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Abstract Explicit expressions for restricted partition function W (s, dm) and its quasiperi-

odic components W j (s, dm) (called Sylvester waves) for a set of positive integers dm =
{d1, d2, . . . , dm} are derived. The formulas are represented in a form of a finite sum over

Bernoulli and Eulerian polynomials of higher order with periodic coefficients. A novel re-

cursive relation for the Sylvester waves is established. Application to counting algebraically

independent homogeneous polynomial invariants of finite groups is discussed.
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1. Introduction

The problem of partitions of positive integers has long history started with the work of Euler

who laid a foundation of the theory of partitions [1], by introducing the idea of generating

functions. Many prominent mathematicians contributed to the development of the theory

using the Euler idea.

J.J. Sylvester provided a new insight and made remarkable progress in this field. He

found [15], [16] the procedure enabling to determine a restricted partition functions,

and described symmetry properties of such functions. The restricted partition function
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332 B. Y. Rubinstein, L. G. Fel

W (s, dm) ≡ W (s, {d1, d2, . . . , dm}) is the number of partitions of s into positive integers

{d1, d2, . . . , dm}, each not greater than s. The generating function for W (s, dm) has the form

F(t, dm) =
m∏

i=1

1

1 − tdi
=

∞∑
s=0

W (s, dm) t s , (1)

where W (s, dm) satisfies the basic recursive relation

W (s, dm) − W (s − dm, dm) = W (s, dm−1) . (2)

Sylvester also proved the statement about splitting of the partition function into periodic and

non-periodic parts and showed that the restricted partition function may be presented as a

sum of “waves”, which we call the Sylvester waves

W (s, dm) =
∑
j=1

W j (s, dm) , (3)

where summation runs over all distinct factors in the set dm . The wave W j (s, dm) is a

quasipolynomial in s closely related to primitive roots ρ j of unity. Namely, Sylvester showed

in [16] that the wave W j (s, dm) is a coefficient of t−1 in the series expansion in ascending

powers of t of

Fj (s, t) =
∑
ρ j

ρ−s
j est∏m

k=1(1 − ρ
dk
j e−dk t )

. (4)

The summation is made over all primitive roots of unity ρ j = exp(2π in/j) for n relatively

prime to j (including unity) and smaller than j . This result is just a recipe for calculation of

the partition function and it does not provide any explicit formula.

Using the Sylvester recipe we find an explicit formula for the Sylvester wave W j (s, dm)

in a form of finite sum of the Bernoulli polynomials of higher order [2], [7] multiplied by a

periodic function of integer period j . The periodic factor is expressed through the generalized

Eulerian polynomials of higher order [5].

A special symbolic technique is developed in the theory of polynomials of higher or-

der, which significantly simplifies computations performed with these polynomials. A short

description of this technique required for better understanding of this paper is given in

Appendix A.

2. Sylvester wave W1(s, dm) and Bernoulli polynomials of higher order

Consider a polynomial part of the partition function corresponding to the wave W1(s, dm). It

may be found as a residue of the generator

F1(s, t) = est∏m
i=1(1 − e−di t )

. (5)
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Recalling the generating function for the Bernoulli polynomials of higher order [2]:

est tm
∏m

i=1 di∏m
i=1(edi t − 1)

=
∞∑

n=0

B(m)
n (s|dm)

tn

n!
, (6)

and a transformation rule

B(m)
n (s| − dm) = B(m)

n

(
s +

m∑
i=1

di |dm

)
,

we obtain the relation

est∏m
i=1(1 − e−di t )

= 1

πm

∞∑
n=0

B(m)
n (s + sm |dm)

tn−m

n!
, (7)

where

sm =
m∑

i=1

di , πm =
m∏

i=1

di .

It is immediately seen from (7) that the coefficient of 1/t in (5) is given by the term with

n = m − 1

W1(s, dm) = 1

(m − 1)! πm
B(m)

m−1(s + sm |dm) . (8)

The polynomial part also admits a symbolic form frequently used in theory of higher order

polynomials

W1(s, dm) = 1

(m − 1)! πm

(
s + sm +

m∑
i=1

di
iB

)m−1

, (9)

where after expansion powers ri of iB are converted into orders of the Bernoulli numbers

iBri ⇒ Bri . (10)

It is easy to recognize in (8) the explicit formula reported recently in [3], which was obtained

by a straightforward computation of the complex residue of the generator (5).

