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Abstract

We present the theory of liquid bridges between two axisytrimsolids, sphere and plane, with
prescribed contact angles in a general setup, when thes sokchon-touching, touching or intersecting,
We give a detailed derivation of expressions for curvatuo&yme and surface area of pendular ring as
functions of the filling angle) for all available types of menisci: catenoitht, sphereSph, cylinder
Cyl, nodoidNod and unduloidJnd (the meridional profile of the latter may have inflection fs)n

The Young-Laplace equation with boundary conditions cawvibeed as a nonlinear eigenvalue
problem. Its unduloid solutions, menisci shapgér) and their curvature&’: (), exhibit a discrete
spectrum and are enumerated by two indices: the numbéinflection points on the meniscus merid-
ional profile M and the convexity index = +1 determined by the shape of a segmenticontacting
the solid sphere: the shape is either coneex, 1, or concaves = —1.

For the fixed contact angles the set of the functiéfiy)) behaves in such a way that in the plane
{1, H} there exists a bounded domain whéfg(v)) do not exist for any distance between solids. The
curvesH £ () may be tangent to the boundary of domain which is a smootledlosrve. This topolog-
ical representation allows to classify possible curvesiatrdduce a saddle point notion. We observe

several types of saddle points, and give their classifinatio
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1 Introduction

The problem of pendular ring (PR) arises when a small amount of flugan axisymmetric liquid bridge
with interface (meniscus) between two axisymmetric solids. This problem ircbudemputation of liquid
volumeV, surface are® and surface curvaturel and was one of gems in mathematical physics of the
19th century.

The history of the problem dates back to 1841 when Delaunay [1] claksifi@on-trivial surfaces of
revolution with constant mean curvature®3 by solving the Young-Laplace (YL) equation and showed
that they are obtained by tracing a focus of a conic section when rolledire and revolving the resulting
curve around the axis of symmetry. These eyknder (Cyl), sphere(Sph), catenoid(Cat), nodoid (Nod)
andunduloid(Und). The two last of them are defined through the elliptic integrals and may appteo
kinds,concave(-) andconvex(+), depending on constant sign of the meridional profifecurvature. One
more type of meniscus, anflectional unduloigdappears when meridional sectigr curvature changes its
sign along the meniscus.

In 1864 Plateau [6] applied this classification to analyze the figures of equititof a liquid mass, and
was the first who discovered [7] a standard sequence of meniscusievambserved with increase of the

liquid volume in absence of gravity. According to [5] the Plateau sequeramisr
Nod~ — Cat — Undy — Und; — Undj — Sph — Nod™ (1.1)

where subscripts denote the number of inflection points on the meniscus matigéctionM. Even so,
the actual algorithm for solution of the PR problem leads to the eigenvalisepndor mean curvaturé/
that requires extensive and accurate computation of the elliptic integralsandot available before the
computer era has been started. A complete review on different methatitous®d actual solutions of the
YL equation or the equivalent variational problem (Howe [3] in 1887 Risther [2] in 1926) throughout
the last century can be found in [5].

In 1966 Melrose [4] analyzed in details tNed™ meniscus and derived formulas figr S and H in the
case of two touching spheres of equal radii. In 1975 Orr, ScriverRavas extended this result in seminal
article [5] for the menisci of various profiles in the case of solid spheraditisRk above the solid plane for
d = D/R > 0 with prescribed contact anglés and#, on sphere and plane, respectively; hereenotes
a distance between the sphere and the plane. In the case of touchingdselidsthey [5] have performed
numerical computations and verified the Plateau sequence (1.1) when thevbtpunie is increasing.

During the past decades the work [5] became classical, albeit through@st number of references

(more than 300 to date) no attempt was made to extend this explicit analysis uslegyecomputer algebra
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technique. What is more important, formulas in [5] for the non-touching salate left without detailed
analysis. The reason why we have noticed this fact is based on suldsddfgiance in the behavior of the
function H (¢, d) in two different setupsd = 0 andd > 0. This can be seen easily in Figure 1 where we
consider for small filling angleg two types of menisci between touching (a) and non-touching (b) sphere

and plane having the same set of contact angjles 7/2 andf, = 7 /2.

(@) (b)

Figure 1: (a) The shape of meniscus foe= 0, 0, = 7/6, 02 = 7/2,¢ = 7/30, H,R = —69.57. (b) The
shape of meniscus fef = 0.076, 0; = 7/6, 02 = 7/2, ¢ = 7/30, HyR = 2.14.

In the case (a) the sphere-plane geometry approachegedigdimit while in the case (b) it approaches
theslabgeometry. Estimate two principal radii, meridiorfal and horizontalR;, in both cases fop < 1.
Inthe first case (a) they are of different signs, if&,,< 0, Ry, > 0. Keeping in mindd = 1/2(R;1+R,71),

a simple trigonometry gives

R, )2 Ry cos 04
o~ — ~ H~ — .
R v, R 2

The dependenc& ~ —i~2, ¢y < 1 describes the asymptotid$(y) of the Nod~ meniscus for two

R~ 2cosf;’

(1.2)

touching solids found in [5]. In section C.2 we justify formula (1.2) by rigegaerivation of nodoidal
asymptotics. In the second case (b) we have another estimate,
R, 1 Ry, 1
ORI RH_ﬂ. (1.3)

We have found meniscus witH > 0 that according to the Plateau classification has the concave unduloid

D~ cos#y’ R

type Und, which is absent in the range < 1 in the sequence (1.1). Here another asymptotics holds,

H ~ . This leads to dramatic changes for the whole sequence (1.1) giving tise @at menisci for

two different filling angles), or to a single degenerat€dt meniscus, or to disappearance of both of them.
There exists one more case which cannot be reduced to the previaisitiigis a meniscus between

intersecting sphere and plané £ 0) having the same set of contact anglesandf, = 7/2 and wedge

geometry for small filling angleg. The calculation gives two principal rad®,, and Ry, and its curvature

as follows (we refer to the Figure 12(b) in section 7),

R, _ P — s &:sind)*, RH:_COS(91+1,Z)*)

S i) R TR 1y = arccos(1 +d). (1.4)



The dependencH ~ — (¢ — ¢*)_1, 1 — 1 < 1 describes the asymptotiés(y)) of theNod~ meniscus
for two intersecting solids and is intermediate between (1.2) and (1.3). €ken,a change of a single
governing parametet only, when other twd, , 6, are fixed, changes drastically the evolution of menisci.

Our analysis of solutions of the YL equation shows that the changes bewmre essential (non-
uniqueness of solutions, excluded doma&iim the {v), H} plane wheref (/) does not exist, etc.) when
we deal with the whole 3-parametric spade = {61, 6>, d}. From this point of view the article [5] has
dealt with 2-parametric subspa¢é,, 62,0}. This creates an additional challenge to describe the menisci
in different areas oP?, i.e., to give a complete theory.

In this paper we present the theory of pendular rings located betweeaxigyonmetric solids, sphere
and plane, in a general setup, when the solids are non-touching, afdngwr intersecting. We give a
detailed derivation of expressions for curvatéfép), volumeV (1)) and surface ares(v) as the functions
of the filling angle for all available types of menisci including those omitted in [Ble give also an
asymptotic analysis of these functions in the vicinity of singular points wheyediierge.

The paper is organized in eight sections and four appendices. Inrs&ciie give a setup of the
problem and derive the YL equation and its solution through the elliptic integraksintegrals introduced
in this section are evaluated in section 2.1 and the explicit expressions forethiscus curvature, shape,
volume and surface area are found. We introduce also a new funetionwhich is intimately related to
the curvaturef (¢/) and becomes a main tool in analysis of an evolution of pendular rings. tios&we
discuss the general curvature behavior for different types of nmiehisistence of catenoids in the menisci
sequence for the cases of non-touching solids is considered in sedtion 3

In contrast to the case of touching solids discussed in [5], when fontla# & the Nod™ menisci exist,
in the case of non-touching solids thad; menisci come first. This allows existence of two catenoids in
the menisci sequences, while in some cases catenoids do not appeange éithd the critical value of
the distance between solids at which the catenoids merge and estimate tharesrf@r different types
of menisci. We show that the values @fcan be bounded for some types of the menisci. When these
bounds are crossed, the corresponding menisci transform one iteeanAnalysis of these transitions,
their sequence and smoothness, is given in section 4.

In section 5 we elaborate a topological approach to study differenesury()) enumerated by the
numberm of inflection points at menisci. A behavior of these curves in the p{anev} is confined within
domainA’ = {0 < ¢ <7 — 61, 0 < a < 1} with embedded subdomaif C A’ which is prohibited for
an (1) to pass through; this makes’ not simply connected. The curves,(v)) may be tangent to the

subdomain’s boundary which is a smooth closed curve described by syimtnatiscendental function.



This global representation allows to classify possible curves and intecalsaddle point notion in the PR
problem. We observe several types of saddle points, their classificafioesisnted in section 6.

In section 7 we give a brief analysis of menisci evolution in the cases ofitogiand intersecting solid
bodies which is essentially different from a general setup of non-tngdiodies. Concluding remarks and
open problems are listed in section 8.

Four appendices are inseparable parts of the paper. AppendicesB\amtain a list of formulas with
technical details fo, V', S and the shape of meniscus of each type separately. They give arstixdau
description of menisci and build a basis for further investigation of basipesties of PRs like stability,
rupture, hysteresis etc. In appendix C we show that the nodoid meMsddsalways has a local minimum
of curvature and local maxima of the surface area and volume. We alsihéirasymptotic behavior of the
nodoidal curvature in vicinity of singular point wher2 < d < 0. Appendix D is completely devoted to

elliptic integrals and their applications to computation various expressiongtinoatithe paper.

2 Young-Laplace Equation and its Solutions

The problem of PR can be posed as a search of the surface of rematbhticacterized by a constant mean
curvatureH satisfying the YL equation valid in case of negligibly small gravity effect

Z” Z/

2H = + ,
(1+ 2’2)3/2 r(l+ 2’2)1/2

(2.1)

wherez(r) andr are cylindrical coordinates of the meniscus. Introducing new variablesr/R and
y = z/R and a parameter = sint (wheret is an angle of the normal to meniscus with the vertical axis),

we transform this equation into the problem for nondimensional curvafure R H
2H = du/dx + u/x. (2.2)

The contact angles with the solid bodies argwith the sphere) ané, (with the plane). The boundary

conditions read

tiy=00+v, y1=1+d—cosv, x1=-siny,
to=m— 92, Yo = 0. (23)
Hereq is the filling angle, and = D/R is the scaled distance between the sphere and the plane. It is easy

to show that

dy/dx = tant . (2.4)



The solution in parametric form reads

r = 1 [sint—ksx/sin%—kc}, (2.5)

2H
1 t s sin?t
y = — sint + —— | dt, (2.6)
2H ta [ VsinZt + ¢

where we used the relatioh: /dt = zscost/\/sint + ¢ and the parameterdepends on curvature
c=4Hsinvy (Hsiny —sinty) . (2.7)

Here and below = =£1; its computation will be described in section 4, formula (4.1).

Introducing a parameter, such that
Hsiny = asinty, (2.8)
we rewrite relation (2.7) as
¢ = 4a(a — 1) sin® ;. (2.9)
Making use of the boundary conditions we find for the curvature

s sin®t
Vsin?t + ¢
The meniscus surface arfds computed as$' = 27 [ xz+/1 + (dz/dy)? dy and is given by the integral

2
. t1 sint (sint + SM)
S=—+K;, K;= s/
20%°° ’ ta |sint|y/sin?t + ¢
The volumeV, = 7 [ 2%dy of the solid of rotation reads
3
T t1 sint (sint + sv/sin’ t + c)
‘/}:73‘73, Jszs/ dt .
8H to Vsin?t + ¢

Then the volumd/ of liquid inside the PR can be computed by subtracting from the above sipndgbe

t1
2HVY = I, IS:/ sint + dt, V=d+1—cosv. (2.10)

t2

dt . (2.11)

(2.12)

volumeV;s = 7(2 — 3 cos + cos® 1)) /3 of the spherical segment corresponding to the filling angle

2.1 Integral Evaluation

Consider evaluation of three integrdls J; and K and give expressions fdf, V, S in terms ofe, filling
angley, contact angle8,, 6, and distance from the sphere to the plane. The integkatan be written as

I, = I, + sls, where

t1 t1 2
sin“t dt
Il(tl,tg) = / sint dt = — costy + cos to, Ig(tl,tg) =

2 t2 sin?t + ¢

8

(2.13)



Making use of the elliptic integrals of the firét(¢, k) and the second(t, k) kind, respectively, we find
(see Appendix D.1)

(t17t2 f r t1> tlyk) - E(t27 k) +F(t2a k)} ) k2 = _1/67 (214)

where byA(z) we denote a complex conjugation of complex functibfx).

Consider the integrak’, required for computation of the surface area in (2.11). The valgiaf at
the upper limitt; can take both positive (far; < ) and negative (fot; > =) values. In the first case the
integral reads<’s = s(212 + I3) + 211, where

t cdt
b /sin2t + c

In the last case the integral is broken into two parts as follows

I3(t1,t2) = = e [F(t1, k) — F(tg, k)] . (2.15)

Ky(th,t2) = Ks(m, t2) + Ks(m, t1) . (2.16)
The integralds; andIs follow another relation
Iy(t1,t2) = Io(m, t2) — Io(m, t1), Is(t1,t2) = I3(m,t2) — I3(m, t1) . (2.17)
Using (2.14 — 2.17) we find far, > 7

Ks(tl,tz) = 3(2[2(7r,t2)+2[2(7T,t1)+[3(7r,t2)+I3<7T,t1))+2[1(7T,t2)+2[1(7T,t1)
= S(2I2(t1,t2) + [3(t1,t2)) + 2[1(t1,t2) + 4(COSt1 + 1)

+ 2sy/c [4E(k) — 2K (k) — 2E(t1, k) + F(t1,k)] .
Finally we have

8(2124-[3)4-2[1, t1 <m,
K(t1,t2) = s(2I + I3) + 211 + 4(cost; 4+ 1)+ (2.18)
2sy/c [AE(k) — 2K (k) — 2E(t1, k) + F(t1, k)], t1 > .

