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Abstract

We study stability of axisymmetric liquid bridges between two axisymmetric solid bodies in the

absence of gravity under arbitrary asymmetric perturbations which are expanded into a set of angular

Fourier modes. We determine the stability region boundary for every angular mode in case of both fixed

and free contact lines. Application of this approach allowsus to demonstrate existence of stable convex

nodoid menisci between two spheres.

1 Introduction

An interface between two adjacent fluids both contacting solid(s) is called a capillary surface, which shape

depends on liquid volumes and boundary conditions (BC) specified at the contact line where the liquids

touch the solids. A liquid bridge (LB) emerges when a small amount of fluid (interfacing a surrounding

liquid with different properties) contacts two (or more) solid bodies. The LB problem has long history in

both theoretical physics and pure mathematics where the research mostly focused on two topics – menisci

shapes and related parameters (volumeV , surface areaA and surface curvatureH) and menisci stability.

A menisci shape study was pioneered by Delaunay [4] who classified all surfaces of revolution with con-

stant mean curvature satisfying the Young-Laplace equation (YLE). These are cylinder, sphere, catenoid,

nodoid and unduloid. Later Beer [1] found analytical solutions of YLE through elliptic integrals and Plateau

[13] provided experimental support to the LB theory. The first explicit formulas were derived in [12] for

shapes and parametersH, V andA for all meniscus types in case of solid sphere contacting thesolid plate.

A more complex case of the sphereabovethe plate was considered in [14]. The solutions for meniscus

shape exhibit a discrete spectrum and are enumerated by two indices reflecting the number of inflection
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points on the meniscus meridional profile and meniscus convexity. The existence of multiple solutions [14]

for given volume of LB leads to a question of menisci local stability.

The development of menisci stability theory was initiated by Sturm [17] in appendix to [4], which

described Delaunay’s surfaces as the solutions to an isoperimetric problem (IP). The basis of variational

theory of stability was laid in 1870s by Weierstrass in his unpublished lectures [21] and extended by Bolza

[2] and other researchers (see Howe [10], Knesser [9]).

The case of axisymmetric LB with fixed contact lines (CL) was studied by Howe [10] who derived a

determinant equation to produce a boundary of the stabilityregion under small axisymmetric perturbations.

This approach in different setups is used widely in applications [5, 8]. Forsyth [7] considered stability of

the extremal surface of the general type under asymmetric perturbations. Stability of axisymmetric menisci

with free CL at solid bodies is a variational IP with free endpoints which are allowed to run along two given

planar curves which makes a problem untractable within Howe’s theory framework.

To avoid this difficulty Vogel develops an alternative approach based on functional analysis methods.

He built an associated Sturm-Liouville equation (SLE) for the meniscus perturbation with Neumann BC

instead of Dirichlet BC for fixed CL and established the stability criterion for LB between parallel plates

[18]. The algorithm requires to find a solution to boundary value problem and analyze the behavior of the

two smallest eigenvalues of SLE. Implementation of this step is extremely difficult task both both unduloid

and nodoid menisci. This is why a single nontrivial result for catenoid meniscus between two parallel

plates is known due to Zhou [22]. The stability of LB between other solids demands an analytical solution

of boundary value problem. Up to date this was done by Vogel only for cylindrical meniscus between equal

spheres in [19]. Another (more qualitative) result reported in [20] for unduloid and nodoid menisci between

spheres.

A more straightforward approach was developed by a researchgroup headed by Myshkis (see [11] and

the references therein) which considers a sequence of SLEs with mixed BC for the Fourier angular modes

of the perturbation. The spectrum ofn-th SLE (n ≥ 0) (corresponding ton-th perturbation mode) consists

of discrete real valuesλn,k, k ≥ 1, whereλn,k < λn,k+1. It was shown thatλn,1 < λn+1,1, so that it is

required only to find sign ofλ∗ = min{λ0,1, λ1,1} to establish meniscus stability. The stability boundary

is given byλ∗ = 0. An important development of this method is mentioned in Sections 3.2, 3.3 in [11] for

the case of asymmetric perturbations of the axisymmetric meniscus between axisymmetric solids.

In [6] and [15] another alternative method was suggested to determine the stability region of axisym-

metric menisci with free CL under influence of axisymmetric perturbations. It is a development of the

approach proposed in [21, 2] for the case of fixed CL. This manuscript presents a natural extension of the
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method presented in [6] to the case of asymmetric perturbations.

The manuscript is organized in six sections. In Section 2 we consider a problem of stability of axisym-

metric LB between two solids under asymmetric small perturbations as a variational problem. We derive a

general expression for the surface energy functional with aconstant liquid volume constraint imposed on it.

This expression is written explicitly for the case of axisymmetric solid bodies; then the first and the second

variations of the functional are derived. The first variation is used to generate YLE for the equilibrium

meniscus shape and the Dupré-Young relations determiningthe contact angles of the meniscus with the

solids. The second variation leads to the stability criterion of the meniscus with free CL.

In Section 3 we consider both fixed and free CL and derive the Jacobi equation which solutions are used

to establish the stability conditions. Further following ideas of [11] we introduce the Fourier expansion of

the asymmetric perturbation into a single axisymmetric anda set of asymmetric modes. This expansion nat-

urally leads to a sequence of the Jacobi equations for each perturbation mode; then the stability conditions

for each mode is derived for both fixed and free CL.

Section 4 is devoted to computation of the stability condition components which are used in Section

5 to analyze the stability of unduloid and nodoid menisci between two plates and two solid spheres. The

results are briefly discussed in Section 6.

2 Stability problem as a variational problem

Let a surfaceS with parametrizationρ(t, s) = {r(t, s) cos s, r(t, s) sin s, z(t, s)}, 0 ≤ s ≤ 2π, is given in

such a way that it is bounded by contact linescj , j = 1, 2, belonging to axisymmetric solid body (SB)Sj

parameterized asRj(τj); the CL itself is defined asrj(tj(s)) = Rj(τj(s)). The CLcj is parameterized

by the angular parameters, rj(s) = Rj(s) represents a curve on the surfaceSj, which determines the

dependenciestj(s) andτj(s). We also would need a reduced parametrizationr(t, s) = {r(t, s), z(t, s)} of

the surfaceS.