Note that basic recursive relation for the Bernoulli polynomials [7]

B(m)
n (s + dm |dm) − B(m)

n (s|dm) = ndm B(m−1)
n−1 (s|dm−1) (11)

naturally leads to the basic recursive relation for the polynomial part of the partition function:

W1(s, dm) − W1(s − dm, dm) = W1(s, dm−1) , (12)

which coincides with (2). This indicates that the Bernoulli polynomials of higher order

represent a natural basis for expansion of the partition function and its waves.
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3. Sylvester wave W2(s, dm) and Euler polynomials of higher order

In order to compute the Sylvester wave with period j > 1 we note that the expression (4)

can be rewritten as a product

Fj (s, t) =
∑
ρ j

est∏ω j

i=1(1 − e−di t )
× ρ−s

j∏m
i=ω j +1(1 − ρ

di
j e−di t )

, (13)

where the elements in dm are sorted in a way that j is a divisor for first ω j elements (we say

that j has weight ω j ), and the rest of the elements in the set are not divisible by j .

Then a 2-periodic Sylvester wave W2(s, dm) is a residue of the generator

F2(s, t) = est∏ω2

i=1(1 − e−di t )
× (−1)s∏m

i=ω2+1(1 + e−di t )
, (14)

where first ω2 integers di are even, and the summation is omitted being trivially restricted

to the only value ρ2 = −1. Recalling the generating function for the Euler polynomials of

higher order [2], [7] and corresponding recursive relation

2mest∏m
i=1(edi t + 1)

=
∞∑

n=0

E (m)
n (s|dm)

tn

n!
, (15)

E (m)
n (s + dm |dm) + E (m)

n (s|dm) = 2E (m−1)
n (s|dm−1),

we may rewrite (14) as double infinite sum

(−1)s

2m−ω2πω2

∞∑
n=0

B(ω2)
n (s + sω2

|dω2 )
tn−ω2

n!

∞∑
l=0

E (m−ω2)
l (sm − sω2

|dm−ω2 )
t l

l!
. (16)

The coefficient of 1/t in the above series is found for n + l = ω2 − 1, so that we end up with

a finite sum:

W2(s, dm) = (−1)s

(ω2 − 1)! 2m−ω2πω2

ω2−1∑
n=0

(
ω2 − 1

n

)
B(ω2)

n (s + sω2
|dω2 )E (m−ω2)

ω2−1−n(sm − sω2
|dm−ω2 ).

(17)

This expression may be rewritten as a symbolic power similar to (9):

W2(s, dm) = (−1)s

(ω2 − 1)! 2m−ω2πω2

(
s + sm +

ω2∑
i=1

di
iB +

m∑
i=ω2+1

di
iE(0)

)ω2−1

, (18)
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where the rule for the Euler polynomials at zero En(0) similar to (10) is applied. It is easy to

rewrite formula (18) in a form

W2(s, dm) = (−1)s

(ω2 − 1)! 2m−ω2πω2

ω2−1∑
n=0

(
ω2 − 1

n

)
B(ω2)

n (s + sm |dω2 )E (m−ω2)
ω2−1−n(0|dm−ω2 ),

(19)

where E (m)
n (0|dm) denote the Euler polynomials of higher orders computed at zero as follows:

E (m)
n (0|dm) =

[
m∑

i=1

di
iE(0)

]n

. (20)

The formula (19) shows that the wave W2(s, dm) can be written as an expansion over the

Bernoulli polynomials of higher order with constant coefficients, multiplied by a 2-periodic

function (−1)s .

4. Sylvester waves W j (s, dm) ( j > 2) and Eulerian polynomials of higher order

Frobenius [9] studied in great detail the polynomials Hn(s, ρ) satisfying the generating

function

(1 − ρ)est

et − ρ
=

∞∑
n=0

Hn(s, ρ)
tn

n!
, (ρ �= 1), (21)

which reduces to definition of the Eulerian polynomials at fixed value of the parameter ρ

En(s) = Hn(s, −1).