Both surface are&(y) and its derivatives’(¢) are continuous at the matching vale= 7 — 6;.
Rewrite the integral/s required for the volume computation in (2.12) = 4J3 + cI; + s(J1 + 3.J2),

where

t1 4 t1 t1

sin*t dt

Jy = — JQZ/ sin? t\/sin? t + ¢ dt | J3:/ sin® ¢ dt .
ts \/sin?t + ¢ ta to

The last integral reads
cos 3ty —9cost;  cos3ty — 9costy

J3(t1,t2) = 2 - 5 : (2.19)




We find J1 = Jy —cls, where

Jo(t1,te) = \/E{ [E(t1,k) — E(to, k)] — [F(t1,k) — F(ta, k)]

1
~ & [Sin 2t1V/sin? t] + ¢ — sin 2t9\/sin’ ty + ¢ } . (2.20)

2+c — 14+c¢c— }

Collecting the expressions fo and using/; + 3Js = 4J> — ¢l we finally arrive at
Js = 4J3 + cli — scly + 4sJs. (2.21)
We also need the following integral
sin?t + ¢)3/2’

t sin? ¢ dt
Lyt 1) = / E (2.22)
to

that evaluates to

Bttte) = S { [Ptk - Fleak) ] = £ [ Bl k) - B )}
1 sin 2t sin 29
- - 2.23
2(1+¢) \/sin2t1 +c \/sin2 ta+c ( :
3 Menisci

In this section we discuss menisci shapes of four types (sphere, chtandoid and unduloid) between
two non-touching axisymmetric solids, sphere and plane.

First show that for any meniscus type with a fixed siggnd a fixed numbert of inflection points

H(1p,dy) # H(1p,dg), if di#dy. (3.1)

Indeed, let by way of contradiction, the opposite holds, i.e., there existlifieventd; andd, and at least
one valuey, of filling angle such thatd, (¢, d;) = H,(1x,d2). However, this contradicts the master
equation (A.57) which states

(3, Hy) + nly(c(y, Hy)) — s(1 — cosmn) Io(m/2, m — 6)
B 2H,

d — 14 cosy, (3.2)

wherec(v, Hy) andIs(1),, H,) are given in (2.7) and (2.10), respectively, and depend explicitlyZpn
4, 81 andfsy, but not ond. The latter means that for these four variables the r.h.s in (3.2) reachegjiteu

value which implies the relationship (3.1).
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3.1 Catenoids ¢ = 0)

In contrast with théNod andUnd menisci theCat meniscus exists only for fixed values for whichH = 0,
i.e.,a = ¢ = 0. We make use of (A.57) in the limit — 0 in the form (B.7) fors = —1 where we set the
I.h.s. to zero to find a relation

2n — (1 — cosmn) cosfy = 0, (3.3)

from which it follows that the catenoid can be observed onlysfoe= 0, i.e., at the point of the tran-
sition Und, « Nod~. Using the relation (B.4) in (A.57) fos = —1, n = 0 and approximation

¢ = —4H sin sin ¢ valid for smallH in (2.7), we find
2HY = —2H M sin ¢ sin t;.

This leads to

(3.4)

tan —

1+d—cosd;+sin¢sin(01+w)ln(tangl_;w 022>:0,

which can also be derived (see (A.4)) from the YL equationHor= 0. Solutions to the above equation
exist only for6, + ¢ < «. This condition implies that the logarithmic term in (3.4) is negative which leads
to a stronger conditiof, + 0> + 1 < 7. In the special case of ideal plane wettihg= 0 this term diverges
and the equation (3.4) has no solutions, so that the catenoids are farbidde

Rewrite the equation (3.4) in the form

d tan(v/2)
sin(f; +v)siny  sin(fy + 1)

0+

g(01,¢,d) = + Intan

0
= Incot 52 : (3.5)

Ford = 0 and fixed values of the contact anglg#, >, 0) monotonically grows and tends to asymptote
aty = w — 61 that implies existence of a single solution of equation (3.4). This solution exists w
the minimal value ofy(6,,0,0) = Intan(6,/2) is smaller than the r.h.s. of (3.5), that leads to condition
f, + 02 < 7. For nonzeral we note that the functiop has an additional asymptoteat= 0. Whend < 0
the monotonic behavior of the functiarif;, v, d) does not change, so that we still have only one solution
to equation (3.4). Whed > 0 the functiong(61, v, d) has a minimuny,,,;,, So that depending on this value
compared tdn cot (62 /2) equation (3.4) may have two, one or no solutions.

Find the maximal valuéd,,, of the distancel as a function oty and#, for which equation (3.4) has a
single solution. This value is reached when two following conditions are dagt)y) = 0 anddd/060; = 0;

these conditions lead t = 0 and we obtainl,,, = (1 — cos ¥,,,)/ cos V., Wherey,,, satisfies the relation

0
1+coswmlntanw7mtan52 =0,

11



that leads to

m

dm + 2
The numerical solution of equation (3.6) féy, (02) is shown in Figure 2(a).

21+ dy) +1n = 2Incot %2 . (3.6)

100f-

2.5
[ 80
2.0
[ 60
dm Ty
401

1.0

L 20+
0.5

0.0 Cu I I I I ] or I I I I I I I Il
0 20 40 60 80 0 20 40 60 80 100 120 140

0o 01
() (b)

Figure 2: (a) The dependence of the maximal distalycérom the sphere to the plane on the contact angle

6, for 6; = 0. (b) The solutions of the equation (3.4) féiy = 40° for different values of the distaneé

from the sphere to the plane. The dashed curve shows the position agbpatat€at menisci.

There exists a single nonzero value of the filling angkeatisfying equation (3.4) at= 0 that leads to
the Plateau sequence (see Figure 3(a)). Catenoid cannot be ablerie> d,,, but there exists a range
of distanced < d < d,, for which equation (3.4) is satisfied for two values of the filling angle as show

in Figure 3(c). The corresponding sequence of menisci looks like
Und, — Cat — Nod™ — Cat — Undy — Und; — UndJ — Sph{ — Nod™ .

The sequence of menisci can pass through a single catenoid but is differ the Plateau type as shown
in Figure 3(d). This occurs in the degenerated case when equatiorhég&4p be complemented by an
additional requirement)d, /0v) = 0. Taking derivatives with respect 0 in both sides of equation (3.4)

and applying the above condition we arrive at a trigopnometric equation

O+
2

2sin1y = (ln cot + Incot 922) sin(6 + 2¢) . (3.7)

Solution of equation (3.7) for fixeé, determines a curve, (1) on which the degeneratétht meniscus

appears. Itis shown in Figure 2(b) by dashed curve.

12



0.6 3.0
r v
L 25
041 \/
[ 2.0f
02 151
r 1.0f
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05}
,0.2,
00l ey,
0 50 100 150
(@) (b)
H H
r 0.8}
0.6
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0_07 . \ . . ! . . . . I . . . . I . . sy T —_—
t 50 100 150
[ 00l ey,
—0.2b 0 50 100 150
(©) (d)

Figure 3: The case (a) presents the typical curvé at 0 with 6; = 30°, 5 = 80°, discussed in [5],
while the case (b) af = 0 with #; = 120°, 8, = 90°, characterized by a requiremeht+ 6, > w, was
not considered in [5]. For positive distande> 0 one observes (c) witd = 0.4 with §; = 6, = 40°
two catenoids that degenerate for larger distance into a single catenoidi{d) = 0.53. Different colors
indicate the menisci of different typend; (red), Und, (cyan, Undar (greer), Nod— andNod™ (black).

They correspond to colors of types shown in Figure 6.

3.2 Unduloids ¢ < 0)

Before starting to treat the unduloidal solution of equation (2.10) it is worthake

Remark 1 Equation (2.1) with boundary conditions is associated with nonlinear eigeeyaoblem and

in the case of unduloids its solution has a discrete spectrum and, therefene,imerated by two indices.
The first integer non-negative indexdetermines the number of the inflection points on the meniscus merid-
ional profile. When the part of this profile touching the solid sphere is&oftive second integer index

takes value of, otherwise it equals te-1. Thus, the unduloid meniscus is denoted)as? .
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The existence of th&nds, meniscus requires satisfaction of the conditiar? t + ¢ > 0 for t € {t2,t1}.

This condition is rewritten in the form
sint > [1 — (1 — 2a)?]sin’¢; . (3.8)

Denotesint,,, = min(sint;,sinty). The last condition leads tdn?¢,, > [1 — (1 — 2a)?]sin?t;, and

yields

a< B (), a>pT(), where gE(y)= % <1 + \/1 — sin? t,,, / sin? t1> . (3.9)
The restrictions (3.9) define in the plafi¢, o} a new objec which we calleda balloon It comprises
an oval and two additional lines = 1/2 (see detailed description in section 5). Hereafter the balbon
becomes a main tool of our study the dependenee). In regard toH (1)) the balloon undergoes the non

linear transformation (2.8). In Figure 4 we present both dependefgjés) anda,, (1) with the balloon
B.

[ . b Spig Spif  Spif l
1.0 \
0.8

0.6

0.4+ -

0.21-

0407 1 1 1 1 1 1 Lo lﬁ0.07“““‘“““““““““““‘1/
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

(a) (b)

Figure 4: The dependenciés,(v) in (a) anda, () in (b) for 6; = 30°, §; = 80° andd = 2.3 with two
disjoined curves. The ballodh is shown by dashed line. Spherical meniSphg, Sphi andSph; are

denoted by black dots. The curve segments correspond to colors of tigchigpes shown in Figure 6.

The relations (3.9) are independent of distashead remain valid for all types of inflectional unduloids
with 0 < o < 1. For all unduloids they define the restrictions on the curvature valuesdhdie obtained

using the definition (2.8). On the other hand, these relations correspargirigle condition om value
—sin®t,, < ¢ <0. (3.10)

In Figure 5 we present three families of unduloid menisci for fixed fillinglang(Figure 5(a)), volumé”

(Figure 5(b)) and surface aréa(Figure 5(c)) of pendular ring.
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Figure 5: The menisdind; (red), Und{ (greer), andUndj (blue) for §; = 30°, § = 80° andd = 2.2
computed in three different setups: (a) for= 60° they have different volume®™ and surface areas
S, (b) for fixed V' = 3.6 there are 4 menisci withy = 34° andvy, = 47.2° —Und;, ¥3 = 61.7° —
Und;, 14 = 71.3° — UndJ and different surface areas (c) for fixed S = 11.3 there are 4 profiles with
Y1 = 30.3° ande)y = 47.1° —Und7 , 13 = 56.7° —Und{", 14 = 61.95° — UndJ and different volume¥’.

3.3 Nodoids ¢ > 0)

The Nod meniscus has positive irrespectively to its concave or convex version. Therefore the above
analysis ofx fails and it is replaced by another one, less strong but still universal.

Show that ford > 0 theNod® menisci satisfy the following constraints,
H(y,0) < H(x,d) <0 (Nod™),  0< H(,d) < H(1,0) (Nod®), (3.11)

using (3.1) and several additional observations listed below.

First, the curvaturéd for any finited is always negative for thBlod~ meniscus and always positive
for the Nod* meniscus. Next, thélod~ meniscus disappears at finilewhen two catenoids annihilate.
Finally, wheny) — 7 andd — oo the curvature of thé&lod™ meniscus tends to zero. Combining these
facts with (3.1) we arrive at constraints (3.11).

The main statement stemming from (3.11) is that the two different cukgs, d;) and H (v, ds),
dy # dg, do not intersect in the entire angutarange of theNod~ andNod™ menisci existence. Although
this statement is of high (topological) importance, it does not provide thetitatave estimates. Therefore
for theNod™ meniscus we give one more estimate for the curvature.

Start with relationship between the curvatdfeand the surface aresfor Nod~ meniscus. For this
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purpose combine formulas (2.10, 2.11, 2.13, 2.18) and obtain

2H?
= S=K =21 - L) —I3=4HV — I3 . (3.12)

s

Keeping in mind the positiveness Sfwe arrive at the boundH ¥ > I5. Using the definition (2.15) we
obtainI3 > —d+/c, whered = 7 — 6, — 6, — ¢, & > 0. Thus, substituting this relation in the above

inequality we find

)
> —— . .
H 4\?\@ (3.13)

This bound does not contradict inequalities (3.11) forNleel~™ meniscus since its curvature is negative.
Keeping in mind this fact and substituting (2.7) into (3.13) we arrive at

o> sin® sin(6; + )

= sin?¢ — 40262 (3.14)

This inequality is equivalent to

S 62 sin? 1)

~ 62sin? ) — 402
The last inequalities have one important consequence. $inee0 then the necessary condition for the

@ (3.15)

Nod™ meniscus existence is

T—01—0—7

dsiny < 2¥ = 5

sint) 4+ cos < 1+ d. (3.16)

For convex nodoidNod™ meniscus it is possible to find explicit expression for the upper bdiifwd, 0).
First, note that as it is demonstrated in Appendix C meniscus curvature heal animimum, so that the
upper bound is given by the largest of two curvature valud$(¢;) at the spher&phg and H(r) at

1 = . These values are
in(61 + o) 1 — cos by
() — sin (6, a Hir) —
(¢9) sin gba' ’ (m) 2+d
Show thatH (¢§) > H(r). Indeed, this condition implies
(1+d)sin(fy + ¢g) + cosbasin gy > sindd — sin(6r + ¢g ).
Using in the above relation the I.h.s. of formula (B.9) we obtain

sinfy > sin g — sin(01 + ¢g ),

leading to

cos 51 + cos (qﬁar + 21> = cos — —;% cos ¢70 > 0. (3.17)
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Recalling thatd; + ¢ < 7 we see that (3.17) is always valid. Thus, the upper bound foNtu"

meniscus is given bﬁ(¢g, 0). To find this value explicitly we use (B.9) with = 0 andd = 0 to produce

+ +
sin(6 + qbar) + cos 05 sin gf){{ —sinf; = 0 = cos <61 + ¢20> + cos 65 cos %) =0.