Consider the first isoperimetric problem (IP–1) for a functionalE[ρ]

E[ρ] =

∫∫

S
E(ρ, τ ,σ)dtds +

∫∫

S1

A1(R1,T1)dτ1ds+

∫∫

S2

A2(R2,T2)dτ2ds, (2.1)

with a constraint imposed on a functionalV [ρ],

V [ρ] =

∫∫

S
V(ρ, τ ,σ)dtds −

∫∫

S1

B1(R1,T1)dτ1ds +

∫∫

S2

B2(R2,T2)dτ2ds, (2.2)

where we denoteft = ∂f/∂t, andfk,t = ∂fk/∂t, and introduce two types of tangent vectors to the surface

S: τ = ρt, σ = ρs, and also one to each ofSj: Tj = Rj,τj . Similarly, we introducet = rt, ands = rs,
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for the functionalsE[r], V [r]. The integrals over the meniscus surfaceS and thej-th SB surfaceSj are

written explicitly as

∫∫

S
Fdtds =

∫ 2π

0
ds

∫ t1(s)

t2(s)
Fdt,

∫∫

Sj

Gjdτjds =

∫ 2π

0
ds

∫ τj(s)

0
Gjdt, (2.3)

wheret2(s) < t1(s) for all s. Denote by〈a,b〉 the scalar product of two vectorsa andb, while the

multiplication of a matrixA by a vectorb is written asA · b.

IntegrandsE andV assumed to be positive-homogeneous functions of degree onein botht andτ , e.g.,

E(r, kt, s) = kE(r, t, s), resulting in identities

E =

〈
∂E

∂t
, t

〉
=

〈
∂E

∂τ
, τ

〉
, V =

〈
∂V

∂t
, t

〉
=

〈
∂V

∂τ
, τ

〉
, (2.4)

while similar relations hold forAj andBj w.r.t. their argumentTj:

Aj =

〈
∂Aj

∂Tj
,Tj

〉
, Bj =

〈
∂Bj

∂Tj
,Tj

〉
. (2.5)

We have to find such an extremal surfaceS̄ with free CL c̄j(s), located on two given surfacesSj that

the functionalE[ρ] reaches its minimum and another functionalV [ρ] is constrained. Define the functional

W [ρ] = E[ρ]− λV [ρ] with Lagrange multiplierλ

W [ρ] =

∫∫

S
F (ρ, τ ,σ)dtds+

∫∫

S1

G1(R1,T1)dτ1ds−
∫∫

S2

G2(R2,T2)dτ2ds, (2.6)

whereF = E− λV andG1 = λB1 + A1, G2 = λB2 − A2. The functionsF andGj represent the physical

quantities of the same type (e.g., surface area, energy,etc.) and thus have the same physical dimension.

To simplify the formulas further we use the following notation

Fr ≡
∂F

∂r
, Frt ≡

∂

∂t

∂F

∂r
, Ftr ≡

∂

∂r

∂F

∂t
= F T

rt, etc.

whereMT denotes a transposed matrixM. According to (2.4, 2.5) we have

F = 〈Ft, t〉 = 〈Fτ , τ 〉 , Gj =

〈
∂Gj

∂Tj
,Tj

〉
. (2.7)

From the first relation in (2.7) we also find

Fr = Ftr · t, Ftt · t = 0. (2.8)

The curved meniscus surfaces are completely defined by several differential geometry quantities:

E = 〈τ , τ 〉, G = 〈σ,σ〉, F = 〈τ ,σ〉, V2 = 〈ν,ν〉 = EG − F2,

〈ν,ρtt〉 = VL, 〈ν,ρts〉 = VM, 〈ν,ρss〉 = VN ,
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where the cross productν = σ × τ , defines the (unnormalized) normal vectorν to the surfaceS.

Before moving further we recall the standard formulas for the computation of the surface areaA and

the volumeV of the surface defined asr(t, s) = {r1(t, s), r2(t, s), r3(t, s)}. They read

A =

∫∫

S
|ν| dsdt =

∫∫

S

√
EG − F2 dsdt, Aj =

∫∫

Sj

|Nj | dsdτj , (2.9)

V =

∫∫

S
〈ν,p〉 dsdt, Vj =

∫∫

Sj

〈Nj,Pj〉 dsdτj , div p = div Pj = 1. (2.10)

Choosingp = {r1, r2, 0}, andPj = {Rj1, Rj2, 0}, we obtain

V =
1

2

∫∫

S

[
r1

(
∂r2
∂s

∂r3
∂t

− ∂r3
∂s

∂r2
∂t

)
− r2

(
∂r1
∂s

∂r3
∂t

− ∂r3
∂s

∂r1
∂t

)]
dsdt, (2.11)

Vj =
1

2

∫∫

Sj

[
Rj1

(
∂Rj2

∂s

∂Rj3

∂τj
− ∂Rj3

∂s

∂Rj2

∂τj

)
−Rj2

(
∂Rj1

∂s

∂Rj3

∂τj
− ∂Rj3

∂s

∂Rj1

∂τj

)]
dsdτj .

We need these expressions further as the main goal of this manuscript is to perform the stability anal-

ysis of the liquid menisci. In this case the componentsE(V) andAj(Bj) of the integrands in (2.6) are

proportional to the surface area (volume) of the meniscus and two SBSj , respectively:

E = γlv
√

EG − F2, V =
1

2

[
r1

(
∂r2
∂s

∂r3
∂t

− ∂r3
∂s

∂r2
∂t

)
− r2

(
∂r1
∂s

∂r3
∂t

− ∂r3
∂s

∂r1
∂t

)]
,

Aj = (−1)j+1(γlsj − γvsj )|Nj |,

Bj =
1

2

[
Rj1

(
∂Rj2

∂s

∂Rj3

∂τj
− ∂Rj3

∂s

∂Rj2

∂τj

)
−Rj2

(
∂Rj1

∂s

∂Rj3

∂τj
− ∂Rj3

∂s

∂Rj1

∂τj

)]
,

and using these explicit expressions we find

F = γlv
√

EG − F2 − λ/2

[
r1

(
∂r2
∂t

∂r3
∂s

− ∂r3
∂t

∂r2
∂s

)
− r2

(
∂r1
∂t

∂r3
∂s

− ∂r3
∂t

∂r1
∂s

)]
. (2.12)

2.1 Axisymmetric solid bodySj

Restricting consideration to the axisymmetric SB we haveRj = {Rj(τj) cos s,Rj(τj) sin s, Zj(τj)},

where0 ≤ τj ≤ τj(s), and find

Aj = (−1)j+1(γlsj − γvsj )Rj

√
R′2

j + Z ′2
j , Bj = R2

jZ
′

j/2, (2.13)

so that

Gj = λR2
jZ

′

j/2 + (−1)j(γlsj − γvsj )Rj

√
R′2

j + Z ′2
j (2.14)

The SB surface area and volume read

Aj =

∫ 2π

0
ds

∫ τj(s)

0
dτjRj

√
R′2

j + Z ′2
j , Vj =

∫ 2π

0
ds

∫ τj(s)

0
dτjZ

′

jR
2
j/2. (2.15)
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Similarly, usingρ(t, s) = {r(t, s) cos s, r(t, s) sin s, z(t, s)}, we have

E = r2t + z2t = 〈t, t〉 = |t|2, G = r2 + r2s + z2s = r2 + 〈s, s〉 = r2 + |s|2, F = rsrt + zszt = 〈t, s〉,

and obtain

E =
[
(r2 + |s|2)|t|2 − 〈t, s〉2

]1/2
, V = r2zt/2,

F = γlv
√

r2|t|2 + |s|2|t|2 − 〈t, s〉2 − λr2zt
2

. (2.16)

If the surfaceS is axisymmetric too the contact lines transform into circles, and its surface area and volume

read

A = 2π

∫ t1

t2

dt r
√

r2t + z2t , V = π

∫ t1

t2

dt ztr
2, (2.17)

so that (2.16) reduces to

F = γlv

√
r2(r2t + z2t )−

λr2zt
2

. (2.18)

The variational problem with (2.18) and (2.14) under axisymmetric perturbations was considered in [6]. It

should be underscored here that the selection of axisymmetric contact surfacesSj does notimply that the

surfaceS should be axisymmetric too.

