
A fast noise filtering algorithm for time series prediction using

recurrent neural networks

Boris Rubinstein,
Stowers Institute for Medical Research

1000 50th St., Kansas City, MO 64110, U.S.A.

September 23, 2020

Abstract

Recent researches demonstrate that prediction of time series by recurrent neural networks (RNNs)
based on the noisy input generates a smooth anticipated trajectory. We examine the internal dynamics of
RNNs and establish a set of conditions required for such behavior. Based on this analysis we propose a
new approximate algorithm and show that it significantly speeds up the predictive process without loss
of accuracy and demonstrates increased robustness in neuroscience context.

1 Introduction

Recurrent neural networks (RNNs) due to their ability to process sequences of data have found applications
in many fields of science, engineering and humanities, including speech, handwriting and human action
recognition, automatic translation, robot control etc. One of the RNN application is time series prediction
used in analysis of business and financial data, anomaly detection, weather forecast. A large number of
different architectures were discussed recently and the flow of new modifications of standard RNN continues
to increase and all these architectures share some common features inherited from the basic systems.

Trajectory prediction based on incomplete or noisy data is one of the most amazing features of organism
brains that allows living creatures to survive in complex and mostly unfriendly environment. A large number
of mathematical algorithms developed for this purpose have many applications in multiple engineering field,
e.g., development of guidance systems, self-driving vehicles, motor control etc. [1].

It was shown that when the input signal represents a chaotic dynamics (in discrete or discretized continuous
setting) RNNs indeed predict chaotic attractor for some number of steps and then the predicted trajectories
diverge from the actual ones [2–4]. This result seems natural as it reflects an important property of chaotic
dynamics – extremely high sensitivity of chaotic systems to small perturbations in initial conditions.

What does happen when a trajectory is perturbed by external noise of specific statistics, e.g., white noise?
How would RNN extrapolate the input of such noisy time series? Generally speaking, when a noisy signal
is used as an input to a predictive RNN it is expected that a trained network would be able to extrapolate
the noisy time series. It appeared that the extrapolated trajectory is not noisy – filtering of the noisy
perturbation of the Lorenz attractor dynamics was reported in [5] where the authors used recurrent multi-
layer perception network and noted that the reconstructed signals were ”reasonably close to the noise-free
signal and the iterated predictions are smoother in comparison to the noisy signals” [5]. This observation
leads to the following question - given a smooth deterministic function with added noise component as a
RNN input will the trajectory anticipated by RNN be noisy or smooth? A short note [6] considered LSTM
network [7] with 128 neurons trained on the Mackey-Glass time series with added noise and demonstrated
that with the increase of the noise level LSTM behaviour depends more on its own dynamics than on the
input data. On the contrary, the training using the noiseless input produces RNN with very high sensitivity
to small perturbations.

In this manuscript we attempt to explain the fact that RNN trained on segments of noisy trajectory
and being fed a segment of such trajectory generates a smooth extrapolating curve. Our analysis shows
that smooth predictions are commonplace and independent of the RNN type or extrapolation quality. We

1

establish conditions for such RNN behavior and find that when these conditions are met a new very fast
predictive algorithm can be implemented. We demonstrate that this algorithm for relatively long input
sequences (around 100 time points) works as good as the original one and gives the speed up to two orders
of magnitude.

The manuscript is organized as follows. Section 2 describes the architecture of a very simple network made
of a single recurrent network with small number of neurons followed by a linear layer. Section 3 describes RNN
governing transformations and presents a standard algorithm used for time series prediction. Next Section
4 deals with the network training and discusses the dependence of the prediction quality on the number of
neurons in RNN. Section 5 considers the input noise influence onto RNN state dynamics and demonstrates
that it cannot be neglected. Then in Section 6 the focus shifts to the RNN dynamics during a recursive
prediction procedure and conditions when this procedure results in smooth output are established. We show
that satisfaction of these conditions allows to design a new much faster predictive algorithm described in
details in Section 7 and demonstrate its high quality of extrapolation. The next Section 8 is devoted to
possible implications of the presented results for neurosciences. Section 9 is devoted to discussion of possible
applications and generalizations of our findings.

2 Network architecture and predictive algorithm

Consider a simple two layer network designed to predict multidimensional time series X = {xi}, 1 ≤
i ≤ N . The first layer is a recursive network with n neurons – it takes a subsequence Xk,m = {xi} =
{xk+1,xk+2, . . . ,xk+m}, 0 ≤ k ≤ N −m, of m vectors xi having dimension d each and returns a sequence
S of n-dimensional state vectors si, (1 ≤ i ≤ m). The last element sm is transferred into the second linear
layer that generates an output vector x̄ of dimension d by linear transformation x̄ = W ·sm+b, with matrix
W of dimensions d× n and d-dimensional bias vector b.