The last relation implies
qbg cos 01 + cos by

On the other hand, we have

Sin(91 + ¢0+)

H(¢5r’ 0) = sin qﬁg

= cos 01 + sin 64 cot gbar.

Using (3.18) in last expression we find for the upper boundaf ™ meniscus

Sin2 92

. 3.19
(cos 6y + cos b) (3.19)

H((ba_’o): 9

3.4 Spheres{ = 0)

The spheres can be considered as a limiting case of the unduloid menistheredore, also labeled by

two indicesSph;. Consider a function
fun(@) = (1+d)sin(6y + ) — (n — §) siny) — sin by, (3.20)

which rooty = ¢ satisfying the equatiotf,,(¢;") = 0 provides the value of the filling angle at which
sphereSph ™ is observed (see (B.9)). In (3.20) one ldas 0 for oddn andé = cos 05 for evenn. Itis easy

to check that
frt1(¥) — fu(¥) = —=[1 + cosmn cos O] sinyp < 0,

which means that the curvg 1 lies belowthe curvef,,.

The value of the functiorf,, atv = 0 readsf,,(0) = dsin#; which is non-negative, whilg,,(7) =
—(2 + d)sin 6, is always negative. Noting that the functigh is a periodic one with the perio2ir we
find that for positived in the interval{0, 7} the functionf,, has a single roop;” and f/,(¢;") < 0. As
far1(0F) < fu(o) = 0andf) (¢}, ;) < 0weimmediately find thap,, ; < ¢,. This means that for
positived the valuey,, of the filling angle at which sphefgph; is observed decreases with increase of
For very largen the value of;’ tends to zero. Using (3.20) we find in linear approximation

dsin 64 N dsin 6

sin g = ¢ = , n> 1. (3.21)
n

— 6 —cos 6y o
Ford < 0 we havef,(0) < 0 and the first derivative read§,(0) = cosf; — (n — ). Forn > 0 this

derivative is negative, so that the functignhas no roots. When = 0 we havef(0) = cos 6y + cos 6.
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This expression is negative for + 6, > 7, so that no spheres exist fér= 0 when the last condition holds.
Finally, in case of the wetting sphefie = 0 we havef,,(0) = f,(7) = 0 and no spheres are allowed to
exist.

Show that for fixedn the valueg;' (d) of the filling angle of spher&ph; increases with growing.

Indeed, from (3.20) one finds that the difference

Fu(dn (), d1) = fu(éy (), d) = (dr — d) sin(61 + ¢y, (d)),

is positive ford; > d. As [} (¢;}) < 0 itimmediately follows that), (d1) > ¢; (d).
Another type of spher8ph, (n > 0) discussed in B.2 can be considered as a limiting shape of the
Und; meniscus at) — 0, its curvature is given by (B.8).

In Table 1 the characteristic signs Hf, ¢ are given for different types of menisci.

Table 1.

Nod~ | Cat | Und? | Cyl | Sph$ | Nod™

Hl — | o] + | +| + | +

c + 0 - — 0 +

Note that the meniscudnd;, comes in several different types depending on the numbeir inflection
points and the curvature of the segment of meridional profile is touchingotieres s = —1 for concave

profile ands = +1 for convex one.

4 Unduloid Menisci Transitions

Transitions between unduloids and nodoids of different types candiy ekassified. Namely, there exist
transitions between the concaved, (convexUndd) unduloid to concavélod~ (convexNod*) nodoid
through catenoidat (sphereSphy). The transitions between different types of unduloids are numerals an
schematically presented in Figure 6. As shown in A.7 and A.8 all inflection pfiints given inflectional
unduloidUnd$ have the same abscissa value= sints/(2H) = /—c/(2H). An addition (removal) of

an inflection point may take place only as the result of the inflection pointagpa from (merging with)

the sphere or the plane. When the inflection point is on the sphete<(sin? t;) we obtain by (A.16)

2H sin1) = sint;.
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Figure 6: Possible transitions between menisci of different types shewarfanction of the parameter.
The left vertical dashed line represents the transitions-at5~ betweenUnd, unduloids. Similarly, the
right vertical dashed line corresponds to the transitions at 5 betweenUnd," unduloids. Finally, the
transitions between unduloids of opposite signs occusis-atl /2 and is represented by the central vertical

dashed line.

Recalling definition (2.8) we find = 1/2. Noting that meniscUnd,, (Und;}) exist atae < 1/2 (o > 1/2)
we find that transitions of the typgénd;, < Und, 3, occur ato = 1/2 when the inflection point is on the

sphere. For the inflection point on the plane we havesin? t, = 0 to obtain with (A.17)
2H sinvy = sint; + sV sint; — sin® ¢o ,

and we find using (3.9) that in this case the transitions of the tyel < Und;,; occur ato = 5°.
Menisci of theUnd;! type exist forl /2 < a < 1. With growth ofa the abscissa of the leftmost point of

the meniscus meridional section tends to zero and reachea i=at. At this moment the profile is made
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of several segments of a circle and the meniscus touches the axis of ratation The spherical menisci
Sph/ ata = 1 are described in B.1.

The above considerations lead to the following rules of transition betweduraids:

Und} «— Und;,; at o =p%
Und} «— Und }, at a=1/2.
i.e., the balloon introduced in section 3.2 can be viewed as a set of transitita petween unduloids.
Show that for fixed values df;, §; andd the curves corresponding to different unduloid types never
intersect (except for the transition points discussed above that aris@sanvhen the unduloid orders differ
by unity). As the curves corresponding to unduloids of opposite sigmsotantersect i, a} plane, we
have to consider only unduloids of the same sign.
Consider first same sign unduloids of the orders that differ by an eveer, for example)nd3, and

Und3,,, or Unds,  ; andUnd3,, . ;, wherek # k. Itimmediately follows from (A.45) and (A.51) that the

+17
difference between the curvatures of these menigdi is k') I/ ¥ # 0.

If the order difference is odd and larger than two we have for unduldia§, and Und3,, ; with
k' # k, the curvature difference reafld’ — k)I» + I»(t2,12)]/¥. Consider the integralg (t:, to) which

are finite and real. Note that < ¢5 < ¢, which leads to
I (85, t2)| < Dot £) = Io.

The last relation implies that the curvature differences mentioned abowerero that finishes the proof.
From (B.7) it follows that the curvature of spherical meniSph,™ grows monotonically with order
increase without any restriction to the order value. This means also thairtiesgonding unduloiddnd
can be observed without any restrictions to the order
The asymptotic behavior of the curvature at small filling angles 1 is discussed in Appendix B.1.
Ford > 0 at zero filling angle) = 0 only concave unduloid§nd, (n > 0) exist. From (B.8) it follows
that forn = 0 the curvatured (0) = 0 leading to contradiction as the curvature can turn to zero only for
catenoid. It is important to underline that there are no other restrictionsisteege ofUnd, (n > 0)
unduloids at zero filling angle.

Using the formula (A.57) for unduloid curvature we have
QH3W = Iy (t1,ts) + sla(ty, ta) + nly — s(1 — cosn)Io(7/2,t2), s =sgn2a, — 1) , (4.1)

where the signs = +1 corresponds to two menisci which differ by the sign of the meridional ¢urea
at the meniscus-sphere contact point. Equation (4.1) defines the fungtigr) in two different regions,

ap > 1/2 anda, < 1/2, while a,,(¢) is a smooth atv,, = 1/2.
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Rewrite (4.1) as followsd? (av,, 1) = 0, where
D7 () = =2, ¥sinty + [Il(tl,tz) + slo(ty, t2) + nly — s(1 —cosmn)la(m/2,ta)| sine, (4.2)
One can define the derivativé, (') having a unique value determined from the equation

; ®;
Asol() + By =0, A5 =P pe_ O

- aan7 n aw ) (4'3)

where the both functiond? (a,,, v’) and B, (au,, 1) do not vanish simultaneously.

Direct computation gives the following expressions fgy(«,, v) and B; (o, 1)

Al (o, tp) = —2Usint —
2(2a,, — 1) sin’ ¢ sin 1 [5I4(t1,t2) —2nl(c) — s(1 — cos 7Tn)14(7r/2,t2)} , (4.9

inf; 4a? — 2, —1
B (an,v) = 2%‘1’2?”2— %2% f”l sinty sin ¢ + sin2 ) —

2t (tn — 1) sin 2t sin [314(t1,t2) —2ndh(e) — s(1 — cos 7m)I4(7r/2,t2)} , (4.5)

where the integraly (1, t2) is computed in (2.23) and the derivatiﬁ'g(c) is given by (D.13).

4.1 TransitionsUnd, < Und,

Consider first the transitions on the line= 1/2 between unduloids of opposite signs. This transition oc-
curs when the point; = 2 separates from the sphere, whefe= arcsin v/—c andt, = 7 — arcsin /—c.

As H =sint; /(2sinv) we use (4.1) to obtain
Uy—c= |Ii(t5,t2) — (5, t2) + nls + (1 — cosmn) In(1/2, tg)} sin(t5 — 61), (4.6)

where we introduce a special case of the integyal
t sin?t dt
to /sin’t — sin? ¢ .

The general expressions for the abscissa of the meniscus meridiofid pontain the term/sin? ¢ + ¢,

I5(t1,t2) = (4.7)

which at the transition point transforms intdsin ¢ — sin? ¢ It leads to a condition, < ¢Z producing
to<m—1t; — ¢<92—01, s =41,
to < 11 — w>ﬂ'—92—91, s =—1,

implying that the transition occurs to the left (right) of the balloondet 1 (s = —1).
Show that the transition considered in this subsection is smooth, i.e., unduledis and Und;irs

meet smoothly atv = 1/2. It means that the value of the derivativ&)) computed on both sides of the
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transition point is the same. As at the transition point we havesin?¢; = 0 the integrall,(t,to)
in (4.4,4.5) diverges. We show below that nevertheless bbo#ind B have finite value at the transi-
tion point. In the vicinity ofa = 1/2 we introducea = 1/2 + se and finde = (4€2 — 1)sin?¢; and
Ve +sin? ¢ = 2esint;. Making use of (2.23) decompose the intedigly, t2) into diverginglyy(t1,t2)
and non-divergindy.(t1, t2) parts,

1

Iy(t1,t9) = Iyc(ty, t Tyq(ty,t Iyq(ty,t0) = — . 4.8
a(t1,t2) = Luc(tr, t2) + Lua(t, t2) . Laa(ts, t2) 2o 1) costy (4.8)
Using this relation in (4.4) we find
2 . 2‘[; .
A} = —2Usint) — Zsin hising 2tanty[cos ) — (1 + d) costy]. (4.9)

costy
Substitute (4.8) into (4.5) and note that two diverging terms cancel eachiotieinity of o = 1/2,

402 — 200 — 1
- % sinty siny — 2sa(a — 1) sin 2ty sin ¥ Iy4(t1, t2)
o —
1 sin 2ty siny 0

22— 1)  costy

1
e — sinty sinv —

The remaining terms read

sin 64
B =V
" sin v

Show that this expression is conserved at the transifidf, < Und;’, ..

+ sin? ) + sinty costy sin e |sIye(t, to) — 2ndh(c) — s(1 — cosTn)I4(m/2,12)| .

It is sufficient to show that it is

valid for the expression in the square brackets in (4.11) that leads tolétieme
Lic(t1, ta) — Lu(m/2,12) = s1135(c),

wheres; = 1 (s; = —1) corresponds to the transition to the left (right) of the balloon wjtk= ¢51. The

last relation can be written as follows:
Lt 7/2) = s11)(c) . (4.10)

Itis easy to see that

1
I4c(ti7 71'/2) - 140(77/27 ™= ti) = §I4c(ti7 ™= ti) )

and using (D.19) we establish the validity of (4.10). Thus we find at 1,/2

B — \Psin 91

. o + sin? ¢ — sint; cos ty sinh[(2n — ss1)I5(c) — scosmn Iy(m/2,t2)]. (4.12)
sin

Selecting here = —1 we arrive at the final expression fér

sin 64

B, = \117 + sin?¢) — sint; costy sinp[(2n + s1)I5(c) + cosmn Iy (7/2,ts)], (4.12)
Sin
wheres; = 1 (s; = —1) corresponds to the transitidind,, < Und;:le to the left (right) of the balloon.
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4.2 TransitionsUnd; < Und;_,

This transition for odch occurs atx = 3° = (1 + s4/1 + ¢/ sin” t1) /2 when the point, = ¢, separates

from the plane and we obtain

QHS\I/ = Il(tl,t;‘s) +S_[2(t1,t;8) + (n+ 1)[2. (413)
As ¢ = —sin? to we find
t sin? ¢ t2 sin? ¢ N
Iz(thtz):/ = —— == — —— = —I3(t2,11), (4.14)
ta \/sIin“t — sin” o t1 \/sIn“t — sin” to
and arrive at
- sin 1)
\I/:[I t1,t, %) — sI3(t. %t 11}7.
1(t1,t°) — s (87, t) + (n+ 1)1 3P st

For evern this transition is observed with separation of the peoint ¢S from the plane and we get

W = L, 83) — sI3(82, 1) + | 2;:’:;& .

Discuss one more question: how smooth are two transitiong, < Und;ﬂrl at upper & = 87) arc of
balloon andJnd;” < Und_, at lower @ = 37) one, respectively. To this end, consider equation (4.3) in
vicinity of the transition point4., 3°(1.)) belonging to the balloon and estimate the leading terms in (4.4)
and (4.5) wher: — —sin?t,. The only divergent terms are integrdlgt1, to) and,(r/2, t2) which by

(2.23) behave as follows,

+sin?ty — 0 sin 2t2
Ii(ty, t2), In(m/2,t5) 2 .
2(1 4+ ¢)y/sinty + ¢

Substituting (4.15) into (4.4) and (4.5) we arrive in the limiting cagesin? t, — 0 to explicit formula

o/(ﬂ)*) = 2ﬁ2;€ __11)

(4.15)

cot(61 + ), (4.16)
which is finite for3® # 1/2 and independent on order i.e., both curve$ind; andUnd; | ; meet smoothly
at the balloon.