The polynomials Hn(ρ) ≡ Hn(0, ρ) satisfy the symbolic recursion (H0(ρ) = 1)

ρHn(ρ) = (H (ρ) + 1)n, n > 0. (22)

The generalization of (15) is straightforward

est
∏m

i=1(1 − ρdi )∏m
i=1(edi t − ρdi )

=
∞∑

n=0

H (m)
n (s, ρ|dm)

tn

n!
, (ρdi �= 1), (23)

where the corresponding recursive relation for H (m)
n (s, ρ|dm) has the form

H (m)
n (s + dm, ρ|dm) − ρdm H (m)

n (s, ρ|dm) = (1 − ρdm )H (m−1)
n (s, ρ|dm−1) . (24)
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The generalized Eulerian polynomials of higher order H (m)
n (s, ρ|dm) introduced by L. Carlitz

in [5] can be defined through the symbolic formula

H (m)
n (s, ρ|dm) =

(
s +

m∑
i=1

di
iH (ρdi )

)n

, (25)

where Hn(ρ) computed from the relation

1 − ρ

et − ρ
=

∞∑
n=0

Hn(ρ)
tn

n!
,

or using the recursion (22). Using the polynomials H (m)
n (s, ρ|dm) we can compute Sylvester

wave of arbitrary period.

Consider a j-periodic Sylvester wave W j (s, dm), and rewrite the summand in (13) as

double infinite sum

ρ−s
j

πω j

∏m
i=ω j +1(1 − ρ

di
j )

∞∑
n=0

B
(ω j )
n (s + sω j |dω j )

tn−ω j

n!

×
∞∑

l=0

H
(m−ω j )

l (sm − sω j , ρ j |dm−ω j )
t l

l!
. (26)

The coefficient of 1/t in the above series is found for n + l = ω j − 1, so that we have a finite

sum:

W j (s, dm) = 1

(ω j − 1)! πω j

∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

×
ω j −1∑
n=0

(
ω j − 1

n

)
B

(ω j )
n (s + sω j |dω j )H

(m−ω j )

ω j −1−n(sm − sω j , ρ j |dm−ω j ) . (27)

This expression may be rewritten as a symbolic power similar to (18):

W j (s, dm) = 1

(ω j − 1)! πω j

∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

×
(

s + sm +
ω j∑

i=1

di
iB +

m∑
i=ω j +1

di
iH (ρdi

j )

)ω j −1

, (28)

which is equal to

W j (s, dm) = 1

(ω j − 1)! πω j

ω j −1∑
n=0

(
ω j − 1

n

)
B

(ω j )
n (s + sm |dω j )

×
∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

H
(m−ω j )

ω j −1−n[ρ j |dm−ω j ], (29)
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where

H (m)
n [ρ|dm] = H (m)

n (0, ρ|dm) =
[

m∑
i=1

di
iH (ρdi )

]n

, (30)

are generalized Eulerian numbers of higher order and it is assumed that

H (0)
0 [ρ|∅] = 1, H (0)

n [ρ|∅] = 0, n > 0.

It should be underlined that the presentation of the Sylvester wave as a finite sum of the

Bernoulli polynomials with periodic coefficients (29) is not unique. The symbolic formula

(28) can be cast into a sum of the generalized Eulerian polynomials

W j (s, dm) = 1

(ω j − 1)! πω j

ω j −1∑
n=0

(
ω j − 1

n

)
B

(ω j )
n [dω j ]

×
∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

H
(m−ω j )

ω j −1−n(s + sm, ρ j |dm−ω j ), (31)

where

B(m)
n [dm] = B(m)

n (0|dm)

are the Bernoulli numbers of higher order.