A trained network is used for time series prediction recursively. Namely, one starts with a sequence
X1 = Xk,m of length m supplied as input to the RNN; the resulting output is considered as a prediction
of the next time point x̄k+m+1 of the input sequence. The next input sequence X2 to RNN is produced by
dropping the first point of X1 and adding the predicted point to the result: X2 = Xk+1,m−1 ∪ X̄k+m,1; here
∪ denotes union of two sequences with order of elements preserved. This sequence is used as input to the
RNN that generates x̄k+m+2 and a next input X3 = Xk+2,m−2 ∪ X̄k+m,2 is formed. Thus at j-th predictive

step (j ≤ m) the input Xj
k to RNN is formed as Xj = Xk+j−1,m−j+1 ∪ X̄k+m,j−1, while for j > m the input

is formed by the already predicted values only Xj = X̄k+j−m−1,m. The recursive procedure is repeated p
times to produce p new time points x̄k+m+i, (1 ≤ i ≤ p) approximating the time series X segment {xi} for
k+m+1 ≤ i ≤ k+m+p (Figure 1). As the offset value k determining the initial point of the input sequence
X1 is arbitrary but fixed for given predictive procedure, without loss of generality we further set it equal to
zero. The described algorithm can be called a moving window prediction as it is characterized by recurrent
usage of the input sequence Xj obtained from Xj−1 by shifting one position to the right. It is easy to see
that the procedure uses a double recursion – the inner one used m times in the recurrent layer and the outer
is employed p times to generate the output points, so that the total number of recursions is mp.

3 Network state dynamics

In this manuscript we perform the analysis of all standard recurrent networks – basic, gated and LSTM RNNs.
Consider an inner dynamics of a recurrent network in more details. The input sequence X = {xi}, 1 ≤ i ≤ m
produces the network state sequence S = {si} for the basic network

si = tanh(Wix · xi +Wis · si−1 + bi), (1)

2

where Wix, Wis are matrices and bi is a bias vector. The gated network [8] is governed by the followng
relations

ii = σ(Wix · xi +Wis · si−1 + bi),

ri = σ(Wrx · xi +Wrs · si−1 + br),

mi = tanh(Wmx · xi + ri ⊗Wms · si−1 + bm),

si = (1− ii)⊗mi + ii ⊗ si−1, a⊗ b =
∑
k

akbk, (2)

where σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid function, ⊗ denotes the elementwise multiplication of
two vectors of the same length and the initial state s0 = 0. The vectors ii, ri, mi denote the input, reset
and memory gate state respectively.

For LSTM network [7] the governing transformation that determines network state S = {si} and cell
state C = {ci} sequences is defined by

si = oi ⊗ tanh ci,

ci = fi ⊗ ci−1 + ii ⊗mi,

oi = σ(Woxxi +Wossi−1 + bo),

ii = σ(Wixxi +Wissi−1 + bi), (3)

fi = σ(Wfxxi +Wfssi−1 + bf),

mi = tanh(Wmxxi +Wmssi−1 + bm),

where the initialization value of state s0 and cell state c0 vector is zero vector of length n. With a = i, f,m, o
we denoteWax, Was matrices and ba bias vectors for the input, forget, memory and output gates respectively;
all these structures are trainable and in the trained network their elements are real valued constants.

The shorthand form of the transformations (1-3) reads si = F(xi, si−1,P), where P denotes elements of
all matrices and bias vectors in (1-3) and s0 is n-dimensional zero vector. As in trained network the set P is
fixed we will drop it from the list of arguments of the vector function F

si = F(xi, si−1). (4)

It is important to note that the governing transformations imply for every step i in (4) all components of s
satisfy a condition |sk| ≤ 1, 1 ≤ k ≤ n. The equations (1-3) are accompanied by a linear transformation

x̄m+1 = W · sm + b, (5)

where x̄m+1 is a value predicted by RNN based on the input X.

4 RNN training and performance

The RNNs we use in the simulation have a small number n of neurons in the recurrent layer 1 ≤ n ≤
20. The training set is constructed by merging 6000 segments of variable length (5 ≤ m ≤ 150) of two
periodic one-dimensional (d = 1) functions – the sine wave g0(t) = sin(2πt) and the shifted triangle wave
h0(t) = 1/2 + 1/π arcsin(sin 2πx). The white noise with the amplitude a = 0.15 is added to both functions
– g(t) = g0(t) + aξ(t), h(t) = h0(t) + aξ(t). The time step ∆t between the adjacent time points is selected
equal to ∆t = 0.01. The RNNs are trained for 50 epochs on the complete set of 12000 segments with 20%
validation set using Adam algorithm. The RNNs fail to predict the noisy dynamics of g(t) or h(t), instead
all RNNs produce some smooth predictions G0(t) and H0(t), respectively. We define the quality function of
prediction F (t) vs. the actual dynamics f(t) (f = g, h and F = G,H) as

Q−1 =
1

p

p∑
i=1

‖F (ti)− f(ti)‖2,

where p is the length of the predicted sequence and ‖ ‖ denotes the Euclidean norm.

3

x1 x2 x3 x4 xm

X1 = X1
1 X2

1 X3
1 X4

1 Xm
1

S1 = s1
1 s2

1 s3
1 s4

1 sm
1 → xm+1

x2 x3 x4 x5 xm+1

X2 = X1
2 X2

2 X3
2 X4

2 Xm
2

S2 = s1
2 s2

2 s3
2 s4

2 sm
2 → xm+2

x3 x4 x5 x6 xm+2

X3 = X1
3 X2

3 X3
3 X4

3 Xm
3

S3 = s1
3 s2

3 s3
3 s4

3 sm
3 → xm+3

....

