anti-kinks we have the Rankine-Hugoniot relation:

k̇(t)[q]k(t;ε) = [J ]k(t;ε), (A.3)
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where [J ]k(t;ε) and [q]k(t;ε) denote, respectively, the jump in the fluxJ and the order parameterq across the kink at
x = k(t; ε); similarly for the anti-kink.

Before proceeding with the matching, we convert the free boundary-value problem associated with the outer
solution to a fixed domain by introducing the following coordinate transformation. Assume that the initial distribution
of kink and anti-kink locations is given byki, ai ∈ R (i ∈ Z), where

ki < ai < ki+1 ∀ i ∈ Z.

We defineΨ : R × [O, T ) × [0, ε̄) → R, through

Ψ(y, t, ε) :=




ki(t, ε) + ai(t, ε) − ki(t, ε)

ai − ki
(y − ki), x ∈ (ki, ai),

ai−1(t, ε) + ki(t, ε) − ai−1(t, ε)

ki − ai−1
(y − ai−1), x ∈ (ai−1, ki).

Now we introduce the velocity fieldV(y, t; ε) := Ψt(y, t, ε):

V(y, t; ε) =




k̇i(t, ε) + ȧi(t, ε) − k̇i(t, ε)

ai − ki
(y − ki), x ∈ (ki, ai),

ȧi−1(t, ε) + k̇i(t, ε) − ȧi−1(t, ε)

ki − ai−1
(y − ai−1), x ∈ (ai−1ki),

and the piecewise constant (iny) stretch functionS(y, t; ε):

S(y, t; ε) := 1

∂Ψ/∂y
=




ai − ki

ai(t, ε) − ki(t, ε)
, y ∈ (ki, ai),

ki − ai−1

ki(t, ε) − ai−1(t, ε)
, y ∈ (ki, ai−1).

The outerequation (5)then takes the form:

qt − Vqy − Sqqy = S2[Ŵ ′(q) − ε2S2qyy]yy (A.4)

on each open interval(ki, ai) and(ai, ki+1).

A.1. Asymptotic match to O(1)

Settingε = 0 we deduce from(A.1) that the inner solution has the form:

Q0(X) := tanhX (A.5)

about the kinkk(t; ε), and similarly, across the anti-kinka(t; ε) we deduce

Q0(X) := − tanhX. (A.6)

We now match the leading-order inner solutions(A.5) and (A.6)to the outer solution. Taking first a kink/anti-kink
interval(ki, ai) and matching to order O(1) we deduce, from(A.4)–(A.6), the following boundary-value problem:

(q0)t − ai
0(t) − ki

0(t)

ai − ki
q0(q0)y =

(
ai

0(t) − ki
0(t)

ai − ki

)2

[(q0)3 − q0]yy, q0[ki, t] = 1 = q0[ai, t],
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from which we conclude that

q0(y, t) ≡ 1 for y ∈ (ki, ai). (A.7)

We deduce in a similar manner that

q0(y, t) ≡ −1 for y ∈ (ai, ki+1). (A.8)

Noting (A.2), (A.7) and (A.8), it follows from the Rankine-Hugoniot relation(A.3) that

k̇i
0(t) = 0 and ȧi

0(t) = 0. (A.9)

A.2. Asymptotic match to O(ε)

From(A.9), we see that the kink and anti-kink velocities are of order O(ε) and therefore(A.1) is asymptotically
equivalent through order O(ε) with the time-independent equation:

−εQQX = (Q3 − Q − QXX)XX. (A.10)

Now (7) has two exact solutionsK(X) andA(X) given by

K(X) :=
(

1 + ε√
2

)1/2

tanh

[(
1 + ε√

2

)1/2

X

]
(kink)

and

A(X) := −
(

1 − ε√
2

)1/2

tanh

[(
1 − ε√

2

)1/2

X

]
(anti-kink)

which will be matched to the outer solution. We note here that the asymptotic values asX → ∞ ofK(X) andA(X)

are

lim
X→±∞

K(X) = ±
(

1 + ε√
2

)1/2

, (A.11)

lim
X→±∞

A(X) = ∓
(

1 − ε√
2

)1/2

. (A.12)

Returning to(A.4), we note thatS = 1 + O(ε) sincek̇(t; ε) = O(ε) = ȧ(t; ε). So, it follows from(A.4), (A.7) and
(A.8) and the O(ε) matching with(A.11) and (A.12)thatq1 satisfies the following boundary-value problem:

(q1)t − (q1)y = [2q1]yy, q1(ki, t) = 1

2
√

2
for q1(ai, t) = − 1

2
√

2
.

Also, proceeding in a similar manner for the anti-kink/kink interval(ai, ki+1), we arrive at the companion boundary-value
problem:

(q1)t + (q1)x = [2q1]xx, q1(ai, t) = 1

2
√

2
for q1(ki+1, t) = − 1

2
√

2
.

We conclude that

q1(y, t) = q1(y) :=




1

2
√

2
− 1√

2

1 − exp[−(y − ki)/2]

1 − exp[−(ai − ki)/2]
, ki ≤ y ≤ ai,

− 1

2
√

2
+ 1√

2

1 − exp[(y − ki+1)/2]

1 − exp[−(ki+1 − ai)/2]
, ai ≤ y ≤ ki+1.

(A.13)
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Now expanding the Rankine-Hugoniot relation(A.3) in powers ofε, utilizing (A.2) and (A.13)and the O(1)
conditions, yields upon matching the O(ε) terms:

k̇i
1(t) = 1

2
√

2
[f̂ (ai − ki) − f̂ (ki − ai−1)] (A.14)

and

ȧi
1(t) = 1

2
√

2
[f̂ (ai − ki) − f̂ (ki+1 − ai)], (A.15)

where

f̂ (l) := 1

el/2 − 1
.
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