Substitution of the expression (29) into the expansion (3) immediately produces the parti-

tion function W (s, dm) as finite sum of the Bernoulli polynomials of higher order multiplied

by periodic functions with period equal to the least common multiple of the elements in dm

W (s, dm) =
∑

j

1

(ω j − 1)! πω j

ω j −1∑
n=0

(
ω j − 1

n

)
B

(ω j )
n (s + sm |dω j )

×
∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

H
(m−ω j )

ω j −1−n[ρ j |dm−ω j ]. (32)

The partition function W (s, dm) has several interesting properties. Analysis of the gener-

ating function (1) shows that the partition function is a homogeneous function of zero order

with respect to all its arguments, i.e.,

W (ks, kdm) = W (s, dm). (33)

This property appears very useful for computation of the partition function in case when the

elements di have a common factor k, then

W (s, kdm) = W

(
s

k
, dm

)
. (34)
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The case of m identical elements pm = {p, . . . , p} appears to be the simplest and is

reduced to the known formula for Catalan partitions [6]: the Diophantine equation x1 +
x2 + · · · + xm = s has

( s+m−1
s

)
sets of non-negative solutions.

Using (34) for s divisible by p we arrive at

W (s, pm) = W

(
s

p
, 1m

)
= W1

(
s

p
, 1m

)
= B(m)

m−1(s/p + m|1m)

(m − 1)!
.

A straightforward computation shows that

B(m)
m−1(s + m|1m) =

m−1∏
k=1

(s + k) = (s + m − 1)!

s!
,

so that

W (s, pm) =

⎧⎪⎨⎪⎩
m−1∏
k=1

(
1 + s

kp

)
, s = 0 (mod p),

0, s �= 0 (mod p).

(35)

At the end of this Section we consider a special case of the tuple {p1, p2, . . . pm} of primes

p j which leads to essential simplification of the formula (32). The first Sylvester wave W1

is given by (8) while all higher waves arising are purely periodic

Wpi (s; {p1, p2, . . . , pm}) = 1

pi

pi −1∑
k=1

ρ−ks
pi∏m

j �=i (1 − ρ
kp j
pi )

. (36)

The further simplification m = 2, s = ap1 p2 makes it possible to verify the partition identity

W (ap1 p2, {p1, p2}) = a + 1, (37)

which follows from the recursion relation (2) for the restricted partition function and its

definition

W (ap1 p2, {p1, p2}) − W (ap1 p2 − p1, {p1, p2}) = W (ap1 p2, {p2}),
W (ap1 p2, {p2}) = 1,

W (ap1 p2 − p1, {p1, p2}) = W ((a − l)p1 p2 + (lp2 − 1)p1, {p1, p2}) = a,

where a solutions of the Diophantine equation p1 X + p2Y = (a − l)p1 p2 + (lp2 − 1)p1

correspond to l = 1, . . . , a. The relation (37) has an important geometrical interpretation,

namely, a line p1 X + p2Y = ap1 p2 in the XY plane passes exactly through a + 1 points

with non-negative integer coordinates.

The verification of (37) is straightforward (see Appendix B for details):

W1(ap1 p2, {p1, p2}) = a + 1

2

(
1

p1

+ 1

p2

)
,

Wp1
(ap1 p2, {p1, p2}) = 1

2
− 1

2p1

, Wp2
(ap1 p2, {p1, p2}) = 1

2
− 1

2p2

, (38)

which produces the required result.
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A generalization of (37) is possible using the explicit form of the partition function

W (s, {p1, p2}) = 1

p1 p2

(
s + p1 + p2

2

)
+ 1

p1

∑
ρp1

ρ−s
p1

1 − ρ
p2
p1

+ 1

p2

∑
ρp2

ρ−s
p2

1 − ρ
p1
p2

. (39)

Setting here s = ap1 p2 + b, 0 ≤ b < p1 p2 and noting that the value of two last terms in

(39) don’t depend on the integer a, one can easily see that

W (ap1 p2 + b, {p1, p2}) = a + W (b, {p1, p2}), (40)

which reduces the procedure to computation of the first p1 p2 values of W (s, {p1, p2}).
Recalling that W (0, {p1, p2}) = 1 we immediately recover (37) as a particular case

of (40).