The goal of this manuscript is to develop a framework for the description of the stability of asymmetric

meniscus under generalasymmetricsmall perturbations. This requires a consideration of the functional

W with F andGj given by (2.16) and (2.14), respectively. We impose only onerestriction on this setup,

namely, we require that the contact lines with the axisymmetric solid bodies should becircular. Then the

integration ofF should be performed in the following range oft valuest2 ≤ t ≤ t1, where both limits are

independent ofs. Correspondingly, the upper integration limitτj for Gj also does not depend ons.

2.2 Meniscus surface perturbation

Introduce a six-dimensional vectorp(t, s) = {r, z, rt, zt, rs, zs} ≡ {r, t, s}, and calculate total variation of

the functional,DW = D0W+D1W−D2W , where each term represents the variation of the corresponding

term ofW [r] in (2.6). Consider the first term, denoting a small variationof the surfaceS asu(t, s) =

{u(t, s), v(t, s)}, restricted by a condition on CL that itshould alwaysbelong to the surfaceSj:

r(tj) + u(tj(s), s) = Rj(τj + δτj(s)),

so that we arrive at the expansion

u(tj(s), s) =

∞∑

k=1

uk(τj(s), s), uk(tj(s), s) =
1

k!

dkRj

dτkj
δkτj(s).
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Thus we obtain in the lowest orders

u1(tj(s), s) =
dRj

dτj
δτj(s) = Tjδτj , u2(tj(s), s) =

1

2

dTj

dτj
δ2τj(s). (2.19)

The variation due to integrand perturbation is found as

D0W =

∫ 2π

0
ds

∫ t1

t2

[∆1F +∆2F + . . .] dt, (2.20)

∆1F = 〈Fp,h〉, (2.21)

∆2F =
1

2
〈h, Fpp · h〉, (2.22)

whereh = {u, v, ut, vt, us, vs} ≡ {u,ut,us}. The variationDjW due to perturbation of thej-th CL

parameterized byδτj(s) reads

DjW =

∫ 2π

0
ds

∫ τj+δτj (s)

0
Gj dτj −

∫ 2π

0
ds

∫ τj

0
Gj dτj =

∫ 2π

0
ds

∫ τj+δτj(s)

τj

Gj dτj . (2.23)

Further we need the inner integral in (2.23) expanded up to the terms quadratic inδτj :

∫ τj+δτj(s)

τj

Gj dτj = G∗

jδτj(s) +
1

2

dG∗

j

dτj
[δτj(s)]

2 + . . . , G∗

j = Gj(τj). (2.24)

Using this expansion we find

DjW =

∫ 2π

0

[
G∗

jδτj(s) +
1

2

dG∗

j

dτj
[δτj(s)]

2 + . . .

]
ds. (2.25)

2.3 First Variation δW

Using expressions (2.20) forD0W andDjW of the terms linear inδτj andh, calculateδW

δW =

∫ 2π

0
ds

[∫ t1

t2

dt∆1F +G∗

1δτ1(s)−G∗

2δτ2(s)

]
. (2.26)

The explicit expression for the integrand variation reads:

∆1F = 〈Fr,u〉+ 〈Ft,ut〉+ 〈Fs,us〉,

Following [7] integrate the relations

∂

∂t
〈Ft,u〉 = 〈Ft,ut〉+ 〈∂Ft/∂t,u〉,

∂

∂s
〈Fs,u〉 = 〈Fs,us〉+ 〈∂Fs/∂s,u〉,

and use the Green’s theorem

∫∫

S
dsdt

(
∂Q

∂t
− ∂P

∂s

)
=

∫

L
(Pdt+Qds),
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to find the first term in (2.26)
∫∫

S
dsdt∆1F =

∫∫

S
dsdt〈δF,u〉+

∫

L
ds〈Ft,u〉 −

∫

L
dt〈Fs,u〉, δF = Fr −

∂Ft

∂t
− ∂Fs

∂s
, (2.27)

whereL in the last two integrals denotes the boundary of the integration region. Consider computation

of these integrals in an important particular case of theaxisymmetricsurfacesSj using the cylindrical

coordinates and assuming without loss of generality that the variables denotes the polar angle (s2 = 0 ≤
s ≤ s1 = 2π), while t covers the ranget2 ≤ t ≤ t1, The integration contourL consists of four segments

Lk shown in Figure 1:L1 : {s = 0, t2 ≤ t ≤ t1}, L2 : {0 ≤ s ≤ 2π, t = t2}, L3 : {s = 2π, t2 ≤ t ≤
t1}, L4 : {0 ≤ s ≤ 2π, t = t1}. The integration results w.r.t.t along the liness = 0 ands = 2π cancel

Figure 1: Sketch of the integration contour in the{s, t} coordinates in case of axisymmetric solid bodies

and circular contact linest = t1 andt = t2.

each other and thus we have to find the contributions forL2 andL4 only. As the integration along these

lines goes in opposite directions we have for the contour integral overs
∫

L
ds〈Ft,u〉 =

∫ 2π

0
ds [〈Ft,u〉|t=t1 − 〈Ft,u〉|t=t2 ] . (2.28)

Finally, the expression (2.27) reduces to
∫∫

S
dsdt∆1F =

∫∫

S
dsdt〈δF,u〉+

∫ 2π

0
ds [〈Ft,u〉|t=t1 − 〈Ft,u〉|t=t2 ] , (2.29)

and we write

δW =

∫∫
dtds〈δF,u〉+

∫ 2π

0
ds [G∗

1δτ1(s) + 〈Ft,u〉|t=t1 −G∗

2δτ2(s)− 〈Ft,u〉|t=t2 ] , (2.30)

8



where the terms in (2.29) are paired with the boundary terms in (2.26), while the double integral should

vanish to guarantee vanishing of the first variation. As the small perturbationu is arbitrary we conclude

that the following condition should hold:

δF = Fr −
∂Ft

∂t
− ∂Fs

∂s
= 0, (2.31)

which corresponds to two Euler-Lagrange (EL) equations. The EL equations (2.31) determine a surface of

an asymmetric meniscus withcircular CL on both axisymmetric SB. Search of general solutions of (2.31)

represents a difficult problem, and it is out of scope of this manuscript.