Sp = s1
p s2

p s3
p s4

p sm
p → xm+p

si+1=ℱ(xi+1,si)

Figure 1: The scheme of the prediction double recursive procedure for RNN. Three first and the last prediction
steps are shown. The elements of the input sequencesXj to RNN (blue) are fed into (4) to produce recursively
recurrent network states sji (red). The last element sjm in Sj is transformed by (5) to generate the predicted
point x̄m+j+1 (shown in green). This point is used to update the input sequence Xj+1 for the next prediction
step.

As it was expected the value of Q for the LSTM network increases with n (see Figure 2). Nevertheless
the predicted dynamics is always smooth which implies that the filtering property of RNN is independent
of the prediction quality. We observe that for n = 10 the deviation of the predicted curve from the actual
one is quite small for one period (Q > 30). Note that the prediction of the underlying smooth function was
very good for n = 20 neurons (Q > 100) which is much smaller than (n = 128) reported in [6]. Qualitatively
similar results are obtained for the basic recurrent network.

5 Noise propagation in recurrent network

Consider the process of state vector computation assuming that the input sequence X represents time point
values of the function g(t) = g0(t)+aξ(t) where g0(t) is a smooth function, ξ is a white noise random process
with a small amplitude 0 ≤ a� 1. This implies that RNN is trained to predict the values xi = g0(ti)+aξ(ti)
for i > m using the input Xm. As the parameters of the state transformations are constants one expects that
the values si for i > 0 might contain a noisy component and that eventually a sequence X̄m,p of the predicted
values would be a representation of some noisy function. In other words, RNN is expected to produce a
discrete representation of a function G(t) that mimics with some accuracy the noisy function g(t) using the
noisy input Xm representing the same function g(t).

Consider step by step computation of si. Using smallness of the noise amplitude a we find for s1 from
(4) using Taylor expansion in a in linear approximation

s1 = F(g0(t1) + aξ1,0) ≈ F(g0(t1),0) + aF ′(g0(t1),0)⊗ η1 = ŝ1 + as̃1 ⊗ η1, (6)

where η is a n-dimensional random process obtained by a linear transformation of the d-dimensional random

4

a 0. 1. 2. 3. 4.

-1.0

-0.5

0.0

0.5

1.0

0. 1. 2. 3. 4.
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b 0. 1. 2. 3. 4.

-1.0

-0.5

0.0

0.5

1.0

0. 1. 2. 3. 4. 5.

-1.0

-0.5

0.0

0.5

1.0

c 0. 1. 2. 3. 4.

-1.0

-0.5

0.0

0.5

1.0

0. 1. 2. 3. 4. 5.
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2: The input segment of the noisy (a = 0.15) sequence (green) of sine (left) and triangle (right) waves,
the subsequent segment of X (red) and predicted dynamics (blue) for (a) 5, (b) 10, (c) 20 neurons in LSTM
network.

process ξ. The computation of s2 gives

s2 = F(g0(t2) + aξ2, ŝ1 + as̃1 ⊗ η1)

≈ F(g0(t2), ŝ1) + aF ′(g0(t2), ŝ1)⊗ (η2 + W̄ · s̃1 ⊗ η1)

= F(g0(t2), ŝ1) + aF ′(g0(t2), ŝ1)⊗ ζ2 = ŝ2 + as̃2 ⊗ ζ2, (7)

ζ2 = η2 + W̄ · s̃1 ⊗ η1,

where W̄ denotes a matrix used in transformation of the noise component generated in the vector s1.
The subsequent steps (1 ≤ k ≤ m) produce

sk = F(g0(tk) + aξk, ŝk−1 + as̄k−1 ⊗ ζk−1)

≈ F(g0(tk), ŝk−1) + aF ′(g0(tk), ŝk−1)⊗ (ηk + W̄ · s̃k−1 ⊗ ζk−1)

= F(g0(tk), ŝk−1) + aF ′(g0(tk), ŝk−1)⊗ ζk = ŝk + as̃k ⊗ ζk, (8)

ζk = ηk + W̄ · s̃k−1 ⊗ ζk−1,

where
ŝk = F(g0(tk), ŝk−1), s̃k = F ′(g0(tk), ŝk−1),

and the derivative is taken w.r.t. noise amplitude a. Note that (8) is valid for k = 1, 2 if one defines
ζ1 = η1 + s̃0 ⊗ ζ0, and s̃0 as zero vector.

5

From (8) it follows that the last element sm of the state sequence also has the noise contribution as̃m⊗ζm
which naturally transfers to the first predicted value

x̄m+1 = W · ŝm + b+ aW · s̃m ⊗ ζm = G(tm+1) = G0(tm+1) + aW · s̃m ⊗ ζm,

where G and G0 are approximations to the functions g and g0 generated by RNN. This means that the RNN
itself only transforms the input noise but cannot filter it out.