5. Recursive relation for Sylvester waves

In this Section we prove that the recursive relation similar to (2) holds not only for the entire

partition function W (s, dm) and its polynomial part W1(s, dm) but also for each Sylvester

wave

W j (s, dm) − W j (s − dm, dm) = W j (s, dm−1) . (41)

When j is not a divisor of dm , the weight ω j doesn’t change in transition from dm−1 to

dm . Denoting for brevity

A(s) = s + sm−1 +
ω j∑

i=1

di
iB +

m−1∑
i=ω j +1

di
iH

(
ρ

di
j

)
, Bω j = 1

(ω j − 1)! πω j

,

we have

W j (s, dm) = Bω j

∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

(
A(s) + dm

[
1 + H

(
ρ

dm
j

)])ω j −1

= Bω j

∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

ω j −1∑
l=0

(
ω j − 1

l

)
Aω j −1−l (s)dl

m

[
1 + H

(
ρ

dm
j

)]l
.

Now using (22) we have

W j (s, dm)

= Bω j

∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

{
Aω j −1(s) + ρ

dm
j

ω j −1∑
l=1

(
ω j − 1

l

)
Aω j −1−l (s)dl

m Hl (ρ
dm
j )

}
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= Bω j

∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

{
(1 − ρ

dm
j )Aω j −1(s) + ρ

dm
j

(
A(s) + dm H (ρdm

j )
)ω j −1

}

= Bω j

∑
ρ j

ρ
−(s−dm )
j∏m

i=ω j +1(1 − ρ
di
j )

(
A(s) + dm H (ρdm

j )
)ω j −1 + Bω j

∑
ρ j

ρ−s
j Aω j −1(s)∏m−1

i=ω j +1(1 − ρ
di
j )

= W j (s − dm, dm) + W j (s, dm−1) . (42)

In case of j being divisor of dm the weight of j for the set dm−1 is equal to ω j − 1, and we

have

W j (s, dm−1) = (ω j − 1)dm

(ω j − 1)! πω j

∑
ρ j

ρ−s
j∏m−1

i=ω j
(1 − ρ

di
j )

×
(

s + sm−1 +
ω j −1∑
i=1

di
iB +

m−1∑
i=ω j

di
iH

(
ρ

di
j

))ω j −2

. (43)

Denoting

A(s) = s + sm−1 +
ω j −1∑
i=1

di
iB +

m−1∑
i=ω j

di
iH

(
ρ

di
j

)
, D(s, ρ j ) = ρ−s

j∏m
i=ω j +1(1 − ρ

di
j )

,

and using the symbolic formula for the Bernoulli numbers [7]

(B + 1)n = Bn = Bn (n �= 1),

we obtain

W j (s, dm) = Bω j

∑
ρ j

D(s, ρ j )[A(s) + dm(B + 1)]ω j −1

= Bω j

∑
ρ j

D(s, ρ j )

ω j −1∑
l=0

(
ω j − 1

l

)
Aω j −1−l (s)dl

m(B + 1)l (44)

= Bω j

∑
ρ j

D(s, ρ j )[A(s) + dm B]ω j −1 + Bω j dm(ω j − 1)
∑
ρ j

D(s, ρ j )Aω j −2(s)

= W j (s − dm, dm) + W j (s, dm−1),

which completes the proof.

6. Partition function W(s, {m}) for a set of natural numbers

Sylvester waves for a set of consecutive natural numbers {1, 2, . . . , m} = {m} was under

special consideration in [8]. An importance of this case based on its relation to the invariants

of symmetric group Sm (see next Section) and, second, W (s, {m}) form a natural basis to
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utilize the partition functions for every subsets of {1, 2, . . . , m}. This case is also important

due to the famous Rademacher formula [11] for unrestricted partition function W (s, {s}),
but the latter already belongs to the analytical number theory.

The representation for W (s, {m}) in terms of higher Bernoulli polynomials comes when

we put into (32)

ω j =
[

m

j

]
, πω j = ω j ! jω j , sω j = ω j (ω j + 1)

2
, (45)

where [x] denotes integer part of x . The partition function in this case reads

W (s, {m}) =
m∑

j=1

j−ω j

(ω j − 1)! ω j !