We further restrict ourself to the case ofaxisymmetricmenisci as liquid bridge equilibrium surface, and

thus we simplify equations (2.31) into

Fr −
dFt

dt
= 0, (2.32)

assuming the solution̄r = r̄(t). Settingλ = 2γlvH, whereH is the mean curvature, we obtain from (2.32):

rtt = −zt(2H − zt/r), ztt = rt(2H − zt/r),

from which it follows that a conditionr2t + z2t = 〈t, t〉 = 1, holds. The definition ofλ should be used in

(2.16) which after rescaling toγlv takes two equivalent forms which will be used further on

F =
√

r2|t|2 + |s|2|t|2 − 〈t, s〉2 −Hr2zt =
√

r2|t|2 + 〈n, s〉2 −Hr2zt. (2.33)

In (2.30) we retain only the terms linear inδτj , i.e., proportional tou1; the higher order terms will

contribute to the second and higher variations. Using (2.19) we find that the first variation vanishes when

(2.31) holds along with

0 =

∫ 2π

0
ds [G∗

1δτ1(s) + 〈Ft,u1〉|t=t1 −G∗

2δτ2(s)− 〈Ft,u1〉|t=t2 ]

=

∫ 2π

0
ds [G∗

1 + 〈Ft(t1),T1〉] δτ1(s)−
∫ 2π

0
ds [G∗

2 + 〈Ft(t2),T2〉] δτ2(s). (2.34)

Due to arbitrariness of the CL perturbationδτj(s) we conclude that two boundary conditions should hold

G∗

j + 〈Ft(tj),Tj〉 = 0. (2.35)

The transversality conditions (2.35) are known as the Dupr´e-Young relations for the contact angleθj of the

meniscus with thej-th SB,

γlsj − γvsj
γlv

+ cos θj = 0, cos θj = (−1)j+1 〈tj ,Tj〉
|tj ||Tj |

= (−1)j+1 〈nj ,Nj〉
|nj ||Nj|

, (2.36)
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wheren denotes the normal to the meridional cross section of the meniscus,i.e., 〈t,n〉 = 0.

Introduce a projectionW of the perturbationu on the normalν to the meniscus:W (t, s) = 〈u,ν〉. At

the endpointstj this quantity does not depend ons andW (t) has the values depending onδτj ,

W (tj) = Rj(τ
∗

j )η(tj , τ
∗

j )δτj + . . . , η(tj , τ
∗

j ) = ηj = 〈Tj,n(tj)〉 . (2.37)

Comparison of (2.36) with (2.37) implies thatηj is proportional tosin θj . Further we use a projectionw of

the perturbationu on the normaln: w(t, s) = 〈u,n〉, so thatW (tj) = Rj(τ
∗

j )w(tj).

The solutionr = r̄(t) of (2.32) together with (2.35) provides the extremal value of E[r] constrained

by V [r] = 1. This extremal curve cannot intersect any of the solid bodies, except the contact at the points

tj. It can be satisfied when a simple geometric condition on the tangents to the extremal curve and the

solid at the contact point holds. This existence condition can be expressed asηj ≥ 0, andηj = 0 defines a

boundary of a meniscusexistence region.

2.4 Second Variationδ2W

Use in (2.20) the terms quadratic inδτj andh, and calculate the second variationδ2W ,

δ2W =

∫ 2π

0
ds

[∫ t1

t2

∆2Fdt+ 〈Ft,u2(t)〉t1t2 +
1

2

(
dG1

dτ1
[δτ1(s)]

2 − dG2

dτ2
[δτ2(s)]

2

)]
=

∫ 2π

0
dsδ2W̃ (s), (2.38)

Here the term〈Ft,u2(t)〉 is added due to the reason described above in discussion of (2.30). Substituting

u2(t) from (2.19) into the last expression we obtain for the inner integral in (2.38)

δ2W̃ (s) =

∫ t1

t2

∆2Fdt+
1

2

(〈
Ft(t1),

dT1

dτ1

〉
+

dG1

dτ1

)
[δτ1(s)]

2

− 1

2

(〈
Ft(t2),

dT2

dτ2

〉
+

dG2

dτ2

)
[δτ2(s)]

2. (2.39)

First compute the general expression for∆2F :

∆2F =
1

2
〈u, Frr · u〉+ 〈u, Ftr · ut〉+

1

2
〈ut, Ftt · ut〉

+
1

2
〈us, Fss · us〉+ 〈u, Fsr · us〉+ 〈us, Fts · ut〉 .

Recalling that the meniscus equilibrium axisymmetric surface r̄(t) depends only ont, we can check by

direct computation that last two terms in the above expression vanish, and we end up with

∆2F =
1

2
〈u, Frr · u〉+ 〈u, Ftr · ut〉+

1

2
〈ut, Ftt · ut〉+

1

2
〈us, Fss · us〉 . (2.40)

10



Denoteδ2BW̃ =
∫ t1
t2

∆2Fdt and generalizing an approach of Weierstrass [21], pp.132-134 (see also Bolza

[2], p.206) represent it in terms of small perturbationu1 andw(t, s)

δ2BW̃ =
1

2

[
Ξ0[w] +

〈
u1, L̂ · u1

〉t1
t2

]
, L̂ = Ftr −H1(t) n

′ ⊗ n, (2.41)

Ξ0[w] =

∫ t1

t2

[
H1(t)w

2
t (t, s) +H4(t)w

2
s(t, s) +H2(t)w

2(t, s)
]
dt, (2.42)

whereH1(t), H2(t), andH4(t) are defined through matrix relations

Ftt = H1(t) n⊗ n, Fss = H4(t) n⊗ n, Frr −
∂L̂

∂t
−H1(t) n

′ ⊗ n′ = H2(t) n⊗ n, (2.43)

⊗ denotes the outer product of two vectors,n′ = dn/dt, andn(t) denotes the normal to the meridional

cross section of the meniscusr̄(t). The expression (2.42) forΞ0[w] generalizes formula (2.17) in [6] to the

case of asymmetric perturbations. The relation (2.39) reads

δ2W̃ = δ2BW̃ + ξ1[δτ1(s)]
2 − ξ2[δτ2(s)]

2, (2.44)

ξj =
1

2

(〈
Ft(tj),

dTj

dτj

〉
+

〈
∂Gj

∂Rj
,Tj

〉
+

〈
∂Gj

∂Tj
,
dTj

dτj

〉)
. (2.45)

Substituteu1(tj) from (2.19) into (2.41) and combine it with (2.44) to find

δ2W =

∫ 2π

0
ds

[
1

2
Ξ0[w] +K1[δτ1(s)]

2 −K2[δτ2(s)]
2

]
, Kj = ξj +

1

2

〈
Tj, L̂(tj) ·Tj

〉
. (2.46)

Using the definition (2.41) compute the following term in theabove expression

〈
Tj, L̂(tj) ·Tj

〉
= 〈Tj ,Ftr(tj) ·Tj〉 −H1(tj)〈n′

j ,Tj〉〈nj ,Tj〉.