The predicted element x̄m+1 is used as the last element of the input sequence in the next prediction step
and therefore one expects that the predicted sequence X̄m,p should reflect the noise components contained
both in the input and predicted sequences. Unexpectedly, the numerical experiments (see below) show that in
fact the predicted sequence X̄m,p is not noisy but represents the approximation G0(t) of the smooth function
g0(t). The goal of this manuscript is to explain this unexpected behavior and to determine conditions required
for generation of a smooth prediction.

6 RNN state dynamics

In the previous Section we observe that the noise component of the input signal is preserved in the RNN
states, and we have to look at state dynamics in more details to understand noise filtering in the trajectory
prediction process.

6.1 Numerical experiments

Consider in details the sequence of the RNN states S1 and S2 for first and second prediction steps for three
values of the noise amplitude a = 0, 0.15, 0.9 of the input sequence. Figure 3a demonstrates that indeed the
dynamics of LSTM state is affected by noise as predicted by (8). We also note that both sequences S1 and
S2 look very similar. To test this similarity we overlay the corresponding sequences for given noise amplitude
(Figure 3b-d) and find that even in case of large noise a = 0.9 the sequence S2 is very close to the sequence
S1 shifted by one step to the left, in other words s2i ≈ s1i+1.

6.2 Dynamics of state vector shifted difference

To understand this behavior recall a relation between the input sequences Xj and Xj+1 (see Figure 1).
The input sequence Xj construction algorithm described in Section 3 implies that Xj+1

i = Xj
i+1 for all

2 ≤ i ≤ m− 1. Using (4) we find

s1i+1 = F(X1
i+1, s

1
i), 0 ≤ i ≤ m− 1, (9)

s2i = F(X2
i , s

2
i−1) = F(X1

i+1, s
2
i−1), 1 ≤ i ≤ m− 1. (10)

We observe that in computation of s1i+1 and s2i the first argument of the map F in (9,10) is the same.
Consider the difference δ1i = s1i+1 − s2i . For i = 0 we have δ11 = s11 = F(X1

1 ,0). For i = 1 find

δ11 = s12 − s21 = F(X1
2 , s

1
1)−F(X1

2 ,0) = F(X1
2 , δ

1
0)−F(X1

2 ,0).

Assuming ‖δ10‖ � 1 expand the first term above and retain the leading order to obtain

δ11 =
∂F(X1

2 , s = 0)

∂s
· δ10 = A1

1 · δ10 . (11)

With i = 2 find

δ12 = s13 − s22 = F(X1
3 , s

1
2)−F(X1

3 , s
2
1) = F(X1

3 , s
2
1 + δ11)−F(X1

3 , s
2
1),

and the expansion leads to

δ12 =
∂F(X1

3 , s = s21)

∂s
· δ11 = A1

2 · δ11 = A1
1 ·A1

2 · δ10 . (12)

6

si,1
1

si,1
2

0 10 20 30 40 50

-0.20

-0.15

-0.10

-0.05

0.00

0.05

i

s
i,1

a=0

0 5 10 15 20 25

-0.10

-0.05

0.00

0.05

i

s
i,1

a b

a=0.15

0 5 10 15 20 25

-0.15

-0.10

-0.05

0.00

0.05

i

s
i,1

a=0.9
s14,1
1s13,1

2

0 5 10 15 20 25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

i

s
i,1

c d

Figure 3: The dynamics of the first element sji,1 of the state vector sji in the j-th round of prediction for j = 1
(solid) and j = 2 (dashed) for three noise amplitudes – a = 0 (black), a = 0.15 (red) and a = 0.9 (blue). (a)
The sequence s2i,1 is shifted w.r.t. of s1i,1. (b - d) The sequences are overlapped for different noise amplitudes:

(b) a = 0 (no noise), (c) original amplitude a = 0.15, (d) increased amplitude a = 0.9. The values of s1i+1,1

and s2i,1 tend to each other with increasing i.

It is easy to deduce that for i = m− 1

δ1m−1 = A1 · δ10 , A1 =

m−1∏
k=0

A1
k, A1

k =
∂F(X1

k+1, s = s2k−1)

∂s
. (13)

Generalizing the above relations to the other rounds of the predictive cycle we obtain for δjm−1 = sjm−s
j+1
m−1:

δjm−1 = Aj · δj0, Aj =

m−1∏
k=0

Aj
k, 1 ≤ j ≤ p. (14)

The numerical simulations of the state dynamics in the basic and gated RNNs demonstrate the exponential
decay of shifted difference norm (Figure 4a,b). In Appendix we show that for the basic RNN the exponential
decay of δji takes place due to a specific spectral property of the matrix Wis, namely, the absolute value of
all eigenvalues of this matrix should be less than unit.

In the LSTM network the relations similar to (9-14) are valid with respect to the cell state vectors cji and

one can write for dji = cji+1 − c
j+1
i :

djm−1 = Bj · dj0, Bj =

m−1∏
k=0

Bj
k, Bj

k =
∂F(Xj

k+1, c = cj+1
k−1)

∂c
, 1 ≤ j ≤ p. (15)

7

0 10 20 30 40 50 60 70

-15

-10

-5

0

i

ln
δ
i1

0 10 20 30 40 50 60 70

-8

-6

-4

-2

0

i

ln
δ
i2

a b

Figure 4: The dynamics of the shifted difference norm (a) δ1i in the basic RNN with n = 10, (b) δ2i in the
gated RNN with n = 20, for the noise amplitude a = 0 (black), 0.15 (red) and 0.9 (blue).