ω j −1∑
n=0

(
ω j − 1

n

)
B

(ω j )
n

(
s + m(m + 1)

2
|dω j

)

×
∑
ρ j

ρ−s
j∏m

i=ω j +1(1 − ρ
di
j )

H
(m−ω j )

ω j −1−n[ρ j |dm−ω j ], (46)

where dω j = j{ω}, so that for each j we have elements divisible by j at first ω j positions.

The expression for the Sylvester wave of the maximal period m looks particularly simple

Wm(s, {m}) = 1

m2

∑
ρm

ρ−s
m . (47)

Straightforward calculations show that the expression (46) produces exactly the same for-

mulas for m = 1, 2, . . . , 12 which were obtained in [8].

It needs to be noted that typically the argument s in all formulas derived above is assumed

to have integer values, but it is obvious that all results can be extended to real values of s,

though such extension is not unique. Continuous values of the argument provide a convenient

way to analyze the behavior of the partition function and its waves. In this work we choose

the natural extension scheme based on the trigonometric functions

ρs
j = e2π ins/j = cos

2πns

j
+ i sin

2πns

j
.

We finish this Section with a brief discussion of a phenomenon better observed in graphics

of W (s, {m}) with large m rather than explicit expressions (see formulas (52) and Figures of

restricted partition functions in [8]).

In the range
[ − m(m+1)

2
, 0

]
where W (s, {m}) has all its zeroes, one can easily assume the

existence of a function W̃ (s, {m}) which envelopes W (s, {m}) or approximates it in some

sense. The decomposition of W (s, {m}) into the Sylvester waves shows that this role may be

assigned to the wave W1(s, {m}). The Figs 1 and 2 show that W1(s, {21}) serves as a good

approximant for W (s, {21}) in this range as well as for large s.

7. Application to invariants of finite groups

The restricted partition function W (s, dm) has a strong relationship to the invariants of finite

reflection groups G acting on the vector space V over the field of complex numbers. If
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Fig. 1 Plots of the partition function W (s, {21}) (black curve) and its first Sylvester wave W1(s, {21}) (white
curve) showing that the polynomial part provides an important information about the partition function behavior

Fig. 2 Plot of the normalized difference [W (s, {21})/W1(s, {21}) − 1] showing that the polynomial part
W1(s, {21}) at large values of the argument s gives a very accurate approximation to the partition function
W (s, {21})

MG(t) is a Molien function of the finite group, dr and m are degrees and a number of the

basic homogeneous invariants respectively, then its series expansion in t gives a number

P(s, G) of algebraically independent invariants of the degree s. The set of natural numbers

{m} corresponds to the symmetric group Sm : W (s, {m}) = P(s, Sm). The list of P(s, G) for

all indecomposable reflections groups G acting over the field of real numbers and known as

Coxeter groups is presented in [8]. It is easy to extend these formulas over indecomposable

pseudoreflections groups acting over the field of complex numbers using the list of 37 groups

given by Shepard and Todd [13]. In this Section we extend the results of Section 4 to all finite

groups.

First, we recall an algebraic setup of the problem. The fundamental problem of the invariant

theory consists in determination of an algebra RG of invariants. Its solution is given by the

Noether theorem [4]: RG is generated by a polynomial ϑk(x j ) as an algebra due to action of

finite group G ⊂ GL(V q ) on the q-dimensional vector space V q (x j ) over the field of complex
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numbers by not more than
( |G|+q

q

)
homogeneous invariants, of degrees not exceeding the

order |G| of group

k ≤
(|G| + q

q

)
, j ≤ dim V q = q, deg ϑk(x j ) ≤ |G| . (48)

To enumerate the invariants explicitly, it is convenient to classify them by their degrees (as

polynomials). A classical theorem of Molien [4] gives an explicit expression for a number

P(s, G) of all homogeneous invariants of degree s

MG(t) = 1

|G|
|G|∑
l=1

χ̃ (̂gl )

det( Î − t ĝl )
=

∞∑
s=0

P(s, G)t s, P(0, G) = 1, (49)

where ĝl are non-singular (n × n)-permutation matrices with entries, which form the regular

representation of G, Î is the identity matrix and χ̃ is the complex conjugate to character χ .