4.3 TransitionsUnd; < Und{, Und;, < Undj, and Und;, < Und3, .,

In previous sections we have discussed in details conditions and rulegudér transitions between un-
duloids that accompanied by addition or removal of one inflection point. Iiss possible to observe
degenerate transitions when the number of inflection points changes by dee®not change at all. Find

the conditions for such degenerate transitions.
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An addition of two inflection points occurs only when one of these pointsaggsafrom the solid sphere
and the other one from the plane. The first event corresponds taléioar+sin? t; = 0, while the second
one requires+sin? t, = 0. These relations implyin t; = sin ¢, leading toy; = min{f—01, 7—0;—062}
andy; = max{fy — 6,7 — 0, — 02 }. These critical values define the extremal points of the balloon where
it transforms into the segments of the line= 1/2. Whent] is negative only a part of the balloon is
observed. When both valueg are negative the balloon does not exists. Finallygfor= /2 the balloon
reduces to a point at* = 7 /2 — 6.

Consider the transitiobind,, < Und3, , aty = ¢}. Using (A.45) and; = 0, = t," we find

0 R )
SI‘H ’(;\IJ = 11(92,71' — 92) — 12(92,71' — 02) + 2kIy = —2cosfy + (2]6‘ + 1)]2,
Sin

from which we obtain the distanek, where this transition occurs

Sin(ez — 01)

dp = =14 cos(f2 — 01) + sin 6y

[(n 1)y — 2cosbs . (4.17)

The case: = 0 should formally correspond to the transitibind, < Und3. It can be checked thétnd,
unduloid can exist only below of the balloon, and not to the left or right altithat the above transition is
forbidden. The relation (4.17) &t= 0 leads to a special cagid; < Und, < Und{” when the segment
corresponding té/nd,, reduced to a point. The sequence of distances given by (4.17) is diperie with
the period equal to

215 sin(fy — 61)
sin 92

1
dn+2 - dn == = 4sin(92 - 01)E <1 — ) .

sin2 6,

It can be shown that the transititimd,,  , < Undjk+3 is forbidden at) = vj. As the number of inflection
points is odd both new points to be added should correspond to gjtleert, . It means that; = ¢5 which
contradicts (foy # m/2) to they value.

The second critical poinp = 5 initiates the segment of the line = 1/2 to the right of the balloon.
Only the transitiorlUnd, «+» Und™ , is allowed on this line when the inflection point merges the sphere.
It means that at = 3 the inflection point witht = ¢; merges the sphere while the point with= ¢,
separates from the plane. As the result total number of inflection pointsnem@nstant. For th&nd,,
unduloid we find¢; = ¢, that corresponds t¢ = 3. Thus, the transitiotnd, < Und3, is allowed,
while Undy, . ; < Und3, , is forbidden again (fof, # 7/2). In this case we have

sin 92

U = 2kI.
sin 1 2

from which we obtain
sin(6y + 61)

: I . (4.18)
sin 69

dp =—1—cos(f2+601) +n
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The sequence of distances given by (4.18) is also a periodic one witletioel gqual to

2f2 sin(fs + 61)
sin 92

dn+2 - dn = = 4sin(92 + 91)E <1 — 1> .

sin2 92
5 Topology of Unduloid Menisci Transitions

This section is mostly topological and deals with qualitative behavior of diftebeanches of function
a(1) enumerated by the numberof inflection points at corresponding menisci. We list the most general
properties of curves,,(v) in the plane{y, o} and study ramification of these curves around the balloon.

This global geometrical representation allows to classify possible trajectmbtheir intersection points.

5.1 Balloonsg*(v)

Consider the rectanglts := {—6; < ¢ <7 — 6, 0 < a < 1} inthe plane{y, a} and definea balloonB

B=BUB.UB;UB,, where (5.1)

B, = {_91 <Y < Onin , Oé—;}, By = {@minswggmaza a:ﬁ_(w)}a

1
Br:{(amaxgdjéﬂ-_el?a:Q}’ Bu:{gmlngwg@mam’a:ﬁ+(w)}’

and@mm = min{Hg — (91,71’ — 92 — (91}, @maz = maX{92 — 91,7T — 92 — 91}, 0 < 91,(92 < w. Two

functions™ (v)) and3~ (1) give the upper and lower parts of convex symmetric oval,

in?
FW) =4 <1i\/1—m§(919jw>7 FE() = B (m =200 — ).

Subscriptd, r, d andu stand for thdeft-, right-, down-and upward directions onB. Denote byB the

balloonB with its open interiofs,
B=BUB, B:={Onin<9<Onw, f ) <a<fr @)} . (5.2)
In special cas#, = 7/2 we haveB,, = {—t) <9 <m0, a=1/2} while the partB; U B, of
balloon is reduced into a poi? = {1) = 7/2 — 61, = 1/2} such thaO € B, .
5.2 Trajectoriesa, ()
Below we give a list of rules for topological behavior®f () in the presence ds.
1. a, (1) is completely defined by three parametérss 6;, 6, < 7 andd > —2.
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. an (1) is a real function representable in thi¢, o} plane by a nonorientable trajectorywithout
self-intersections. All trajectories are continuous smooth curves antbredomaimrA’\ B, where

AN={0<y<m—0,0<a<l}

. The final points of" are associated with spheigsh,, andSph;; . EquipI’ with indices according to
the final spheres designation in such a way that a left lower index doexoeed a right lower, i.e.,
m It = {Sph,, — Sph{ }, n1 < ny. The following coincidence property holdsT; = fT',.

. Inthe{v, o} plane the spheres satisfy

Sph, € {¢) =0, a, =0}, Sphiec{0<¢ <7, a,=1}, 6;>0, (5.3)

Sph, € {¥=0,0<a,<1}, Sphiec{y=70<a,<1}, 6;=0.

. Angular coordinates = ¢, of sphere$Sph; are arranged leftward in ascending order (see B.3),

0<...<¢r <ol | <...<of <of <m—6. (5.4)

. There exist generic trajectories of four topological types,

T *IH- + 1F7 +_ FJr

ntn+ly nintls n— n>1. (5.5)

. Different parts of trajectories are labeled by different sub- apéeriptd) ndj{1 andUnd,,, where

the upper index is equal to= sgn2«,, — 1).

. In vicinity of the point ¢ = 0, a, = 0) the sheaf of trajectoriesI’, ,, , T} ; and;) T’ is
build in such a way that slop&g of theUnd,, parts are arranged clockwise in descending order (see

section B.2),

>...>8 >E 1 >...>6 > >0. (5.6)

oS

. For giverdy, 6, there exists a uniqué = d;, such that there appears one of five types of intersection

(saddle) points:

Ay =T e by, Af=Tre Iy,
B, = Th® . Thy, Bi= i@ I, Bi=,Tre L Ih,, (67)

where operatiol'; ® I's denotes intersection of two trajectoriés andI's. The indices of a saddle
point correspond to unduloidnd? observed at this point. The saddle poiBfsof mixed type are

located on alinex = 1/2 (s = 0).
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(a) (b)
Figure 7: Plotsy, () for (a) 6, = 10°, 03 = 70°, d = 6.45 and (b)f; = 10°, 6, = 70°, d = 6.7.

10. Every trajectory of the typesl', ., tTr. |, ;I\, and_T' is necessary smoothat= 1/2 (see

section 4.1).
11. Every trajectory of the typesl’, and,fFj{H is necessary tangent 8 U B, (see section 4.2).
12. The changes of indices Und;, occur at balloorB in accordance with Table 2 (see Figure 7).

(a) The change of the upper indices<{+ —s) and lower indicesr; < no) occurs at the point
T € B, UB,.
(b) The change of the lower index{( < nz) only occurs at the poirif’ € B; U B,,.

In the nondegenerate case one has— ny| = 1.

Table 2
g g AR IR MY s
Bi| 2Tk wniTove | n Do - w1y
By - - Ty | o AT
B n Lt - n—11n nTni1
B, MRV w1 lne | MY de

In Table 2 a symbo};, T;; denotes a point belonging to two padsd,, andUnd;:2 of trajectory. Empty
boxes mean that corresponding transitions do not exist. The trajectaridgedangent to balloas; U 5,

at its left and right points (see Figure 8),

LT 5 Tohie € BIN{BaUBLY, and 5Ty € B,N{BsUB,} . (5.8)
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When#, = /2 the allowed transitions are the following (see Figure 9),

Ty ons1Tons1 € BrNB;. (5.9)

0.651
0.60F
L 4 —
r o
0.55F 4
r N #
050~~~ ——— oo T
/ \
L 2~ ~
0.45F R
0.40F 2
0.35F
X L L L L L L L L L L L L L L L L L L L L L L w 030: T— L Il T— L Il L T— Il L L L L L L L L L L L L L - (/,
0 20 40 60 80 100 120 140 40 42 44 46 48 50 52 54
(a) (b)

Figure 8: Plotsy, () for 6; = 30°, #; = 80° and (a)d = 5.2919, (b) d = 6.6482.

6 Saddle Points

For given values of the contact anglés 6, a change in the distangévalue leads to changes of the
trajectories shape ifw), o} plane. Sometimes such transitions are accompanied by drastic changes of the
trajectories’ topology characterized by an appearance of the saddts.pbhe saddle point can be defined
as a point that belongs to two trajectories simultaneously.

It is instructive to find the coordinates of the saddle pging, oS } as well as the distana# at which
the saddle point is observed. Below we describe a procedure forcameputation for each type of the

saddle points belonging to a single meniscus type;,.

6.1 Saddle Points of Simple Type

First note that the saddle point may be observed at the intersection of gneests of the curvey,(v)
determined by the siga and ordem of unduloid meniscu$/nd; that completely defined by the relation
(4.2). At every point of these segments (except the saddle point) ordeiae the derivative!, () having

a unique value determined from the equation (4.3) where Aftand B; do not vanish simultaneously. At
the saddle point the derivativ€, (v) is not unique and in this cas¢® = B: = 0. Thus the saddle point
{Y¢,al} atd = dS is determined from the conditioA? = B: = 0 together with (4.2).
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Figure 9: Plotsy, (1) for ; = 30°, 2 = 90° at (a)d = 7.66209 and (b)d = 5.82697. In (b) a vicinity of

the saddle poinB, is shown.

Using the conditior4; = 0 we find the expression in the square brackets in (4.4) and substituting it

into (4.5) we obtain at the saddle point

sinf; 4oy, (1 — 402 — 2a,, — 1
BS = 20,0071 (L= ) g oepy — 20 =20 =1 o g sy, (6.)
sin v 20, — 1 200, —

Use (6.1) in the conditio®3; = 0 to expressl at the saddle point

sin? ¢ [(4a2 — 20, — 1) sinty — (2a, — 1) siny)]
" 20, [(2a, — 1) sin by — 2(1 — ) cos ty sin ]

(6.2)

and eliminate

dy, = Uy +cosepy, — 1, (6.3)

from the saddle point conditions. Thus we arrive at the final equatieiesmining the saddle point position

in the {¢, o} plane:

20, U7 sinty — [Il(tl,tz) + sla(t1, ta) + nly — s(1 — cos 7rn)12(7r/2,t2)] sinyy = 0, (6.4)

TC 4 (20, — 1) sint; sine [514(t1,t2) —2ndb(e) — s(1 — cos m>14(7r/2,t2)} — 0. (6.5)

Solving the equations (6.4,6.5) we find the saddle point. An example of tragtora vicinity of such a

point is shown in Figure 10(a).

6.2 Saddle Points of Mixed Types

The saddle points considered above belong to a single type of unduloidomerisd are characterized, in

particular, by the sign of,, — 1/2. When at the saddle point, = 1/2 this point belongs to two different
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Figure 10: The saddle points at intersectiory bf" and,ill“,*LJrl trajectories fom = 1. (a) The trajectories
in the vicinity of B saddle point fol); = 30°,6 = 60° andd = 1.05187. (b) The trajectories in the
vicinity of B mixed type saddle point observed ftr = 30°,62 = 80° andd = 2.2465. Colors and

numbers correspond to indices of respective unduloids.

types of menisci of different orders and signs. These points do meturaduloid sign characteristics and we
designate them by a smaller (of two) order only. Consider first sucHespdihts located to the left of the
balloon ©,,in, Omaz > 0). This transition described in Section 4.1 happens whena t; = arcsin/—c.
Equation (6.5) cannot be used directynat = 1/2 as integrall, diverges at; = t;. In the limita. — 1/2

we have by (2.23),

1
Ltht)~——————
(te 1) 11— 2alvi+te
and obtain from (6.5)
U, = sinttant]. (6.6)

Note that this value does not depend on both ordand contact anglé,. Substitution of (6.6) into (6.4)
produces a condition ofvalue

Ii(th to) — I (tf, ¢ +nly + (1 — cosmn)I 2,t2) + ¢ =0, 6.7
1(te,t2) — Ia(t), t2) 2+ ( mn)Ia(m/2,t2) NieT: (6.7)

where ordem corresponds to the meniscus with < 1/2. For given values of order and contact angle

s we findc value verifying the last condition that leads to determinatiott,of= arcsin v/—c — ;. Using
it in (6.6) and (6.3) we arrive at the distangg value for which the mixed saddle point is observed. An
example of such a point is shown in Figure 10(b).