Introducingη′j = 〈n′

j ,Tj〉, we find

Kj =
1

2

(〈
Ft(tj) +

∂Gj

∂Tj
,
dTj

dτj

〉
+

〈
Ftr(tj) ·Tj +

∂Gj

∂Rj
,Tj

〉
−H1(tj)ηjη

′

j

)
. (2.47)

Multiply L̂(t) by the vectort; using the relation (2.8) and〈n, t〉 = 0, from (2.42) we obtain (see also [3],

p. 226):

L̂(t) · t = Ftr · t = Fr, (2.48)

Show that the EL equations (2.32) imply the following symmetry: L̂ = L̂T . To this end rewrite (2.32)

performing the differentiation w.r.t.t explicitly and use (2.43):

Fr −
∂Ft

∂t
= Fr − Frt · t− Ftt · t′ = Fr − L̂T · t−H1(t)

〈
n′, t

〉
n−H1(t)

〈
n, t′

〉
n.

Noting that〈n′, t〉+ 〈n, t′〉 = 〈n, t〉′ = 0, we find

Fr −
∂Ft

∂t
= Fr − L̂T · t = 0,

11



and recalling (2.48) we arrive at(L̂− L̂T ) · t = 0. We obtain

Fr −
∂Ft

∂t
= (L̂− L̂T ) · t = Tn, where T = L12 − L21 = Frzt − Fzrt +H1

〈
n′, t

〉
= 0. (2.49)

Thus the EL equations (2.32) are equivalent to single Young-Laplace equation (2.49). The computation of

the first variationδV is done similarly ([2], p.215) and it produces

δV = 2

∫ 2π

0
ds

∫ t1

t2

H3(t)w(t, s)dt = 0, (2.50)

whereH3 is determined through the relations

Vr −
dVt

dt
= H3(t)n, H3(t) = Vrzt − Vzrt + V1

〈
n′, t

〉
, Vtt = V1 n⊗ n. (2.51)

Consider the second expression in (2.43) determining the functionH2. Using the definition (2.42) of the

matrix L̂ we have

H2(t) n⊗ n = Frr −
∂L̂

∂t
−H1(t) n

′ ⊗ n′ = Frr −
∂

∂t
Ftr +

(
H1(t) n

′
)
′ ⊗ n.

Using (2.49) we have,

Frr −
∂

∂t
Ftr =

∂

∂r

(
Fr −

∂Ft

∂t

)
= Tr ⊗ n, H2 n = Tr + (H1 n

′)′, (2.52)

and find

ztH2 =
∂(H1ztt)

∂t
+

∂T

∂r
, rtH2 =

∂(H1rtt)

∂t
− ∂T

∂z
. (2.53)

Using the definition (2.49) rewrite the above relations

ztH2 =
∂(H1ztt)

∂t
+ (Frrzt − Frzrt), rtH2 =

∂(H1rtt)

∂t
− (Frzzt − Fzzrt). (2.54)

The explicit expression for the functionsHi(t) for the integrandF in (2.16) read

H1 = H3 = r, H2 = (rr′′)′/r′, H4 = 1/r. (2.55)

3 Boundary conditions

To study stability of extremal curvēr(t) w.r.t. small perturbations it is convenient to consider twocases

which differ by the conditions imposed on the perturbed meniscus CL – fixed CL and free CL.

12



3.1 Fixed contact lines

The first case is when̄r(t) is perturbed in the interval(t2, t1), but the CLs are fixed,

u(tj) = 0, w(tj) = 0, j = 1, 2. (3.1)

Start with the second isoperimetric problem (IP–2) associated with extremal perturbationsu(t) in vicinity

of r̄(t) with BC (3.1) and constraint of the volume conservation (2.50)

Ξ1[w] =

∫ 2π

0
ds

∫ t1

t2

H3(t)w(t, s)dt = 0, (3.2)

involving the perturbationw(t). Substituting (3.1) into (2.41) we arrive at the classical isoperimeteric prob-

lem with the second variationΞ0[w]. Analyzing the problem with functionalΞ2[w] = Ξ0[w] + 2µΞ1[w],

whereµ denotes a Lagrange multiplier,

Ξ2[w] =

∫ 2π

0
ds

∫ t1

t2

dt[H1(t)w
2
t +H4(t)w

2
s +H2(t)w

2 + 2µH3(t)w], (3.3)

write the EL equation with BC (3.1) for extremalsw(t, s) which is the inhomogeneous Jacobi equation

(H1wt)t +H4wss −H2w = µH3, (3.4)

with the boundary conditionsw(t1, s) = w(t2, s) = 0.

3.2 Free contact lines

Consider a case when̄r(t) is perturbed at interval[t2, t1] including both CL. The nonintegral term in (2.46)

is fixed and in general case it does not vanish. Following ideology of stability theory we have to find

conditions whenδ2W is positive definite in vicinity of extremal curve constrained by (2.2). Since the only

varying part in (2.46) is the functionalΞ0[w], this brings us to IP–2 with one indeterminate functionw(t, s):

find the extremal̄w(t, s) providingΞ0[w] to be positive definite in vicinity of̄w(t) and preservingΞ1[w].

Using the reasoning presented in [6] writew(t, s) in vicinity of extremal perturbation̄w(t) as follows,

w(t, s) = w̄(t, s) + ε(t, s), ε(t1, s) = ε(t2, s) = 0, ε(t, 0) = ε(t, 2π),

Ξ1[ε] =

∫ 2π

0
ds

∫ t1

t2

dtH3ε(t, s) = 0, (3.5)

where a perturbationε(t) does not break BC (2.37), and preserves the volume conservation condition (3.2).

Find the first and second variations of functionalΞ2[w] defined in (3.3),

δΞ2[w] = 2

∫ 2π

0
ds

∫ t1

t2

[−(H1w̄t)t −H4w̄ss +H2w̄ + µH3] ε(t) dt, (3.6)

δ2Ξ2[w] =

∫ 2π

0
ds

∫ t1

t2

[
H1ε

2
t +H4ε

2
s +H2ε

2
]
dt, (3.7)
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The first variationδΞ2[w] vanishes at the extremalw̄(t) satisfying the inhomogeneous Jacobi equation (3.4).

Regarding the second variationδ2Ξ2[w] it completely coincides withΞ0[w], as well as BC and volume

constraint (3.5) are coinciding with similar BC (3.1) and constraint (3.2) in the isoperimetric problem with

fixed endpoints (Section 3.1).