Further progress is due to Hilbert and his syzygy theorem [4]. For our purpose it is important

that MG(t) is a rational polynomial

MG(t) = N G(t)∏n
l=1(1 − tdl )

, N G(t) =
∑
k=0

Q(k, G) t k . (50)

The formula (50) is very convenient for expressing the function P(s, G) in terms of the

Sylvester waves W (s, dm). Recalling the definition (1) of the generating function F(t, dm)

consider a general term t k F(t, dm) of the Molien function (50)

t k F(t, dm) =
∞∑

s=0

W (s, dm)t s+k =
∞∑

s=k

W (s − k, dm)t s, (51)

so that the corresponding partition function is W (s − k, dm), which implies that the number

P(s, G) of all homogeneous invariants of degree s for the finite group G can be expressed

through the simple relation

P(s, G) =
s∑

k=0

Q(k, G)W (s − k, dm) . (52)

We consider several instructive examples for which the explicit expression of the Molien

function MG(t) and the corresponding number of homogeneous invariants P(s, G) are given.

1. Alternating group An generated by its natural n-dimensional representation, |An| =
n!/2.

MAn (t) = [
1 + t ( n

2
)
] n∏

k=1

1

1 − t k
.

P(s, An) = W (s, {n}) + W

(
s − n(n − 1)

2
, {n}

)
. (53)

The group An acts on the Euclidean vector space Rn .
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2. Group G2 generated by matrix
(

ρn 0

0 ρ−1
n

)
, where ρn = e2π i/n is a primitive n-th root of

unity, |G2| = n.

MG2
(t) = 1 + tn

(1 − t2)(1 − tn)
.

P(s, G2) = W (s, {2, n}) + W (s − n, {2, n}). (54)

G2 is isomorphic as an abstract group to the cyclic group Zn acting on the Euclidean vector

space R2.

3. Group G3 generated by the matrices
(

ρn 0

0 ρ−1
n

)
and

(
0 1
1 0

)
, |G3| = 2n.

MG3
(t) = 1

(1 − t2)(1 − tn)
, P(s, G3) = W (s, {2, n}) (55)

G3 is isomorphic as an abstract group to the dihedral group I n acting on Euclidean vector

space R2.

4. Group G4 generated by (n × n)-diagonal matrix diag(−1, −1, . . . ,−1), |G4| = 2.

MG4
(t) = 1

(1 − t2)n

[ n
2 ]∑

k=0

(
n

2k

)
t2k .

P(s, G4) =

⎧⎪⎪⎨⎪⎪⎩
[ n

2 ]∑
k=0

(
n

2k

)
W (s − 2k, 2n) = W (s, 1n), s = 0 (mod 2),

0, s �= 0 (mod 2).

(56)

G4 is isomorphic as an abstract group to the cyclic group Z2 acting on the Euclidean vector

space Rn .

It is easy to see that both groups G2 and G4 acting on R2 give rise to the same Molien

function and corresponding number of invariants

MZ2
(t) = 1 + t2

(1 − t2)2
, P(s, Z2) =

{
W (s, 12), s = 0 (mod 2),

0, s �= 0 (mod 2).
(57)

5. Group Q4n generated by the matrices

(
ρ2n 0

0 ρ−1
2n

)
and

(
0 i
i 0

)
, |Q4n| = 4n.

MQ4n (t) = 1 + t2n+2

(1 − t4)(1 − t2n)
, (58)

P(s, Q4n) =
⎧⎨⎩ W

(
s

2
, {2, n}

)
+ W

(
s

2
− n − 1, {2, n}

)
, s = 0 (mod 2),

0, s �= 0 (mod 2).

In the case of quaternion group Q8 formula (58) reduces to

MQ8
(t) = 1 + t6

(1 − t4)2
, P(s, Q8) =

{
W (s, 12)/2, s = 0 (mod 4),

0, s �= 0 (mod 4).
(59)
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More sophisticated examples of finite groups one can find in Appendices A, B of the book

[4].