Similarly, with detBj
i < 0, a deviation norm dji = ‖dji‖ satisfies dji < dji−1 and would decrease exponentially.

The computations for j = 1 show (see Figure 5) that indeed both δ1i and d1i decrease exponentially with i

δ1i = δ11e
−αi, d1i = d11e

−βi, (16)

and both decay rates α and β are not affected by the noise strength but depend on i, i.e., for large i they
might tend to zero. It is possible that decay rates behavior also depends on the number of neurons n. The
simulations show that similar behavior remains valid for all steps of the prediction procedure

δji ∼ e
−αi, dji ∼ e

−βi, 1 ≤ j ≤ p. (17)

0 5 10 15 20

-6

-5

-4

-3

-2

-1

0

i

ln
δ
i1

0 5 10 15 20

-4

-3

-2

-1

0

i

ln
d
i1

a b

Figure 5: The shifted difference norms (a) δ1i of state vectors and (b) d1i of cell state vectors of LSTM network
with n = 10 decay exponentially with i for the noise amplitude a = 0 (black), 0.15 (red) and 0.9 (blue).

This means also that the state vector sj+1
m−1 (next to last in the sequence Sj+1) is very close to the last

vector sjm of the preceding sequence Sj , i.e.,

sj+1
m−1 = sjm + εj , εj � 1. (18)

6.3 Approximate governing transformation

Now it is time to recall that the state vector sjm gives rise to the prediction x̄m+j = W · sjm + b, and this
value is used as the last element of the input sequence for the next prediction step: Xj+1

m = W · sjm + b.

8

Employ the relation (4) for i = m to find

sj+1
m = F(Xj+1

m , sj+1
m−1) = F(W · sjm + b, sjm + εj) ≈ F(W · sjm + b, sjm) = G(sjm). (19)

The map G for LSTM is defined by the transformations (for j > 1)

sjm = ojm ⊗ tanh cjm, cjm = f jm ⊗ cj−1m + ijm ⊗mj
m,

ojm = σ(W̃oss
j−1
m + b̃o), ijm = σ(W̃is

j−1
m + b̃i), (20)

f jm = σ(W̃fss
j−1
m + b̃f), mj

m = tanh(W̃mss
j−1
m + b̃m),

where
W̃as = Wax ·W +Was, b̃a = Wax · b+ ba, a = i, f,m, o, (21)

and s1m and c1m are obtained by application of (3) to the original input sequence. It is easy to see that (20)
can be obtained from (3) by setting all Wax = 0 and using the replacements Was → W̃as and ba → b̃a
defined in (21). Similar procedure can be applied to (1) and (2) for basic and gated RNN respectively and it
gives for the basic network a simple transformation

sjm = tanh(W̃is · sj−1m + b̃i). (22)

We observe that the influence of the input sequence Xj (and the noise contained in it) on the dynamics of
the RNN last state vector sjm is negligible and the latter is almost completely determined by the same vector
sj−1m at the preceding prediction step.

7 A new fast algorithm for trajectory prediction

The main result in previous Section implies that after computation of s1m using m times the recursion (4)
the original input sequence can be dropped and the transformation (19) is applied recursively p − 1 times
to generate sjm for 2 ≤ j ≤ p. Then the linear transformation (5) produces the desired sequence x̄m+j for
1 ≤ j ≤ p.

x1 x2 x3 x4 xm

X1 = X1
1 X2

1 X3
1 X4

1 Xm
1

S1 = s1
1 s2

1 s3
1 s4

1 sm
1 → xm+1

sm
2 → xm+2

sm
3 → xm+3

....

sm
p → xm+p

si+1=ℱ(xi+1,si)

sj+1 =(sj)

Figure 6: The approximate scheme of the recursive prediction based on (19). The standard prediction
sequence (4) is evoked only once to produce s1m and then the approximate algorithm (19) is applied recursively
to produce sjm (red). The predicted points x̄m+j (green) are computed using (5).

These steps represent a new very fast prediction algorithm (Figure 6). The transformation (19) might
produce in principle non-smooth and even chaotic dynamics but nevertheless it is important that the noise
component in the input sequence plays no role in the generation of the anticipated points. On the other hand
this noise component can strongly affect the result of RNN training influencing the weights and biases of the
trained network.

We use the approximate map (19) to compute the predicted sequence for the input of different length m
and compare the results to the prediction made by iterative application of RNN. We find that increase in

9

input sequence length m improves the approximate prediction (Figure 7) up to a perfect coincidence with
the traditional approach prediction. It is explained by the fact that for large m the difference ε1 becomes
extremely small that increases the accuracy of the map (19). Moreover, when we increase the input sequence
noise amplitude a six times compared to the value at which LSTM network was trained, the approximate
procedure still generates prediction coinciding with the one produced by LSTM itself (Figure 7d).

0. 0.5 1. 1.5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0. 0.5 1. 1.5 2.