3.3 Fourier expansion

Consider a homogeneous version of (3.4)

(H1wt)t +H4wss −H2w = 0, (3.8)

and seek one of its fundamental solutions using the separation of variablesw(t, s) = T (t)S(s). Substituting

this ansatz into (3.8) we obtainS(H1T
′)′ +H4TS

′′ −H2TS = 0, leading to

[(H1T
′)′/T −H2]/H4 = −S′′/S = n2, (3.9)

wheren2 is the separation constant. These two equations can be written as

S′′ + n2S = 0, (H1T
′)′ −H2T − n2H4T = 0, (3.10)

where the first equation naturally leads to Fourier angular modesSn(s) = S0 exp(ins), for integern.

Following [11] expand the perturbationu(t, s) and its componentsuk(t, s) into Fourier series in the

angular variables as follows:

uk(t, s) = u
(0)
k (t) +

∞∑

n=1

[
u
(n)
k (t) exp(ins) + c.c.

]
, (3.11)

where the termu(0)
k (t) describes axisymmetric perturbation, while the remainingterms are responsible for

the asymmetric perturbations;c.c. stands for complex conjugate. Similarly, we write

w(t, s) = w(0)(t) +

∞∑

n=1

[w(n)(t) exp(ins) + c.c.]. (3.12)

The perturbation of thej-th CL described by the functionδτj(s) is also expanded

δτj(s) = δτ
(0)
j +

∞∑

n=1

[δτ
(n)
j exp(ins) + c.c.]. (3.13)

The complex Fourier amplitudesδτ (n)j are computed through inverse complex Fourier transform. Substitu-

tion of (3.12) into (2.50) produces a series of the conditions

δVn = 2

∫ 2π

0
exp(ins)ds

∫ t1

t2

H3(t)w
(n)(t)dt = 0,
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which lead to a single nontrivial condition for the axisymmetric mode

∫ t1

t2

H3(t)w
(0)(t)dt = 0, (3.14)

while for the asymmetric modes (n ≥ 1) the corresponding conditions are satisfied identically.

Substitute (3.12) into the Jacobi equation (3.4) and generate a sequence of ordinary differential equa-

tions

(H1w
′(0))′ −H2w

(0) = µH3, w(0)(tj) = ηjδτ
(0)
j , (3.15)

(H1w
′(n))′ −H4n

2w(n) −H2w
(n) = 0, w(n)(tj) = ηjδτ

(n)
j . (3.16)

Thus we recover the inhomogeneous Jacobi equation (3.15) derived in [6] for the case of axisymmetric

perturbations, and add a set of homogeneous Jacobi equations (3.16) for asymmetric modes. It is worth to

note that solvability conditions for equations (3.15, 3.16) with δτ
(n)
j = 0 determine the boundary of the

stability regionCn for then-th perturbation mode with fixed CL. The stability analysis described in [6] for

the axisymmetric perturbations should be modified and performed for each asymmetric mode independently

to produce the corresponding stability condition (and stability region Stabn). The intersection of allStabn

determines the stability regionStab of the meniscus.

To do this we have to compute the expression for the second variation δ2W given by (2.46) using

(3.12,3.13). First evaluate an expression
∫ 2π
0 ds[δτj(s)]

2 using Parseval theorem

∫ 2π

0
ds[δτj(s)]

2 =

∫ 2π

0
ds

[
δτ

(0)
j +

∞∑

n=1

δτ
(n)
j exp(ins) + c.c.

]2
=

∞∑

n=0

|δτ (n)j |2

IntroducingΞ(0)
2 [w] andΞ(n)

2 [w] for n > 0 through

Ξ
(0)
2 [w] = Ξ2[w

(0)] = 2π

∫ t1

t2

dt[H1(w
′(0))2 +H2(w

(0))2 + 2µH3w
(0)],

Ξ
(n)
2 [w] = Ξ2[w

(n)] = 2π

∫ t1

t2

dt[H1|w′(n)|2 + n2H4|w(n)|2 +H2|w(n)|2],

we arrive at an expansion

δ2W =

∞∑

n=0

δ2W (n), δ2W (n) = Ξ2[w
(n)] +K1|δτ (n)1 |2 −K2|δτ (n)2 |2. (3.17)

3.4 Axisymmetric mode stability

The complete description of the derivation of the stabilityconditions for the axisymmetric mode is given in

[6], and here we just reproduce the major steps of this approach.
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In the general case of free CL one has to find from (3.20) the coefficientsC1, C2, µ, and thus express

w̄(0)(tj) throughδτ (0)j . Multiplying (3.15) byw̄(0)(t) and integrating by parts we obtain

∫ t1

t2

[
H1(w̄

(0)
t )2 +H2(w̄

(0))2
]
dt−H1(t)w̄

(0)w̄′(0)|t1t2 = 0.

Combining the last equality with (2.46) we arrive at

1

2π
δ2W (0) =

1

2
H1w̄

(0)w̄′(0)|t1t2 +K1[δτ
(0)
1 ]2 −K2[δτ

(0)
2 ]2, (3.18)

whereKj are defined in (2.46). This allows to use only a part of the solution w̄(0)(tj) linear in δτ
(0)
j

dropping all higher orders.

Write a general solution̄w(0)(t) of equation (3.15) built upon the fundamental solutionsw̄
(0)
1 (t), w̄

(0)
2 (t)

of homogeneous equation, and particular solution of inhomogeneous equation̄w(0)
3 (t),

w̄(0)(t) = C
(0)
1 w̄

(0)
1 (t) + C

(0)
2 w̄

(0)
2 (t) + µw̄

(0)
3 (t) . (3.19)

Inserting (3.19) into BC (2.37) and into constraint (3.2) weobtain three linear equations,

C
(0)
1 w̄

(0)
1 (tj) + C

(0)
2 w̄

(0)
2 (tj) + µw̄

(0)
3 (tj) = w̄(0)(tj), C

(0)
1 I1(t2, t1) + C

(0)
2 I2(t2, t1) + µI3(t2, t1) = 0,(3.20)

where in the expression for̄w(0)(tj) = ηjδτ
(0)
j , we retain only the term linear inδτ (0)j neglecting contribu-

tions of higher orders, and use

Ik(t2, t1) =

∫ t1

t2

dtH3(t)w̄
(0)
k (t).