8. Conclusion

1. The explicit expression for the restricted partition function W (s, dm) and its quasiperi-

odic components W j (s, dm) (Sylvester waves) for a set of positive integers dm =
{d1, d2, . . . , dm} is derived. The formulas are represented as a finite sum over Bernoulli

and Eulerian polynomials of higher order with periodic coefficients.

2. Each Sylvester wave W j (s, dm) satisfies the same recursive relation as the whole partition

function W (s, dm).

3. The application of restricted partition function to the problem of counting all algebraically

independent invariants of the degree s which arise due to action of finite group G on the

vector space V over the field of complex numbers is discussed.

Appendices

A. Symbolic notation

The symbolic technique for manipulating sums with binomial coefficients by expanding

polynomials and then replacing powers by subscripts was developed in nineteenth century

by Blissard. It has been known as symbolic notation and the classical umbral calculus [12].

This notation can be used [10] to prove interesting formulas not easily proved by other

methods. An example of this notation is also found in [2] in section devoted to the Bernoulli

polynomials Bk(x).

The well-known formulas

Bn(x + y) =
n∑

k=0

(
n

k

)
Bk(x)yn−k, Bn(x) =

n∑
k=0

(
n

k

)
Bk xn−k,

are written symbolically as

Bn(x + y) = (B(x) + y)n, Bn(x) = (B + x)n .

After the expansion the exponents of B(x) and B are converted into the orders of the Bernoulli

polynomial and the Bernoulli number, respectively:

[B(x)]k ⇒ Bk(x), Bk ⇒ Bk . (A1)

We use this notation in its extended version suggested in [7] in order to make derivation more

clear and intelligible. Nörlund introduced the Bernoulli polynomials of higher order defined

through the recursion

B(m)
n (x |dm) =

n∑
k=0

(
n

k

)
dk Bk(0)B(m−1)

n−k (x |dm−1), (A2)
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starting from B(1)
n (x |d1) = dn

1 Bn
(

x
d1

)
. In symbolic notation it takes form

B(m)
n (x) = (

dm B(0) + B(m−1)(x)
)n

,

and recursively reduces to the more symmetric form

B(m)
n (x |dm) = (

x + d1
1B(0) + d2

2B(0) + · · · + dm
mB(0)

)n =
(

x +
m∑

i=1

di
iB(0)

)n

,

(A3)

where each [iB(0)]k is converted into Bk(0).

B. Partition function for two primes

The polynomial part is computed according to (8)

W1(ap1 p2, {p1, p2}) = 1

p1 p2

B(2)
1 (ap1 p2 + p1 + p2|{p1, p2}) = a + 1

2

(
1

p1

+ 1

p2

)
.

(B1)

Two other waves read

Wp1
(ap1 p2, {p1, p2}) = 1

p1

p1−1∑
r=1

1

1 − ρr
p1

, Wp2
(ap1 p2, {p1, p2}) = 1

p2

p2−1∑
r=1

1

1 − ρr
p2

.

(B2)

where we use the trivial identity ρ
ap1 p2
p1 = ρ

ap1 p2
p2 = 1. For computation of the sums in (B2)

we start with the identity (see [17])

m−1∏
r=0

(
x − ρr

m

) = xm − 1. (B3)

and differentiate it with respect to x , and divide by xm − 1

m−1∑
r=0

1

x − ρr
m

= mxm−1

xm − 1
. (B4)

Subtracting 1/(x − 1) from both sides of (B4) and taking a limit at x → 1 we obtain

m−1∑
r=1

1

1 − ρr
m

= m − 1

2
. (B5)
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Using this result we have for the periodic waves in (B2)

Wp1
(ap1 p2, {p1, p2}) = p1 − 1

2p1

, Wp2
(ap1 p2, {p1, p2}) = p2 − 1

2p2

. (B6)

Acknowledgment We thank I. M. Gessel for information about Ref. [10]. The research was supported in part
(LGF) by the Gileadi Fellowship program of the Ministry of Absorption of the State of Israel.

References

1. Andrews, G.E.: The theory of partitions. Encyclopedia of mathematics and its applications, V.2, Addison-
Wesley, (1976)
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