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

a b

0. 0.5 1. 1.5

-1.0

-0.5

0.0

0.5

1.0

0. 0.5 1. 1.5 2.

-0.5

0.0

0.5

1.0

1.5

c d

Figure 7: Comparison of the predictions for the trained LSTM network by the moving window procedure
(blue) and by using the map (20) (black) for the triangle wave input sequence (green) with variable noise
amplitude a and length m: (a) a = 0.15, m = 25, (b) a = 0.15, m = 75, (c) a = 0.9, m = 25, (d)
a = 0.9, m = 75; in (b) and (d) both predictions coincide.

We also compare the predictions made by the RNN governed by (1) and (22) and find that these predictions
coincide for large m (Figure 8b).

0. 0.5 1. 1.5

0.0

0.2

0.4

0.6

0.8

0. 0.5 1. 1.5 2.

0.0

0.2

0.4

0.6

0.8

1.0

a b

Figure 8: Comparison of the predictions for the basic RNN with n = 10 by the moving window algorithm
(blue) and by the map (22) (black) for the triangle wave input sequence (green) of (a) m = 25 and (b) m = 75
points with noise amplitude a = 0.15; in (b) both predictions coincide.

We observe that the moving window prediction generating p time series points using the trained RNN

10

is a recursion (p times) each consisting of m inner recursions, i.e., total Ro = mp recursion steps while
the approximate procedure (19) replaces it by Ra = m + p − 1 recursions (Figure 6). Assuming that the
computation time T is linearly proportional to the total recursion number T = µR estimate a speed up
κ = To/Ta. The length m of the input sequence X should be quite large (m� 1) in order to generate a high
quality prediction. The length p = γm of the predicted sequence X̄ is comparable to m, i.e., γ ' 1 and we
find the estimate of the prediction times ratio κ = mp/(m+ p) = γm/(1 + γ) > m/2. Thus the approximate
prediction algorithm gain is proportional to the length of the input sequence. We observed that m ≈ 50
leads to high quality of the approximate scheme (Figures 7, 8) and thus one can have speed up of an order
of magnitude without loss of prediction quality.

8 Algorithms robustness analysis

The results presented above can have important implications in neuroscience. If one assumes that brain uses
recurrent networks for trajectory prediction and it employs the moving window procedure described in Section
2 (see Fig. 1) then the implementation of this algorithm requires satisfaction of several conditions. These
include – the value (amplitude) of the input element should not change significantly during time interval
when this element is used for prediction; the order of the elements of the input sequence at the second and
subsequence steps of prediction should not be changed. The first condition can be broken if the signal value
is perturbed by inner noise or it decays with some rate. As the influence of noise on the input sequence is
shown not to be critical for the prediction we will focus on the signal decay influence of the prediction quality.
The second condition is probably more difficult to meet and we have to consider a case when on each step of
prediction some elements of the updated input sequence are partially reshuffled.

Consider first how the input element decay rate affects the quality of prediction. For the LSTM network

0. 0.5 1. 1.5 2.

-1.0

-0.5

0.0

0.5

1.0

0. 0.5 1. 1.5

-1.0

-0.5

0.0

0.5

1.0

a b

0. 0.5 1. 1.5 2.

-1.0

-0.5

0.0

0.5

1.0

0. 0.5 1. 1.5 2.

-1.0

-0.5

0.0

0.5

1.0

c d

Figure 9: Comparison of the predictions by the LSTM network (blue) with n = 10 to the continuation (red)
of the sine wave input (green) for different rate α of input values exponential decay: (a) 0, (b) 0.002, (c)
0.005, (d) 0.008.

11

we observe that the increase of the decay rate leads to faster deviation of the predicted trajectory from the
expected one (Figure 9 a-d), nevertheless the predicted trajctory remains quite smooth.

It appears that the partial reshuffling of the input sequence at each prediction step affects not only the
prediction quality but also generates nonsmooth extrapolated curves (Figure 10). We observe that satisfaction

0. 0.5 1. 1.5

-1.0

-0.5

0.0

0.5

1.0

0. 0.5 1. 1.5 2.

-1.0

-0.5

0.0

0.5

1.0

a b

0. 0.5 1.

-1.0

-0.5

0.0

0.5

1.0

0. 0.5 1.

-1.0

-0.5

0.0

0.5

1.0

c d

Figure 10: Comparison of the predictions by the trained LSTM network (blue) with n = 10 to the continuation
(red) of the sine wave input (green) when the input sequence is partially reshuffled.

of both conditions mentioned above is critical for a successful prediction using the moving window algorithm
and if any of them is not satisfied the increase of the length m of input sequence makes an accurate prediction
nearly impossible. The reduced algorithm (see Figure 6) is free of these limitations as it does not require any
knowledge of the input sequence Xj for j > 1 but instead employs the internal network dynamics, and the
quality of prediction grows with the length m of the initial input sequence. Thus we conclude that the new
fast algorithm appears to be much more robust compared to the traditional moving window approach.