Consider a mixed type saddle points located to the right of the balloon. Thistioandescribed in

(4.1) happens fof = —1 whent; =t = 7 — arcsin /—c. Equation (6.5) leads to
U, =sinytant, .
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Using it in (6.4) we obtain a condition anvalue

(5, t2) — Io(ty o) + nla + (1 — cosmn) I ()2, t2) — \/17% —0, (6.8)
C

where positive order corresponds to the meniscus with < 1/2. Show that the equation (6.8) does not

have solutions for. > 0. Using the relation

~

I
Iy(ts ty) = 52 + Iy(7/2, t2),
rewrite the left hand side of (6.8) as

\/11;+c + costy + (n — 1/2)Iy — cos mnla(m/2,ts),

where sums; of the first two terms is always positive. For odd= 2k — 1 we haves; + (2k — 1/2)1, +
Iy(m/2,t2) > 0. For evenn = 2k we haves; + (2k — 1/2)f2 — Is(m/2,t2) > 0, asla(m/2,t2) <
Iy(m/2,tF) = I,/2. Thus the saddle points of the mixed type cannot be observed to the righe of

balloon.

6.3 Saddle Points Sequences

The computation of the saddle point position for fixed values of the comabesd,, 8, and increasing,
shows that for large a sequencéyt, of } accumulates in a small vicinity of a poifit$, a$} belonging
to the balloon (not reaching it), i.ex{ = 3°(¢¥)$) as shown in Figure 11.

It is instructive to determine the position of the accumulation pfifft ¢ }. First note that in (6.4) for

n > 1 the dependence df¢ onn is determined by a relation
205 UE sint, = nly,

implying that both®¢ andd¢ grow linearly inn. As the integrall}(c) is always negative for < 0 then
the leading term for. > 1 in (6.5) is contributed by the integrals. From (2.23) it follows that the proper
divergence is provided by the tersin 2¢5/[2(1 + ¢)v/sin? 5 + ¢] whenc — —sin?t,. Substitution of
3 (v) in (2.9) shows that + sin? 6, = 0 holds on the balloon. Thus the divergenceldf used in (6.2)
leads to the condition

(2a5 — 1)sin#; = 2(1 — «f) sin ¢S cos(01 + V%), (6.9)

Sin2 (92 _ as/c
(1 +S\/1 — 451112(01 +w£) ) - B (w*)
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Figure 11: (a) The saddle points (gre&3) andAjk for 6, = 30°,0, = 60° andk = 2, 3,4, 7,10 approach
the accumulation point (black) on the balloon with growth of the inglexnarking the saddle points. The
inset shows saddle points (cyah), for k = 1,2,3,4,7,10 approaching the accumulation point. (b) The
saddle points (blue/}\jk_1 for 6; = 30°,0, = 120° andk = 2,3,4,5,8, 11 approach the accumulation
point (black). (c) Ford; = 30°,0, = 88° the saddle point8, for n = 1,3 (red), n = 2,4,6,10,16
(cyan) andB (green for n = 6,8, 10,16 approach the corresponding accumulation poibtacg). (d)
For6; = 30°, 6, = 90° the saddle point8,; forn = 1,3,5,7 (red) andn = 2,4,6,8,10, 14,20 (cyan

approach the accumulation poiti#gck).

It follows from (6.9) that the accumulation point wittf < 1/2 can be observed fas > 7 /2 — 60, while

at the point witho$ > 1/2 we havey$ < 7/2 — 6;. The relation (6.9) also implies
2(1 — af)sin(0y + ¢5) cos s = sinfy, 2a$sin(0; + ¥5) cos s = sin(61 + 2¢%).

Multiplying these relations and using the definition (2.9) we find the sign indgpercondition on the

accumulation point

sin @y sin(6; + 2¢) = sin? 3 cos® . (6.10)
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It can be shown that the equation (6.10) has two solutighsorresponding to the accumulation points
belonging tog*(y)). Computingy¢ from (6.9) or (6.10) we find a growth rate df, for largen which is

given by
N . sin 298 N .
B (= 00) = 550y v gy 2 (7002

sin ¢
2a¢ sin (01 + ¥%)

7 Touching and Intersecting Bodies

When the distancé between the solids is non-positive it leads to strong simplification of the topalogic
structure of the solutions of (2.1): only a single branch of solution thaaysvincludesNod* meniscus
survives. This follows from the statement made in section 3.4 that sphgiig's n > 0, cannot exist when

d < 0, so that only the trajectory that contai%nshar can be observed ifw, a} plane.

Ford = 0 (the solid sphere on the plane) we show in Appendix C.2 that the curvdttite Nod ™ is
negative and diverges @ ~ 12 asty — 0, confirming the result reported in [5]. In ca8e+ 0; > 7
one can observe similar divergence of positive curvaturéfat™ at smalli). The sameéNod™ meniscus
can be found in special cade + 6; = m when the curvature diverges & ~ )1, In two last cases the

whole trajectory is represented bByd* meniscus (see Figure 3(b)).

0.6

05 ---- /—17 ————————
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Figure 12: (a) Plotx(%)) for 6; = 30°, 6, = 80° andd = —0.1, i.e., ¢, = 25.84°, and (b) four menisci
Nod™ (blacK, Und, (cyan, Und; (red) andUndg (green for ¢ = 45°,¢p = 60°, ¢» = 70° andy) = 85°,

L
1.2

respectively.

Another divergent behavior of the curvature is observed when0 (the solid sphere intersecting the
plane). Here the menisci can exist only for> 1, = arccos(1l + d). Formula (C.15) shows that the

curvature diverges al ~ (¢ — 1,) ! asy) — 1,.. Depending on the parameters values this divergence is
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observed for menisci,
Nod™: H <0, 61+61+¢,<m and Nod"™: H >0, 6;+6; +1, > . (7.1)

When6; + 01 + 1, = 7 we show in C.2 that thBlod~ meniscus is forbidden while tHéod ™ meniscus is
observed in the whole range > 1, and its curvature does not diverge. In Figure 12dt(¢) trajectory
for contact angleg; = 30°, §; = 80° andd = —0.1 is drawn. We present also the four different menisci
observed in this case.

The case of intersecting bodiés< 0 does not lead to change of formula (2.10) for meniscus curvature
H and (2.11) for surface ares However formula for the volume_ (d) of meniscus withd < 0 reads

md?

3

s s
Jo— =

V-(d) = g7 3

(2 —3costp + cos® ) + —(3+d), d<O0, (7.2)

where integral/; is given in (2.12).

8 Concluding Remarks and Open Problems

Extending the rigorous approach used [5] to describe the meniscisbapgeen two touchingl(= 0)
axisymmetric solids, sphere and plane, we develop a theory of penduarinirits general form for the

separatedd > 0) or intersectingd < 0) solids. The main results are listed below.

1. The YL equation (2.1) with boundary conditions can be viewed as a reamlgigenvalue problem. Its
unduloidal solutions exhibit a discrete spectrum and are enumerated liydiwes: the numbet €
Z., U {0} of inflection points on the meniscus meridional profi¢ and the index = sgn2a,, — 1)
determined by the shape of a segment of the cuv/éouching the solid sphere: the shape is either

convex,s = 1, or concaves = —1.

Menisci shapes; () and their curvature&/; play a role of eigenfunctions and eigenvalues of equa-
tion (2.1), respectively. The Neeman boundary conditions, two contatesf; andd-, and a single
governing parametef > —2 together with one more parameter, the filling anglecompletely

determine the meniscus shagjér) and curvature evolutiofl = H3(1)).
2. For the fixed); andé, the set of the function&? () behaves in such a way that in the plgne H }
there exists a bounded domd@rwhereH: (1) do not exist for anyl.

Under non-linear transformation,, () = H:()sinv/sin(6; + v) this domainB in the plane
{4, o} takes a simple shape with a smooth boundzfy:)) which we call aballoon At this bound-

ary and at the linee = 1/2 there occur all transitions between different types of unduloidal menisci.
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The other two linesr = 0, 1 are also the locations of special menisci: all spherical me6isc| at

«a = 1, all spherical meniscph, ata = 0 and also catenoidal menisCat ata = 0.

A behavior ofa,,(¢) curves reminds in some cases the 2-dim dynamical system with trajectories
ramified in anon-simply connectedomainA’. This global representation allows to classify possible
trajectories and introduce a saddle point notion into the PR problem. Wevebsereral types of

saddle points and give their classification.

3. If the distance between the solids is non-positive< 0, then a single (possibly disconnected)
sequence of solutions (menisci), that always includesNibé™ type, survives. We describe the
asymptotic behavior of the mean curvatuig (¢») of nodoidal meniscus in vicinity of a singular

point, = arccos(1 + d); such singular point does not exist fér> 0.

Beyond the scope of the present paper we have left several questiich are related to the theory devel-

oped here. Below we mention two of them.
1. The theory of pendular rings in the special cases of boundaryitmmrd
e 01 = 0, this impliesa = H and asymptotics (C.12) of tiéod™ meniscus curvature fails. This

is the case of completely wetted sphere.

e 0y = m/2, the balloonB is reduced to a linee = 1/2 with one singular point) = 7/2 — 6;.

This is the case of two solid spheres of equal radii.

e 01 = 05, the balloonB is located in regio) < ¢ < 7 — 26, and the domain\’ becomes

simply connected. This is the case of two solids of the same material.

e 01 + 0y = 7, 65 > 6, the balloonB is located in regior) < ) < 6, — #; and the domain\’

becomes simply connected. The physical meaning of this case is unclear.

2. Stability of pendular rings. In this regard, we know only one paperevtiee stability was studied
for the Nod™ and UndaL menisci [8] between two solid spheres of equal radii. The rest of menisci
types including those with inflection points are open for analysis.
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Appendices

A Menisci Formulae

A.1 CatenoidsCat

The catenoid case is the simplest one that requires a solution of the eq@a®pwith H = 0. This shape
corresponds to the transition from the concave nodoid to concave uthdiile solution for positive: and

C readsr = C/sint. Using the boundary condition we find
C =sintysiny . (A.1)
Employing (2.4) we obtain the vertical component of the catenoid meridionéler

t t
y:/ tant doe = —C dt:C’(lncot;—lncottQ> . (A.2)

t t, SInt 2
Using the boundary condition (2.3) we find a relation

t t inta(1 t
1+d—costy =sintysiny <111(:o‘521 — Incot 22> =sint;siny In :iEtiEl 122;;; ,

(A.3)

that implicitly defines the value of the filling angleat which catenoid is found. The last condition can be

rewritten in the form

t1 to 1+4+d—cos
tan 5 cot 5 = exp( Sngsint ) . (A.4)
Shape of catenoid is found in parametric form
C t lo
= — = ——1 = . .
x(t) it y(t)y=C <lncot 5 n cot 2) (A.5)

The solid of rotation volume is given by the formula (2.12) with= C/sint. From (2.4) we findly =

—(Cdt/sint, so that the ring volume reads

et 7C3 [ cost cost t t
_7703/ T (_21— _22+1ncot21—lncot22>.
t, SNt sin“ t1 sin“ to

The volume of theCat meniscus reads

to

t
V= +1ncot21—lncot2> —g(2—3COS¢+COSS¢>. (A.6)

wC3 < cos tq cos to

2 sin®t;  sin?ty

The surface area of tHéat meniscus is given by (2.11) with = C'/ sin t producing

b gt cost cost t t
S:—27r02/ S (5 22 ot —Incot = ) (A7)
ty SIn”t sin“ty sin“ty 2 2
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A.2 NodoidsNod*

The curvature expression reads

2HY = Il(tl,tg) + SIQ(tl,tQ) . (A8)

The meniscus nodoid shape is given by

2(t) = % (sint+sVain?t4¢) , ylt) = % 11t t2) + sTa(t, )] - (A.9)

Using the formulas (2.12) and (2.21) we have for the nodoid volume

™

~ SH3

s

%4 [4J3(t1, tg) + CIl(tl, tg) — SCIQ(tl, tg) + 48J2(t1, tQ)] 3 (2 — 3cosy + cos® Zﬂ) . (A.lO)

Using the formulas (2.11) and (2.18) we find the nodoid surface area

™
S - ﬁKs(tlth) . (All)

A.3 Unduloids UndZ

The curvature expression reads

QHS\I/ = Il(tl,tg) + SIQ(tl,tQ) . (A12)

The meniscus unduloid shape is given by (2.5) as
(sint + 5V/sin?t 4 ¢ ) , o y(t)

Using the formulae (2.12) and (2.21) we have for the unduloid volume

=

[I1(t, o) + sIy(t, 12)] . (A.13)

t = =
®) 2H 2H

‘/08 = 8(];[-78)3 [4J3(t1,t2) + CIl(tl,tg) — SCIQ(tl,tg) + 48J2(t1,t2)] —g(2—3c08w+(3083 w) . (A.14)
0

Using the formulae (2.11) and (2.18) we have for the unduloid surfaze ar

s s
S5 = 2(H8)2K3(t1,t2) . (A.15)

A.4 Inflectional Unduloids Und; with Single Inflection Point

The inflection pointu, of unduloid satisfies a conditiom® + ¢ = 0 for negativec. The inflection point at

the sphere surface corresponds to

s sin 1
= A.16
" 2sine’ ( )
while when this point is at the plane
oS = sint + sv/sint; — sin? tg' (A17)

2siny
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Substitution of (A.16, A.17) into (A.12) for givesigenerates equations for the critical valugsands)3 of
the filling angle at which the inflection point is at the sphere and at the plesgectively. In case; = 5
inflectional unduloid reduces to the cylinder reachedtfor= /2 att; = =/2 for all 6; < =/2. It has
curvature equal té7§ = (2cos ;) !,

The integrals in (2.6) and (2.10) in case of inflectional unduloid shouldrbleeh into two integrals.
The meridional profile is made of two unduloid profiles matching at the ppinty.}, i.e., u = wu,.
Consider the case of thénd; meniscus when the profiles touching the plane and the sphere have positive

and negative curvature, respectively. Using (A.13) we write for tm¥eounduloid part

2(t) = 2;_ (simt+ Vot v e) L yt) = 2];_ (b t2) + Dot ta)] , € {tsts} . (A18)
1 1

The upper concave unduloid part is given by

t) = (s' t —Vsin?t + +A>, t) =
x(t) SH in i c " y(t) SH
The values of4, and A, have to be found from the matching conditiong at ¢.. Usingu, = sint, =

v—cwe gett, = m — arcsiny/—c andcost; = —/1 + c. At the inflection point we find

V—c \—c+ A, 1 _ _ 1 _ _
= = oy = LT te) + (i, )] = L5 b)) — In(t ) + A
T 2 b= one (11 (t, t2) + Ta(t;, t2)] QH;[ 1ty t2) — Io(ty  t2) + Ay

The matching conditions producé, = 0, A, = 2I5(t;,t2), leading to the following shape of upper

[]1(t, tQ) - IQ(t,tg) + Ay] , te& {tl,t*}.