The case of fixed CL is obtained from (3.20) by settingw̄(0)(tj) = 0, and the stability region boundaryC(0)

is given by the conditiondetD(0)(t2, t1) = 0, where

D(0)(t2, t1) =




w̄
(0)
1 (t2) w̄

(0)
2 (t2) w̄

(0)
3 (t2)

w̄
(0)
1 (t1) w̄

(0)
2 (t1) w̄

(0)
3 (t1)

I1(t2, t1) I2(t2, t1) I3(t2, t1)


 . (3.21)

Substituting the expression for̄w(0) into (3.18) we obtain

δ2W (0) = Q
(0)
11

[
δτ

(0)
1

]2
+ 2Q

(0)
12 δτ

(0)
1 δτ

(0)
2 +Q

(0)
22

[
δτ

(0)
2

]2
. (3.22)

3.5 Asymmetric mode stability

The asymmetric mode stability requires first to find a solution w̄(n)(t) = C
(n)
1 w̄

(n)
1 (t) + C

(n)
2 w̄

(n)
2 (t),

satisfying two boundary conditions

C
(n)
1 w̄

(n)
1 (tj) + C

(n)
2 w̄

(n)
2 (tj) = w̄(n)(tj) = ηjδτ

(n)
j , (3.23)
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and expressinḡw(n)(tj) throughδτ (n)j . The case of fixed CL is obtained from (3.23) by settingw̄(n)(tj) =

0. The stability region boundaryC(n) in this case is given by the conditiondetD(n)(t2, t1) = 0, where

D(n)(t2, t1) =


 w̄

(n)
1 (t2) w̄

(n)
2 (t2)

w̄
(n)
1 (t1) w̄

(n)
2 (t1)


 . (3.24)

Multiplying (3.16) byw̄(n)(t) and integrating by parts we obtain
∫ t1

t2

[
H1|w̄(n)

t |2 + n2H4|w̄(n)|2 +H2|w̄(n)|2
]
dt−H1(t)|w̄(n)w̄′(n)|t1t2 = 0.

Combining it with (2.46) we arrive at

1

2π
δ2W (n) =

1

2
H1(t)|w̄(n)w̄′(n)|t1t2 +K1|δτ (n)1 |2 −K2|δτ (n)2 |2, (3.25)

Substituting the expression for̄w(n) into (3.18) we obtain

δ2W (n) = Q
(n)
11 |δτ (n)1 |2 + 2Q

(n)
12 |δτ (n)1 ||δτ (n)2 |+Q

(n)
22 |δτ (n)2 |2. (3.26)

The necessary conditions to haveδ2W (n) ≥ 0 are given by three inequalities,

Q
(n)
11 (t2, t1) ≥ 0, Q

(n)
22 (t2, t1) ≥ 0, Q

(n)
33 (t2, t1) = Q

(n)
11 Q

(n)
22 − [Q

(n)
12 ]2 ≥ 0, (3.27)

Recalling the expression (3.17) for the second variationδ2W we see that

δ2W =

∞∑

n=0

δ2W (n) =

∞∑

n=0

[
Q

(n)
11 |δτ (n)1 |2 + 2Q

(n)
12 |δτ (n)1 ||δτ (n)2 |+Q

(n)
22 |δτ (n)2 |2

]
. (3.28)

Due to arbitrariness ofδτj , it follows from (3.28) one has to require the stability of the each mode inde-

pendently of the others, so that the conditionδ2W (n) ≥ 0 should hold for everyn. The boundaryB(n) of

the stability regionStab(n) of then-th mode is given by the simultaneous equalities in (3.27). It should be

underlined that theStab(n) should lie inside the regionC bounded by the intersection of allCn.

4 Computation ofQ(n)
ii

The computation of the explicit expressions forQii can be split into two independent steps – first, evaluate

Kj , and, second, find the solutions̄w(n), and their derivatives̄w′(n).

4.1 Computation ofKj

Find the explicit expression forKj in (2.47). The matrixFtr can be presented asFtr = |t|−1 er ⊗ t −
SHr er ⊗ ez, whereer andez denote the unit vectors in ther andz direction, respectively. First find

∂Fj

∂t
+

∂Gj

∂Tj
= Rj

(
t̄j −

〈t̄j ,Tj〉Tj

〈Tj,Tj〉

)
,
∂Gj

∂Rj
=
(
SHRjZ

′

j − 〈t̄j ,Tj〉
)
er.
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Find the term related toFtr in the expression (2.47), it reads

〈Tj,Ftr(tj) ·Tj〉 = −R′

j

(
SHRjZ

′

j − 〈t̄j,Tj〉
)
,

and we obtain

Kj =
Rj

2|t̄j |

(
〈t̄j ,T′

j〉 −
〈t̄j ,Tj〉〈Tj ,T

′

j〉
〈Tj,Tj〉

)
− H1(tj)

2
ηjη

′

j.

Using the definitions of the normal to the SB:N1 = {Z ′

1,−R′

1}, N2 = −{Z ′

2,−R′

2}, the expression in

the round brackets can be written as

〈t̄j ,T′

j〉 −
〈t̄j,Tj〉〈Tj ,T

′

j〉
〈Tj,Tj〉

= (−1)j
〈Nj,T

′

j〉
〈Tj,Tj〉

〈nj ,Tj〉 = (−1)j+1
〈N′

j ,Tj〉
〈Tj,Tj〉

ηj.

Collecting all terms we arrive at

Kj = −ηjRj

2
Vj, Vj = (−1)j

〈N′

j,Tj〉
〈Tj,Tj〉

+ η′j =

〈
(−1)jN′

j

〈Tj ,Tj〉
+ n′

j ,Tj

〉
. (4.1)

Using the definition of the vectorsNj ,Tj, we obtain

Vj = R′

jz
′′

j − Z ′

jr
′′

j −
R′

jZ
′′

j − Z ′

jR
′′

j

R′2
j + Z ′2

j

= η′j − Ṽj. (4.2)

4.2 Computation of w̄(n)

The inhomogeneous Jacobi equation (3.15) reads

(rw′(0))′r′ −
(
rr′′
)
′

w(0) = µrr′. (4.3)

Herer(t) =
√
1 +B2 + 2B cosSHt, denotes a solution of the YLE describing both unduloids (B < 1),

and nodoids (B > 1), as well as cylinder (B = 0) and sphere (B = 1). The nodoids may exist of two types

– convex withSH = 1 and concave withSH = −1. The solution forz(t) is expressed through the elliptic

integrals of the first and second kind (see [6, 16]) and satisfies a relationr′2 + z′2 = 1.

It is easy to check by the direct computation that the homogeneous Jacobi equation withµ = 0 has a

solutionw̄(0)
1 = r′, while the second solution reads̄w(0)

2 = w̄
(0)
1 U , whererr′2U ′ = 1. It can be shown that

w̄
(0)
2 as well the solution of the inhomogeneous problemw̄

(0)
3 can be expressed through the elliptic integrals

of the first and second kind (see [6, 16])

w̄
(0)
1 = r′, w̄

(0)
2 = cos t+ (1 +B)M1w̄

(0)
1 , w̄

(0)
3 = 1 + (1 +B)M2w̄

(0)
1 , (4.4)

M1(t,m) = E(t/2,m) − F (t/2,m) +M2, M2(φ,m) = m2F (t/2,m)/2, m = 2
√
B/(1 +B).
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The homogeneous Jacobi equation (3.16) reads

(rw′(n))′rr′ −
(
rr′′
)
′

rw(n) − n2r′w(n) = 0. (4.5)

It is easy to check by direct computation that forn = 1 this equation has a solution̄w(1)
2 = z′ (see [11, 16]),

wherer′2 + z′2 = 1, andw̄(1)
1 again is expressed through the elliptic integrals

w̄
(1)
1 = −B sin t+ [(1 +B)E(t/2,m) + (1−B)F (t/2,m)]w̄

(1)
2 = rr′ + zz′, w̄

(1)
2 = z′. (4.6)

The general analytical solutions̄w(n)
k for n > 1 are not known. In the particular caseB = n one has

w̃
(n)
j = w̄

(n)
j |B=n and finds:

w̃
(n)
1 = − sin t+ (1 + n)[(1 + n)E(t/2,m) − (1− n)F (t/2,m)]w̃

(n)
2 , w̃

(n)
2 =

n+ cos t

r
. (4.7)

In all three cases the solutions satisfy the following conditions w1(0) = 0, w′

1(0) = const > 0, and

w2(0) = const > 0, w′

2(0) = 0. In Appendix D we perform the analysis of the Jacobi equation(3.16) and

show how to obtain the fundamental solutions described above.