9 Discussion

In this manuscript we show that the predictive RNN based on a single recurrent layer with a small number
of neurons works as an effective noise filter. Namely, when the RNN is supplied by the noisy input sequence
of (multidimensional) time series points and used recursively for series extrapolation it generates points that
belong to some smooth curve that mimics the smoothed original time series. Using the analysis of the recursive
prediction procedure we established a set of conditions required to observe such behavior. These conditions
imply that the governing transformation of the predictive algorithm reduces to one that requires the input
sequence only once and later does not depend on it. As the result the predictive algorithm can be drastically
simplified and accelerated without loss of accuracy. The overall quality of prediction strongly depends on
the length of the input sequence while the acceleration is proportional to it. Thus using the approximate
predictive algorithm one can both increase the quality and save time and computational resources.

These results allow to conclude that RNNs with several recurrent layers of a single or multiple types would

12

have the same property of noise filtration off an input sequence. Moreover it is possible to suggests that any
neural network of several layers would share this behavior if it has a recurrent network preceding a last layer
that generates the network prediction.

The approximate predictive algorithm is governed by a multidimensional discrete map with the parameters
determined by the weights and biases of the trained RNN only and does not require the input sequence. In
all our numerical experiments we observe that the parameters of the trained network always lead to smooth
dynamics generated by this reduced map. The same time setting these parameters to random real values
sometimes produces nonsmooth and quite nontrivial dynamics including complex periodic and even chaotic
trajectories. It is very important to understand what is special about the parameters of the trained network
that they always produce smooth trajectory generated by both the original and approximate predictive
schemes.

Another important aspect of RNN noise filtering is related to neuroscience. Brain ability to predict a
trajectory is one of the most important requirements for survival and this natural ability is highly developed.
By default the brain should be able to predict trajectories based on incomplete or noisy data, and it has to do
this with high reliability. Moreover, the predictions should be made for several objects simultaneously and it
requires large resources. Even if an object actual trajectory in space is smooth it is transferred into brain by the
receptors as a noisy time series. The trajectory prediction is usually considered as a two-stage process – first,
the brain performs initial classification of the trajectory and then, in case when the organism should somehow
react to this specific motion, a precise predictive mechanism is activated. If the available data is noisy both
these stages would require more resources compared to processing of smooth trajectories. We hypothesize that
first of all activates an additional inexpensive (with small number of neurons) recurrent network. It would
effectively filter noise out and transfer a cleaned smooth trajectory segment to the classification and then to
precise predictive networks. Note that in this case the latter networks resources can be greatly reduced.

We also learned that the prediction process itself can be significantly accelerated by using the approximate
algorithm described in the manuscript. It would be interesting to address a possibility of a physiological
implementation of this scheme. If this algorithm does work in the brain the trajectory prediction is done
in two stages – first the existing trajectory segment is fed into the network and the first point is predicted.
Then the input information is forgotten and the brain predicts subsequent points based on the approximate
scheme. We showed that the moving window prediction procedure is very sensitive to various perturbations
of the input sequence during its update that might strongly reduce the prediction quality. Moreover, the
longer is the input sequence the higher chance is for these perturbations to influence the result. On the other
hand, the reduced fast algorithm is much more robust with respect to those perturbations and allows to reach
high predictabilty which is proportional to the length of the input sequence.

One has to take into account that the number of predicted elements is usually smaller or approximately
equal to the length of the input sequence as the prediction accuracy is inversly proportional to the length
of predicted sequence. Thus the receptors provide a new input sequence is and a correction of predicted
trajectory is performed. It saves resources and helps to resolve the problem of prediction time minimization
– there exists a range of lengths m of the input sequence for which the prediction quality is proportional
to m thus brain tends to increase the value of m. This increase requires a linearly proportional increase in
prediction time when the moving window algorithm is employed. A switch to the approximate algorithm
allows significant reduction in the processing time without loss in the prediction quality.

The existence of fast and robust predictive algorithm in recurrent networks has important implications for
both brain research and artificial neural network field. The trajectory prediction is an important but is not
the only brain predictive task. For example, a trained human brain can perform symbol-based predictions as
finishing a word or sentence, solve simple arithmetic problems like addition and subtraction, recognize and
continue a sequence of musical notes etc. In recent years a novel Transformer architecture was proposed to
solve this kind of problems and these networks do not use a recurrent paradigm or convolution; instead a
notion of attention is introduced to be a main element [9]. Today these networks are in the focus of research
and a significant progress in this field is observed (see, for example, a description of GPT-3 Transformer
in [10]). The text generation algorithm is the moving (or expanding) window recurrent procedure while the
inner transformation differs from the one employed in the recurrent networks. It is possible that for the
Transformer networks also exists a reduced algorithm that does not require repeated input of the updated
symbol sequence at each step of prediction and instead employs an internal dynamics of the trained network.
A search for such algorithms might help to explain how human brain performs language and other symbol

13

based tasks.