Tk

concave unduloid

x(t) = 5 1_ (sint — V/sin?t + c) , o y(t)

H, T 2H[
Using the second equation in (A.19) we havetfer ¢;

[11(t,t2) — Io(t, ta) + 2Dx(t , t2)] . (A.19)

2H W = Ii(t1,t2) — Ia(t1,t2) + 202(t, , t2). (A.20)

The case of théJnd; meniscus when the profile touching the plate has negative curvature,eaptbfiie
touching the sphere has positive curvature is treated similarly and we obtaietieral expression for the
curvature:

2H{U = [1(t1,t2) + s [Ia(t1,te) — 215(t5, t2)] . (A.21)

A.4.1 Shape

The meniscus shape is given by the following general expressions:

1
‘T(t) = s (Sint - S Sin2t+ C> ) y(t) = s [Il(t7t2) - SIQ(tatQ)] ) te {t27ti}a
oV, ” oV,
1 1
z(t) = NiE (SintJr sV/sin®t + C) s yt) = Yee] [1(t,t2) + s(I2(t, t2) — 21a(t5,t2))], t € {t1, 5}
1 1
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A.4.2 \Volume

As theUnd; meniscus is made of two menisci having shape of concave (upper) anekddower) undu-

loids, a solid of rotation volume equals sum of volumégsndV,, of lower and upper parts, respectively,

™

v, = AT3(87  te) + eli (E7 b)) — clo(to, ta) + 4o (t7, 12)]

I STHD)? [4J3(t; o) + cli(t; , t2) — cla(ty , t2) + 4Ja(t; , t2)]
T

V, = AT3(t,t7) + cli(t, t7) + clo(ty, 17) — 4da(tr, )] .

8(Hf)3[ 3(t1, ) + chi(ty, t)) + cla(t, ) 2(t1,17)]

Adding up the above expressions we have for the meniscus volume

Vi = L_B{ug(tl,tg)juc[l(tl,tg)—c[Ig(t;,tQ)—Ig(tl,t;)}+4[J2(t;,t2)—J2(t1,t;)]}
8(Hy)

— g (2 — 3cos ) + cos® w) : (A.22)

The general formula for the volume of inflectional unduloid reads

VPo= 8(1;2_)3{4J?)(t1,t2)+Cfl(t1,t2)+80[12(ti,t2)—Iz(tbti)]
— s [Ta(t5, ) — Ja(ty, )]} — g (2 = 3cos ) + cos> ) . (A.23)

A.4.3 Surface Area

Apply the same approach to calculation of the surface area afiidg meniscus. The are, equals the

sum of the surface areads and.S,, of lower (convex) and upper (concave) parts, respectively,

™ ™

Sl == ﬁK+(t;7t2) 5 Su == ﬁKf(t]_,t;)

Adding up the above expressions we have for the meniscus surface are

Sp = 2(;_)2[&@*,752) +K_(ty,8])], (A.24)
1

and we find the formula for the inflectional unduloid surface area

St =5 ;}f)Q Ko (t5,t2) + K (t1,82)]. (A.25)

A.5 Inflectional Unduloids Und; with Two Inflection Points

In previous section we consider the simplest basic inflectional unduloictsteucharacterized by a single
inflection point. We show that if the inflection poityt originates at the plane thénd; meniscus emerges,

while separation of the inflection poitit from the sphere generates ﬂljedl+ meniscus.
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It is shown in section 4 that the value = 1/2 is a critical point at which a transition between the
Und; and theUndg menisci occurs whet, = ¢; and the single inflection point reaches the solid sphere.
What does happen whep = 7 — t; and the inflection point is inside the meridional profile of thed;
meniscus? In this case the second inflection point, namely,twith ¢;, separates from the sphere and we
observe a meniscus$nd; having two inflection points; and¢, . The profile of such meniscus is made of
three unduloid segments — two convex (touching both the sphere and te¢ aeha concave one between
them.

Consider derivation of the equation for the curvature for this meniscaggyA.13) we write for the

lower convex unduloid part touching the plane

1 . ) 1 _
x(t) = E (smt + Vsin“t + c) , y(t) 2H+ [I1(t, t2) + Io(t, t2)], t € {ta,t, }.
The middle concave unduloid part is given by
1 1
o(t) = o (sint — Vst + e+ Ay ) L y(t) = ST [I1(t, 1) — In(t to) + Ay, t € {t, 65}
2

Finally, for the upper convex unduloid part touching the sphere we write
1
x(t) = SHF (sint—l— Vsin?t + ¢+ Ay ) ,yt) =
2

The values ofd,; and A,; have to be found from the matching conditions at ¢ producing

oHT [I1(t, ta) + Ia(t, t2) + Aya] , t € {t1,t5}.

Ap1 = Aga =0, Ay =2D(t,t), Ay =2DL(t;  t2) — 2L(t], t2) = 2L(t, , t),

leading to the following shape of upper convex unduloid

smt—i—\/sm t+c)

Using the second equation in (A.26) we haveifer t;

z(t) = L(t,te) + Ia(t, t2) + 2L(t, ,t))] . (A.26)

1
H+ ( H2 [
2H2+‘1/ = Il(thtg) + Iz(tl,tg) + 2.[2(75*_, t:) (A27)

The case of thé&Jnd, meniscus when the profiles touching both the plate and the sphere hatweega

curvature is treated similarly to obtain

2H, U = I1(t1,ts) — Ia(t1,t2) + 2D(t;, ). (A.28)
Thus, we obtain the general expression for the curvature fdﬂmkié menisci

2HSV = I1(t1,to) + sla(ty, t2) + 2Lx(t, , t)), (A.29)
As shown in D.2 the valué, of integrally(t; ,t1) readsly = 2/—cE(1 + 1/c).
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A.5.1 Shape

The meniscus shape is given by the following general expressions:

x(t) = (sint +sV/sin?t + ¢ ) , y(t) =

1
o oH [11(t,t2) + sha(t,t2) |, t € {t2,t,°},  (A.30)

1 1
2(t) = 3= (sint —sVsin?t+¢ ), y(t) = 5o [t t2) = s(Da(tta) = 20(t, 1)), ¢ € £, 85},
2 2

1
o L(t,to) + shy(t, to) + 2Ly | , t € {t1,t}.

1
x(t) = VE (sint + sV/sin?t + c) , y(t) =
2

A.5.2 Volume

Inflectional unduloidUnd; meniscus is made of three menisci having shape of concave (middle segment)
and convex (upper and lower segments) unduloids; its volume equalsrthefsbe volumesd/, V,,, and

V,, of lower, middle and upper parts, respectively:

Vi = 7[41%( to) + cli(t, ,t2) — cla(ty ,t2) + 4J2(t; , t2)] ,
8(Hjy )3

Vim = —+[4Js(t+7t;)+ch<ti,t;>+c12<tr,t;)—4Jz<ti,t;>],
8(Hjy)?

v, = #[4J3(t1,t+)+cll(t1,t+)—clg(tl, ) + 4do(t1, )] -
8(Hjy)?

Adding up the above expressions we have for the meniscus volume

V2+ = 8(H+) {4J3(t1,t2) + CIl(tl,tQ) - C[IQ( * ) ) - IQ(tjvt*_) + IQ(tlvtj)]

+ A[Ja(t  te) — Jo(th 1) + Jo(tr, t)]} — %(2 —3costp + cos® ) . (A.31)
Using the properties of the integralsand.J, we find:

+
V2 = 8(H+) {4J3(t1,t2) + CIl(tl,tg) — C[Ig(tl,tQ) — 2[2]

+ A[Ja(t1,t2) — 2]} — g(Q — 3cosy + cos® 1) (A.32)

where the value/, of integral Jo(t; ,t) is computed in (D.14). The general expression for the menisci

volume reads

- .
Ve = g {dds(t, o) + chi(ty, t2) — sclla(ty, t2) + 2s12)]
8(H3)

4+ 4s[Jo(t1, ta) + 25.J5]} — §(2 — 3costh + cos® 1) . (A.33)
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A.5.3 Surface Area

Similar approach is applied for calculation of the surface area ofith” meniscus. The are$ equals

the sum of the surface arefg S,, andS,, of lower, middle and upper segments, respectively,

T ™ T
Sj= ———=Ki(t, ,t2), Sm=—=K_(t5,t.), Su=—1=Ki(t1,t]).
2(Hy)? 2(Hy")? 2(Hy )

Adding up the above expressions we have for the meniscus surface are

™

g |

K (5 t) + K (t5,60) + Ky (t1,)] - (A.34)

We give a general expression for the menisci surface area

K17, 1) = sy + Ko (1,8)] (A.35)

A.6 Inflectional Unduloids Und3 with Three Inflection Points

In A.5 we consider the inflectional undulolghd; with two inflection points for the values of inflection
points parameted < t= < 7. There exist also menisci with larger number of inflection points.

Consider first an inflectional meniscUsd; with three inflection points. A natural way to generate it
is to consider thé/nd; unduloid having two inflection points, = ¢, andt,, = = — ¢, and allow at
a = 1/2 athird inflection point, , = m—t; to separate from the sphere. This point appears due to vertical
translational periodicity of the meridional profile. The profile of such a noersiss made of four unduloids
— two convex (one of them touches the sphere) and two concave (ccfee®the plane). In all formulas
below we drop additional indicésof tfk. Derivation of the curvature equation for this meniscus is similar

to the one oUnd; andUnds,
2H; U = Iy (t1,t9) — In(ty, ta) + 2@y + 2Ix(t; , ta). (A.36)

A dual inflectional meniscuind; is generated from the&nd] unduloid ata = 3T by separation of a

third inflection pointt]” = ¢; from the plane:
QHF W = I (t1, ta) + Io(t1, t2) + 212 — 2Lo(t], t2). (A.37)
Merging (A.36,A.37) we arrive at the general formula for the curvature

2H§‘I’ = Il(tl,tg) + Slg(tl,tg) — 25[2(ti,t2) + 2j2 (A.38)
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A.6.1 Shape

The shape of th&Jnd§ meniscus is given by the following general expressions

x(t) ! (sint — sV/sin?t + c) , y(t)

[11(t, t2) — sla(t, t2)], t € {t2, 85}, (A.39)

~ 2H; ~ 2H3
2(t) = (sint +sv/sin2 ¢ + c) L y(t) = —— (L1 (t,t) + sDo(t, t2) — 25I(t5, 12)], t € {£5,47°).
2H; 2H;
x(t) = (sint — sV/sin?t + c) y(t) = —[I1(t, to) — sIx(t, to) + 21o), t € {t;5, 5}, (A.40)
2H; 2H;
1
x(t) = (sint+5\/ sin2t—|—c) ,
2H;
1 .
y(t) = 5H3 [I1(t,ta) + sla(t,ta) + 219 — 2sI5(t5, ta)], t € {t1,t5}. (A.41)
3
A.6.2 Volume

Inflectional unduloidUnd meniscus is made of four menisci having shape of concave and condex un

loids; its volumeVs’ equals the sum of the volumes of corresponding parts:

Vgs = ﬁ{lljg(tl, tg) + CIl (tl, tQ) + SC[[Q(tl, tg) — 28f2 — 2[2(t1, ti)]
3
— ds[a(t, ta) — 25J5 — 25 (1, £5)]} — g(z — 3cos ) + cos® ). (A.42)

A.6.3 Surface Area

The surface areé; of the Und3 meniscus equals the sum of the surface areas of corresponding segmen

m N ~
S= K (5 t)+ Ky — K_ + K,(t1,t9)] . A.43

A.7 Inflectional Unduloids Unds; with Even Number of Inflection Points

Generalization of the menistindg andUnd3 to arbitrary even number of inflection points is straightfor-
ward, and we present here the final formulas for these menisci. Shapper unduloid segment touching

the sphere for th&nds, meniscus reads

8

(t)

1 1 A
- (sint +sv/sin? t + c) L y(t) = [t to) + sho(t,t) + 2kDa] . (A44)
2H, 2H,
Using the second equation in (A.44) we haveifer ¢,

2H28k,\1’ =1 (tl, tQ) + 812(751, tg) + Qkfg (A.45)
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A.7.1 Shape

The meniscus shape is given foK n < k — 1 by the following general expressions :

1 . <92 £ > —
z(t) = 21, (smt+5\/sm t+c), y(t) = o1, [Il(t,tg) + sIo(t, t2) +2n12} , t € {ta,t,°(A.46)
1
z(t) = (sint—sx/sith—l—c), te{t,,tr},
2HS,
1 .
y(t) = o (Dt t2) = s(la(t t2) = 2D(6F 12)) + 20D, (A47)
2H3,
1 1 R
(1) = (sint +sv/sin?t + c) Cy(t) = —— [Il(t,tg) + sla(t, o) + 21@] Lt e {t, 1) (A48)
2H3, 2H3,
where

ty = tadno + 3 (1 — 6no),

d;; denotes the Kronecker delta.