10 Notation

Symbol and definition Conditions Meaning
X = {xi} 1 ≤ i ≤ N original time series with elements xi
xi = g(ti) element xi is a value of a function g at t = ti
d d ≥ 1 dimension of xi
g(t) = g0(t) + aξ(t) g is a sum of a smooth function g0 and noise ξ
a a ≥ 0 noise amplitude
Xk,m = {xi} k + 1 ≤ i ≤ k +m segment of X of the length m starting with xk+1

x̄i i-th element of X predicted by RNN
X̄k+m,p = {x̄i} k +m+ 1 ≤ i ≤ k +m+ p sequence of p predicted elements based on input Xk

Xj j > 0 input to RNN at j-th step of recursive prediction

Sj = {sji} 1 ≤ i ≤ m sequence of RNN states for input Xj

sji state vector at j-th step of recursive prediction
n n ≥ 1 dimension of state vector sri
Wax a = i,m, f, o n× d matrix
Was a = i,m, f, o n× n matrix
ba a = i,m, f, o n-dimensional vector
W d× n matrix
b d-dimensional vector

Table 1: Symbols and corresponding definitions used in the manuscript.

Acknowledgements

The author wishes to thank Vladimir Zverev, Yuri Shvachko, Mitya Chkolvsky and Kausik Si for fruitful
discussions.

Appendix

Shifted difference dynamics for basic recurrent network

The simplest RNN transformation reads

si = f(Wix · xi +Wis · si−1 + bi), (A1)

where the nonlinear scalar function f(x) = tanhx is applied to all components of its vectorial argument. The
shifted difference δji = sji+1 − s

j+1
i reads

δji = f(Wis · sji +Wix · xji+1 + b)− f(Wis · sj+1
i−1 +Wix · xj+1

i + b)

= f(Wis · sji +Wix · xji+1 + b)− f(Wis · (sji − δ
j
i−1) +Wix · xji+1 + b)

= f(yji)− f(yji −Wis · δji−1) yji = Wis · sji +Wix · xji+1 + b = f−1(sji+1), (A2)

where f−1 denotes an inverse function to f and we use the relation xji+1 = xj+1
i . Assume that |Wis·δji−1| � yji

and find in the lowest expansion order

δji ≈
∂f(yji)

∂yji
· (Wis · δji−1),

14

and M j
i = ∂f(yji)/∂y

j
i is a square matrix having the same dimensions as the matrix Wis. Recalling that the

nonlinear transformation f is actually a scalar function applied to all elements of its vector argument yji one

can write for the diagonal matrix M j
i = D[f ′(yji)] ≡ diag{f ′(yji)}. This leads to

δji ≈N
j
i · δ

j
i−1, N j

i = D[f ′(yji)] ·Wis = D[f ′(f−1(sji+1))] ·Wis. (A3)

For basic RNN f ′(x) = tanh′ x = sech2x, leading to f ′(f−1(x)) = 1− x2, and thus

N j
i = D[1− sji+1 ⊗ s

j
i+1] ·Wis. (A4)

Noting that due to (A1) with f(x) = tanhx we deduce that all elements of the vector sji are in the range

{−1, 1} that implies Wis to be a majorant of N j
i and thus the dynamics of the shifted difference is determined

by the matrix Wis. Consider a set of eigenvalues λk and (orthonormal) eigenvectors ek of the matrix Wis

satisfying Wis · ek = λkek. For any two vectors a, b in b = Wis · a we have

b =
∑
k

ωbkek =
∑
k

ωakWis · ek =
∑
k

ωakλkek. (A5)

In case when all |λk| < 1 we find for the square of norms

b2 =
∑
k

ω2
bk =

∑
k

ω2
ak|λk|2 <

∑
k

ω2
ak = a2,

and thus the transformation determined by Wis is contracting one. Computation of the spectrum of Wis for
the trained basic RNN shows that the condition |λk| < 1 holds explaining the observed exponential decay of
the shifted difference norm δji .

References

[1] H. Georgiou, S. Karagiorgou et al, Moving object analytics: survey on future location & trajectory
prediction methods, Technical report, 2018, arxiv:1807.04639 [cs.LG].

[2] P.R. Vlachas, W. Byeon et al, Data-driven forecasting of high-dimensional chaotic systems with long
short-term memory networks, Proc. R. Soc. A 2017, 474, 20170844.

[3] Q. Li, R.-C. Lin, A new approach for chaotic time series prediction using recurrent neural networks,
Mathematical Problems in Engineering, 2016, 2016, ID 3542898.

[4] R. Yu, S. Zheng, Y. Liu, Learning chaotic dynamics using tensor recurrent neural networks, Proceedings
of theICML 17 Workshop on Deep Structured Prediction, Sydney, Australia, PMLR 70, 2017.

[5] S. Haykin (Ed.), Kalman filtering and neural networks, John Wiley, 2001.

[6] K. Yeo, Short note on the behavior of recurrent neural network for noisy dynamical system, 2019,
arxiv:1904.05158 [cs.NE].

[7] S. Hochreiter, J. Schmidhuber, Long-short term memory, Neural. Comput., 1997, 9, 1735-1780.

[8] J. Chung, C. Gulcere, K.H. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural network for
sequence modeling, 2014, arxiv:1412:3555v1[cs.NE].

[9] A. Vaswani, N.Shazeeer et. al. Attention is all you need, 2017, arxiv:1706.03762v5 [cs.CL].

[10] T.B. Brown, B. Mann et. al. Language models are few-shot learners, 2020, arxiv:2005.14165v4

[cs.CL].

15