A.7.2 \Volume

Volume of inflectional unduloidind3, meniscus is computed as

s ~
‘/QSk. = 753{4J3(t17 t2) + CIl (tl, tQ) — SC[IQ(tl, tg) — 2]{:8[2]
8(H2k)

 As[Ta(t1, o) + 2ks o]} — g(z — 3cos ) + cosP ) | (A.49)
A.7.3 Surface Area

Surface area of thend3, meniscus reads

s N ~
5= ——— | K177, Ky — Ko)+ Ky(t1,65)] - A.
S5k = gepgs e (Kot 12) + KK = Ko) 4 Ko, 1,°) (A50)

A.8 Inflectional Unduloids Undy, . ; with Odd Number of Inflection Points

Generalization of the menisbind$ andUnd to arbitrary odd number of inflection points is straightforward,

and we present here the final formulas for these menisci. We find fouthatare of theUnd3, , ; meniscus

2H5k+1\11 = Il(tl,t2> + SIQ(tl,tQ) — 23[2(ti,t2) + ijg (A51)
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A.8.1 Shape

The shape of th&ind3, , ; meniscus is given by the following general expression®farn < k

1 ~
z(t) = . (Sint*SM) , te {t2,ti}a
2H3, 4
1 N
y(t) = [11(t,t2) = sI5(t, t2) + 2n o), (A.52)

2H3,

{L‘(t) = 1 (Sint-i-SM), tE{Elyti}v

2H3.
y() = [Il(t, to) + sIy(t, ta) + 2nly — 25T (L5, tg)} , (A.53)
2H2k+1
where
ty = tabno +1,°(1 — 0po), t1 = t16nk + £ 5(1 — ).
A.8.2 Volume

Volume of inflectional unduloidind3, , ; meniscus reads

Vo1 = %{4&@1,@) +cli(ty, to) + sclla(ty, to) — 2ksly — 2I(t1,2))]
8(H3p 1)
— As[ ot ta) — 2ksy — 205(t1, )]} — g(z — 3cos ) + cos3 ) . (A.54)

A.8.3 Surface Area

Surface area of inflectional unduloi¢hd$, | ; meniscus is computed as

™

Stk = IENE

K y(t5, 1) + R(Ry — K) + K (t1,8)] (A.55)
A.9 Unduloid General Formulas

Merging the expressions (A.45, A.51) we write the general expressidhé curvature otnd; unduloid

1 —cosmn [

QHTSL‘I/ = Il(tl,tg) + 512(751, tg) + nfg — S Ig(ti_,tg) + Ig(t:,tg)} . (A56)

It can be checked by direct computation that the expression in the srziets in (A.56) evaluates to

215(m/2,t2), and we have

QHZ\I/ = Il(tl,tg) + ng(tl,tg) + an — 8(1 — COS 7TTL)IQ(7T/2,t2), (A.57)
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Replacing in (A.54): by (n — 1)/2 we find for the expression in curly brackets
4J3(t1, tg) + CIl(tl, tz) + 86[2(751, t2) — anQ + 286[2(7‘(/2, tl) — 48J2(t1, tg) + 47’Lj2 — 85J2(7T/2, tl).

Combining it with (A.49) we find

Vns = 8(%5)3{4(]3(7517752) + CIl(tl,tQ) + 4nj2 — O’(n)[CIQ(tl,tQ) — 4J2(t1,t2)] + ncfg cos TN

+  s(1 —cosmn)[cla(m/2,t1) — 4J2(7/2,t1)]} — g(2 — 3costp + cos® 1) | (A.58)
whereo(n) = s - cosmn. From (A.50) and (A.55) one finds

S5 = ﬁ [Kg(n) (t;f’("),tz) +|n/2)(Ky — K_) + K, (tl, t;“")ﬂ , (A.59)

where|z| denotes the floor function.

B SpheresSph*

In the classical menisci sequence the transition from convex unduloidmiexmodoid occurs through
formation of a spherical surfacfa)haf. The inflectional unduloidé/nd!, n > 0, in the limit o, — 1
transform into the surfac&ph,” made of several spherical segments. The same time the unduloid menisci
Und, at small filling angles approach another type of spherical mefig¢j. Below we treat them both

as a limiting case of corresponditgd® menisci.

B.1 Asymptotic Behavior of Und* Menisci in Vicinity of Sph

Consider the relation (A.57) and find dependeite- H(v) for the Und; meniscus in vicinity of: = 0
that can be reached for either= 0 (for s = —1,¢9 = ¢, = 0) ora = 1 (for s = 1,9 = ¢;}). Using (2.7)
find asymptotic fore(¢))

() =< (@)W =), (¢7) = 45|20 — Lol (g7) sin* (61 +¢7) . sgnc'(4}) =s,  (B.1)

wherea/, (¢2) > 0.
To find the asymptotics of the general tergfs E(t,/—1/c) and+/c F(t,/—1/c) used in (A.20)
we make use of asymptotic expansions for the elliptic integrals based on relfdiord at [9] and obtain

fort <m,
_ c—0 =~ t
Ve E(t,\/—1/c) ~ E(t,c):l—cost—g <lncot22—4ln2+ln]c|—1> , (B.2)

Ve F(t,\/—1/c) e~ F(t,c) = <lncot2; —4ln2+ln|c|> . (B.3)

¢
2
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Using the above expressions we find an approximation

t t
Ity ts) = 1 (t1, t2) — gM, M=In <tan 5 cot ;) . (B.4)

The last relation leads to

N t
Iy =Lt ,t7H)=2—-cln2+ %ln(—c), Is(7/2,t2) = costy — gln <cot 22> . (B.5)
Substitution of (B.4, B.5) into (A.57) produces
2H U (¢5) =2n — (1 + s) cos(01 + ¢5) — (1 + scosmn) cos Oy + % In(—c). (B.6)

The curvature at the sphere is found as

_ 2n— (1 +s)cos(01 + ¢;,) — (1 + scos7n) cos O

H; (5, B.7
It follows from (B.7) that for théSph, sphere the curvature is independené pand reads
H=(0) = 2n — (1 — cosmn) 00592. (B.8)
2d
For s = 1 we find a condition on the anglg" at which spher&ph;! is observed
2(1 4 d — cos @) sin(01 + ¢,7) = sin g7 [2n — 2 cos(6; + ¢;) — (1 + cos7n) cos b2],
which reduces to
2(1 +d)sin(fy + @) — 2sinf; — sin ¢, [2n — (1 + cos ) cos ] = 0, (B.9)
Differentiating the relation (B.6) we obtain in the leading order
S / S
dHA(¢) =) 1 g (o) (B.10)

A ey 4(05)
Combining (B.10) with the last formula in (B.1) we find sgi¥{; /dy) = —s aty = ¢:. General expres-

sion for derivative otv,, reads

_ dHy(v) siny o sinf;

! = H . B.11
(V) dy  sinty + "sin? ty ( )
Using it with (B.8) we find
p _  H;(0) 2n—(1—cosmn)cosbs
= = = B.12
0 (0) = & sin 64 2d sin 0 ’ ( )
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implying that for smalk) the slopé,; of a increases with growth of index and decreases with growth of

the distancel. Applying (B.2,B.3) to integral (2.15) we find its asymptotitgt;, t2) = ¢M and obtain
Ks(t1,t2) = 2(1 + s)(costa — costy).

Thus the expression in square brackets in the general formula fotaihdurface area (A.59) is indepen-

dent ofc and reads

K =4n —2(1 + scosmn)cos bty — 2(1 + s) cos(61 + ¢5,) = 4H,, (¢;,)¥(H},)-

Thus the surface area reads in the leading logarithmic order

g5 _ K 270(¢5)
"U2(Hy)? Hy(ep)'

(B.13)

and we find that sgridS: (v)/dy) = s aty = ¢3. The explicit expression for the surface are&ph:,

reads
S(45Y Ar0?(¢7)
Snlén) = 2n — (1 +s)cos(01 + ¢3) — (14 scosmn) cos by’ (8.14)

and we find forSph,;
47rd?

T 2n— (1 —cosmn)cosfly

S (0) (B.15)

Turning to computation of the menisci volume asymptotics we first use (B.2, Bijegral (2.20) to find
Jo(ty,ta) = J3(t1,ta), Jo =4/3. (B.16)
Using this relation we obtain for the expressidrin curly brackets in (A.58)

_ 4
V= 3 [4n + 3J3(t1,t2) + 38J3(t1,7r/2) + 38J3(7T/2,t2) COs 7m] ,

which is independent af Thus the volume reads in the leading logarithmic order
s 71"7 . 7T‘7 _ z . 3
V= S(H:)? Vs = 78(Hfl)3 3(2 3cost + cos® ) , (B.17)
and we immediately find that sqaV;? () /dvy)) = s aty = ¢5. The explicit expression for the volume of
Sph;, reads

47T\I/3(¢fl)[4n + 3J3(t1,t2) + 3sJ3(t1, 7/2) + 3sJ3(7 /2, t2) cos 7T7”L]
3[2n — (1 + s) costy — (1 + scosmn) cos B2)3

Vi (dy) = — Vss(dy,), (B.18)
with ¢; = 61 + ¢5 andty = m — 2. Recalling that
J3(t1,t2) = [G(ta) — G(t1)]/3, where G(t) =3cost—cos’t, G(r/2)=0,
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we have

S48\ __ 47T\P3(¢f1)[4n - (1 + S)G(el + ¢fz) - (1 + 5Cos Wn)G(HQ)] s
Va(9n) = 3[2n — (1 + s) cos(0y + ¢3) — (1 + scosmn)cosba]3 Vis(9n), (8.19)

and we find that foBph,,
_ And®lAn — (1 — cos mn)G(62))]

—(0) = B.20
Vo (0) 3[2n — (1 — cosn) cos o3 ( )
the volume does not depend én Using (B.1) and (B.10) in (B.11) we find
L sin 91
"(pF) = . . B.21
n(%n) U — nsin ¢y sint; In(—c) sin b sinty ( )
which produces two important formulas for= 0
ah(dg) = sinfy (B.22)
ORF0 S singzﬁar sin(6q —|—¢(T) ’ '
and forn > 1,
(o) ~ sin b1 hd - ! (B.23)

~sin? ¢;f sin?(6y + o) nln(—c) = dsin® 6, In(—c)

The last equality in (B.23) makes use of (3.21), ih,” ~ dsin 6;, and¥ ~ d whenn — cc.

B.2 SphereSph,

The curvature o6ph,, n > 0 menisci is given by (B.8). Using the general formula (A.46 - A.48) for the

unduloidUnd,, we find in the limity) — 0 that the meniscus is presented by a sequenk&oéxial spheres

of the radiusry, = 1/H,, = d/(2k) with the centers located 40, (2i 4 1)rg;} fori =0,1,...,k — 1.
Similarly, for odd number. = 2k + 1 of inflection points we havé full spheres of the radiusy, 1 =

1/Hg,, = d/(2k + 1 — cos ) and a spherical cap on the plane with the same radius. The centers of the

full spheres are af0,d — (2i + 1)rox41} fori = 0,1,...,k — 1 and the center of the spherical cap is at

{0, —rogy1 cos Oz }.

B.3 SphereSph/

The curvature o$ph/™ menisci is given by (B.7) withh = ¢, In casen = 2k the meniscus is represented
by the segments of the spherical surface touching each other at thealvaxis at the points with zero
abscissa and ordinaté® + 1 + coste)/H,F, i =0,1,...,k.

In casen = 2k + 1 the meniscus is made of the segments of the spherical surface touchirglesrcht
the vertical axis at the points with zero abscissa and ordiratds . It follows from (B.9) that the value

of the filling angles?, , , does not depend on the value of the artile
2k+1
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In a particular case of wetting sphete= 0 one finds from (B.9) tha®ph™ meniscus exists at = 7
that gives for the curvaturél,” = [n + 1 + (1 — cosmn))costs]/(2 + d). Taking into account that

H;" = a,, <1 we find an existence condition for this meniscus
d>n—14 (1 —cosmn)costs. (B.24)

The condition (B.9) af; = 0 is also satisfied for ald < ) < 7 whend =n — 1 + (1 — cos mn) cos ta.

C Special Properties of NodoiddNod*

In this appendix we discuss the extremal properties of nodoidal menisal flinimum of curvature and
local maxima of the surface area and volume) and the asymptotic behavige nbtloidal curvature in

vicinity of singular pointy, = arccos(1 + d).

C.1 Non-monotonic Behavior ofNod*™ Meniscus Characteristics

Show that theNod™ meniscus always has a local minimum of curvature and local maxima of theceurf
area and volume. First, we show that the curvature always grows waditlittg angle reaches, so that

the derivatived H/dvy atvy = m is positive. In this range the convex nodoid is observed, so that we start
with the asymptotics of the general terqf® E(t,/—1/c) and+/c F(t,r/—1/c) in (B.2, B.3) valid for

t < m and also find fot >

Ve B(t, /1)) ‘=’ —E(t,c) + 4 —c(~1—4n2 + In]e]), (C.1)
Ve F(t/—1je) =0 —F(t,¢) — 2¢(—4In2 + In|c|) . (C.2)

We use (A.8) withs = 1 corresponding to convex nodoid and substitute into it the expressions (B.2
B.3)fort =t =71 — 0, < mand (C.1, C.2) fot = t; = m + 6; > 7. Retaining the leading terms only

we arrive at

2(d+2)H =~ 2(1 — cos by) + z (2 —8In2 4 2Inc + Intan? %tan2 0;) , (C.3)

wherec ~ 4H (7 — 1)) sin 6 is positive fory) < 7. As(y)) < 0 the leading term in the above expression
is ¢In ¢ which for positivec guarantees curvature growth in the vicinityf= 7. As H(0) > H() the
curvature dependence on the filling angle cannot be monotonous ahtheacurvature should have a local
maximum and a local minimum. Thus, as the curvature at the spherical me6isiciiss a decreasing
function of the filling angle (see Appendix B.1) and the same time in the vicinity ef r it always grows,

it always has a local minimum at the convex nodoid meniscus.
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Volume behavior analysis gives in the leading order

_64m(d + 2)%(2 — costa) (1 + costa)?  4m _ w(d+2)%(2 — costy)

2 3[4(1 + costa) 4+ cln¢)3 37 Vim) = 3(1 + costy)

47
- — A4
T (C4)

and its derivative in) reads in the leading order

dV(y)  w(d+2)*(2—costy)Inc
dp 4(1 + costg)? (¥,

and the volume decreasesyat= 7. Comparing the volume at two extreme values of the filling angle we
find thatV (0) < V(m), which implies that its behavior is non-monotonic and it should have at least on
local maximum and one local minimum. As the volume grows at the spherical merfsee B.1) its local
maximum is observed on convex nodoid meniscus.

Analysis of the surface area of the convex nodoid in the vicinity 6 « is done similarly to that of
performed at small filling angles in Appendix B.1. The area is given by (Awith s = 1 that gives in the
leading logarithmic order

_ 32m(d + 2)%(1 + costy)

_ 2m(d +2)?
S() = [4(1 + costa) + clnc]?’

S(m) = ;
() 1+ costo

(C.5)

and its derivative in) reads in the leading order

dS(w)  w(d+2)*Inc
dp (14 costy)? c(¥)-

Noting thatc/(v)) < 0 we find that the derivative of the surface area w.r.t. the filling angle istivegi@r

1 = w and the surface area decreases. Comparing the surface areaxrénweesalues of the filling angle
we find thatS(0) < S(), which implies that its behavior is non-monotonic and it should have at least on
local maximum and one local minimum. As the surface area grows at the sghragniscus (see B.1) its

local maximum is observed on convex nodoid meniscus.

C.2 Asymptotics of Nodoid Curvature

Here we discuss divergence of the curvatures of convex and wvemcaloids and corresponding asymp-

totics. Consider equation (2.10) for thed® menisci,
2HY =1 + sls (C.6)

whereV, I; and/, are defined in (2.10) and (2.13). For both nodaids 0, therefore integralg; and/,
are always convergent and divergence appears only Whsivanishing. This happens wher2 < d < 0,

i.e., the divergence does not occur when the solid bodies are separated
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Consider first the casé = 0 for which a singular point ig, = 0 and in its vicinityy) < 1 we obtain
U ~ 1% /2. Choose the power law of divergendé,~ U~ , whereU, 3, > 0, then in accordance with
(2.7) we find

—4H sinysint, ~ Uppt=% | By <1, Uy = —4Usinb; > 0,
c>~q 4Hsiny(Hsiny —sinty) =Us, Bo=1, Us=4U(U —sinfy) > 0, (C.7)
4H?sin? ¢ ~ Usyp2(1=Fo) = By > 1, Uz =4U? > 0,

that fory) — 0 impliesc ~ 0, Gy < 1,¢=4U(U —sinb,), By = 1 andc ~ oo, [y > 1.
Consider the integral$; and I. For the first of them we havé, ~ Ij + ¢ sin6;, wherel; =

—(cos 6 + cos 03). Regardingl,, denoteP(t, ¢) = sin?¢t/+/c + sin? t and obtain

f:iQQ P(tv Ulwliﬁo)dt + wp(ela Ulwliﬁo) ’ ﬁo < 15
I~ S0, P(t,Us)dt + P60, Us) , By =1, (C.8)

T—

SO, P(t, Usgp?0=00))dt + pP(0y, Usyp?1=00)) | 3y > 1.

™

Substituting (C.8) into (C.6) and making use of asymptotics (B.4) we find

I = gt (tan % tan % ) + wP(01, Ut~ | Gy < 1,
UQ/JQ_BO = Iik + ¢Sin91 + s fﬂeigz P(ta UQ)dt + wP(ala UQ) ) ﬂo = 17 (Cg)
St [T sin?t dt + P (6, Usp>150)) - By > 1,
Solve equation (C.9) in two cases. Firstdif+ - # m, then preserving the leading termsirnwe get
for theNod™ (61 + 65 > 7) solutions,
01
U~ =20, o <1; U™ =1+ / P(t,Up)dt, fo=1; Up*™ =17, By>1,

T—0o

which yieldsU = I}, By = 2. In the case of th&lod~ nodoid and; + 6, < 7 we get

%w1*50 In (tan %1 tan %2) , Bo<1
Uy = If = [, P(tU)dt, fo=1 (C.10)
If s ,80 >1
satisfied fortU = I}, By = 2 only. Thus, in the generic setdp + 62 # = the both nodoidal menisci have

divergent curvature,

cos 61 + cos 0y

P2 ’

In casedy = /2 its expression coincides with estimate (1.2) derived by simple considerations.

He — (C.11)
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Consider a special casg + 0, = m andf; # 0, 7, for Nod™ rewriting (C.9) in leading terms,

2U sin 6
Ut —2psingy, fo < 1 Ut — 200 g g —singy, Gy > 1,

- 2U —sinb;
which is satisfied fof/ = 2sin 6y, 3y = 1, i.e.,

3sin 04
29
In caseNod ™~ with 6, + 65 = 7, 6; # 0, 7, we have from (C.9) after substitution &%, U, andU3 defined
in (C.7)

H= . 0 £0,7. (C.12)

U —sin6y

P =290, o < 1 UyH 0 =25 dsinty, fo=1; UYT =gy, fip > 1

The first and third equations cannot be satisfied due to restrictiofis andU = 0. The second equation
U(2U — sin 91) = 2(U — sin (91) sin (91 y ﬁg =1 y (C13)

does not admit real solutions, so thed— meniscus is forbidden in the special cdset 0, = .
For —2 < d < 0 a singular point), = arccos(1 + d) > 0 does exist and in its vicinityy — ¢, =
n < 1 we obtain¥ ~ nsint,. Choosing the power law of divergencd, ~ V=51, 3; > 0, we find
¢ ~ 4V?2n~2P1 sin? 1),.. Write the leading im terms of integrald; and I
t
I, = I}* 4 ysint}, I = / P(t,4V? sin® ¢, 2P1)dt 4+ nP (0}, 4V % sin? ¢~ 201),
to

wherel;* = —(cost] + cosfy) andt] = 6; + v, and substitute them into (C.6),

oVni—B g Tk R 57761 tT-Q 2 %
n siny, >~ I7" +nsint] + 2 sin g </t2 sin“ ¢ dt + nsin t1> . (C.14)
In general casd); + 02 + 1. # m we have for both nodoidNod™ (61 + 65 + 1. > m) andNod™ (61 +
0o + 1, < ),
_cos(fh + i) tcostp 1

2 Y=ty

In casef, = /2 its expression coincides with estimate (1.4) derived by simple considerations.

H~ (C.15)

The special cas@, + 05 + 1. = 7 leads to

8 . .., ssin?t}

2Vn Prsin g, ~ sint] + mnﬂl,

satisfied by3, = 0 and H does not diverge in vicinity of the critical valug,. This conclusion holds for
any other (non power law) divergenée~ g(n) whené, + 6, + ¢, = m,

s 2 g%
ssin“t 1
2V sinth, ~sintf + ——1 —
gln)siny L 2V sing, g(n)
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Show that fo; + 05 + 1, = 7 theNod™ meniscus is forbidden while tHéod™ meniscus is allowed

for ¢b > *. First use (B.9) for = 0 to find the valuezsar at which the spherﬁphg is observed:
(1+d)sin(6y + ¢ ) + sin ¢y cos Oy = sin 6.

Direct computation shows thaff = ¢, = 7 — 6; — 0 satisfies the above equation, so that the sphere
Sph¢ exists at) = 1,.. As the menisculod~ exists in the range < 1, = v, which is forbidden due to
intersection, we conclude thlibd~ cannot be observed in this special case. The same time, the meniscus
Nod™ is allowed fory) > ¢& = 1. The value of théNod ™ curvature at) = 1. can be obtained by noting

that it is equal to thé€phg curvature that readdl = sin(6; + v.)/ sin¢.. The Table 3 (wherg = ¢ — 1,

andy, = arccos(1 + d)) summarizes the asymptotic behavior of ted* menisci curvature.

Table 3.
d 01+ s+ by < O +0p+1p, =7 01+ s+t >
Nod™ | =0 || —(cos(f1 + t«) + cos f2)n~2 forbidden forbidden
Nod~ | < 0 || —(cos(f1 + 9x) + cosfa)n? forbidden forbidden
Nod™ | = - (3/2sin61)n~t | —(cos(f1 + tx) + cos )2
Nod* | <0 - sin(0; + 1)/ sin v, | —(cos(01 4 1,) + cos Ba)n?

The empty entries in Table 3 indicate that tiled™ meniscus does not exist in the vicinity ©f contrary

to the "forbidden” entry that means that the corresponding meniscusribesxist in the whole range

Py <p <.
D Computation of Elliptic Integrals

In this appendix we derive formulas for computation of the elliptic integrald uséhe main text.

D.1 Conjugation of Elliptic Integrals
Here we prove that

(D.1)

/Z dt 1 /z dt

0 /sin?t+c Ve Jo /14_@7
(&

whereA(z) stands for complex conjugation of the functidfz). The case > 0 is trivial and the operation

A(z) can be omitted there. Consider negatiand rewrite the I.h.s. of (D.1) as follows

c=—1?, (D.2)

Z dt
R(v;0, 2 :/ R —
( ) 0 /sin?t — 12
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and focus on two cases:
1. sin®t — 2 < 0,when0 < ¢ < z,
2. sin?t — 12 < 0,when0 < t < z,, andsin?t — v2 > 0, whenz, <t < z.

In the first case the integral in (D.2) is purely imaginary,

R(v;0,z (D.3)

)= /Z dt 1 /Z dt
0 sint—12  WJo \/1—v-2sint
where an integral in the r.h.s. of (D.3) is real (positive). Thus, equdlity)(holds also in this case. In the

second case writ®(v; 0, z) as a sSumR(v; 0, z) = R(v; 0, z,) + R(v; 24, 2),

R(v; 2y, (D.4)

R(V.OZ)_/Z*‘“ Z)_/Zdt
T 0 +/sinZt — 2 ’ Zx \/sin2t—y2.

The first integral in (D.4) fosin? t — 2 < 0, is purely imaginary and can be calculated using (D.3)

R( Ve = tiv. (D.5)

1 #x dt
V; 07 Z*) - . / 9
Tw Jo /1 —v-2sin’t
Equality (D.1) holds forR(v; 0, z,). The second integrak(v; z,, ), wheresin? t — v > 0, is positive, so

R(v;0, z) can be represented as follows,

/Z dt 1 /Z dt n /Z dt (D.6)
= — W a—— I .
0 vsin2t—v2 T \Jo +/1-v2sin?t z V/sin?t — 12
Consider now another integral,
1 z dt 1 z dt
T(viz2) = 4 | ~Rwi0.2) = o [ . o7
tiv Jo /1 —v2sin?t +iv J., /1 —v2sin?t
which can be rewritten as follows
1 (7 dt z dt
T(v; 20, 2) = / = / —_— (D.8)
VJe Vr—2sin’t — 1 2 \/sin?t — 12
which is a negative number. Comparing the latter with (D.4) we oldf&in z,, z) = —R(v; 24, 2).
Combining the last equality with (D.7) we obtain
1 /z dt 1 /Z dt , /Z dt
, _ ! Fiv [ e ].  (D.9)
Tiv Jo 1—v—2sin2t Fw ( 0 V1—rv2sin%t z \/sin?t — 12
By comparison (D.6) and (D.9) we find finally
z dt 1 z dt
/ _ 1 / , (D.10)
0 Vsin2t —v2  Fw Jo /1 - v 2sin?t

Keeping in mind that we have takefc = +iv in (D.5—-D.7) and (D.9 — D.10), we arrive at (D.1).
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D.2 Computation of Elliptic Integrals at Special Limit Values ¢

Theintegrald, = L(t;,t1), Is = I3(t;, t}) and.J, = Jo(t7, t}) enter numerous formulas for unduloids
Und?, so that it is instructive to find their explicit expression through the completdiellitegrals of the

first K and second kind. In derivation we used relations from [10, 11]. We start with theegairelations
E(tf+mn, k) = k[E(—¢)—(c+1) K(=c)|4+2nE(K?), F(tf+mn, k) = vV—cK(—c)+2nK (k?), (D.11)

using them withn = 0, —1 for ¢, ¢, respectively. From definition (2.14) @ integral we obtain for,

Iy = 2/e[E(K?) — K(K) — k(E(~¢) — K (~0))],

where the expression in the square brackets simplifieg'td + 1/c) leading to

Iy =2V =cE(1+1/c). (D.12)
We also find R
%:_CE(l—Fl/C)—FK(l—Fl/C)‘ (D.13)
dc (I14+¢)V—c
Using (2.20) it is easy to check by direct computation that
. . - Y — B+t
Jy = 1+cI2Jr E(t; k) — E(t] ,k:)’
3 3
and we find
- 21 +
o= 20149 g 110 + [ E(—c) — i(1+ ¢)K(—c) — VeE(=1/c)]. (D.14)
Finally, using (2.15) we find
Is = —2[icK (—c) + VeK (=1/¢)],
and using [11] we arrive at
Iy = —2v/—=cK(1+1/c). (D.15)
Collecting the expressions (D.12,D.15) and using the definition (2.18) we find
Ky=K(t;,t5) =4V1+ ¢+ 2sv—c2E(1 +1/¢) — K(1+1/¢)]. (D.16)
Finally, consider |ntegraf4 = I(t;,t5) = I4 + Iy, Which is written as a sum of a constant term

I,. and a divergent pat,,;. This representation follows from (2.23) where the second term digeag
c +sin?tF = 0 and we find
sin 2t ~ 2tant]

(14 c)Ve+sin?tf B Ve+sin2ef

Iyg =
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Introducingc = (4¢2 — 1) sin? t} wheree — 0 we obtain

N 1 1
Ti7 = = . D.17
Ad ecosty evV1+ec ( )

Turning to the constant term ih we compute the first term in (2.23) using the relations (D.11) and find

L. = \2 {K(k:2) —

c
1+c

[E(k?) — kE(—c)]} . (D.18)
Using the relation from [11]
E(z) = vzE(1/2) —iB(1 — 2) +izK(1 — 2) + (1 — 2)K(2),
we find forz = —1/¢
E(=1/¢) = /=1/cE(=¢) = —iE(1 +1/c) — (i/c)K(1 + 1/¢) + %K(—l/@).

Substituting it in (D.18) and comparing the result with (D.13) we find

1

evI+e

Iy = —2I4(c) + (D.19)
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