4.3 Computation of w̄′(n)

The computation of the first derivativēw′(n)(tj) at the end pointstj is straightforward and we present here

the main steps and the final result. The case of axisymmetric mode should be considered separately, and

we examine it first.

Use the conditions (3.20) to find the constantsC
(0)
1 , C

(0)
2 andµ. Introduce two determinantsBj(t)

A
(0)
1 (t) =

∣∣∣∣∣∣∣∣∣

w̄
(0)
1 (t2) w̄

(0)
2 (t2) w̄

(0)
3 (t2)

w̄
(0)
1 (t) w̄

(0)
2 (t) w̄

(0)
3 (t)

I1 I2 I3

∣∣∣∣∣∣∣∣∣
, A

(0)
2 (t) =

∣∣∣∣∣∣∣∣∣

w̄
(0)
1 (t) w̄

(0)
2 (t) w̄

(0)
3 (t)

w̄
(0)
1 (t1) w̄

(0)
2 (t1) w̄

(0)
3 (t1)

I1 I2 I3

∣∣∣∣∣∣∣∣∣
, (4.8)

Direct computation shows that

w̄(0)(t1)w̄
′(0)(t1) =

η21A
′(0)
1 (t1)[δτ

(0)
1 ]2 + η1η2A

′(0)
2 (t1)δτ

(0)
1 δτ

(0)
2

A
(0)
1 (t1)

,

w̄(0)(t2)w̄
′(0)(t2) =

η22A
′(0)
2 (t2)[δτ

(0)
2 ]2 + η1η2A

′(0)
1 (t2)δτ

(0)
1 δτ

(0)
2

A
(0)
2 (t2)

. (4.9)

The case of arbitrary asymmetric mode is considered similarly. First, we use the boundary conditions

(3.23) and find the expressions forC(n)
1 andC(n)

2 . Then we introduce two determinantsA(n)
j (t) through

the relations

A
(n)
1 (t) =

∣∣∣∣∣∣
w̄

(n)
1 (t2) w̄

(n)
2 (t2)

w̄
(n)
1 (t) w̄

(n)
2 (t)

∣∣∣∣∣∣
, A

(n)
2 (t) =

∣∣∣∣∣∣
w̄

(n)
1 (t) w̄

(n)
2 (t)

w̄
(n)
1 (t1) w̄

(n)
2 (t1)

∣∣∣∣∣∣
,
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Simple algebra shows that

w̄(n)(t1)w̄
′(n)(t1) =

η21A
′(n)
1 (t1)|δτ (n)1 |2 + η1η2A

′(n)
2 (t1)|δτ (n)1 ||δτ (n)2 |

A
(n)
1 (t1)

,

w̄(n)(t2)w̄
′(n)(t2) =

η22A
′(n)
2 (t2)|δτ (n)2 |2 + η1η2A

′(n)
1 (t2)|δτ (n)1 ||δτ (n)2 |

A
(n)
2 (t2)

, (4.10)

whereA(n)
1 (t1) = A

(n)
2 (t2) = A(n). It is clear that (4.10) includes (4.9) as a particular case for n = 0.

4.4 Computation ofQ(n)
ij

Substitution of (4.10) into (3.22, 3.28) produces

Q
(n)
jj = (−1)j+1

[
Kj +

η2jH1(tj)

2

A
′(n)
j (tj)

A(n)

]
, j = 1, 2, (4.11)

Q
(n)
12 =

η1η2
2

H1(t1)A
′(n)
2 (t1)

A(n)
= −η1η2

2

H1(t2)A
′(n)
1 (t2)

A(n)
. (4.12)

Using the expression (4.1) forKj we write explicit representation ofQ(n)
ij

Q
(n)
jj = (−1)j+1

η2jRj

2A(n)

[
−(Vj/ηj)A

(n) +A
′(n)
j (tj)

]
, (4.13)

Q
(n)
12 =

η1η2R1A
′(n)
2 (t1)

2A(n)
= −η1η2R2A

′(n)
1 (t2)

2A(n)
. (4.14)

The conditionQjj = 0 is satisfied either by settingηj = 0 (which corresponds to the meniscus existence

boundary, see [15]), or by requiringA′(n)
j (tj)− (Vj/ηj)A

(n)
j (tj) = 0. The last relation is equivalent to an

inhomogeneous linear BC on then-th mode perturbation at the end points of the interval

(Vj/ηj)w
(n)(tj)− w′(n)(tj) = 0. (4.15)

As this BC is valid for every perturbation mode it implies that the same condition should be met for an

arbitrary asymmetric perturbation (valid for nonzeroηj, i.e., everywhere in the existence region):

(Vj/ηj)w(tj)− w′(tj) = 0. (4.16)

In Appendix A we show thatVj/ηj = (−1)j+1χj, where the quantityχj was introduced in [11], Ch.3.

Then the conditions (4.16) reduce to

χ1w(t1)− w′(t1) = 0, χ2w(t2) + w′(t2) = 0.

The expression forQ(n)
33 = Q

(n)
11 Q

(n)
22 −Q

(n)
12 Q

(n)
21 , reads

Q
(n)
33 = R1R2

[ η1η2
2A(n)

]2 {
A

′(n)
2 (t1)A

′(n)
1 (t2)− [A

′(n)
1 (t1)− (V1/η1)A

(n)][A
′(n)
2 (t2)− (V2/η2)A

(n)]
}
.
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Thus, the conditionQ(n)
33 = 0, which determines the stability region boundaryB(n) is written as

[
−(V1/η1)A

(n) +A
′(n)
1 (t1)

] [
−(V2/η2)A

(n) +A
′(n)
2 (t2)

]
−A

′(n)
2 (t1)A

′(n)
1 (t2) = 0. (4.17)

Introduce two determinants

A
(0)
3 =

∣∣∣∣∣∣∣∣∣

w̄
′(0)
1 (t2) w̄

′(0)
2 (t2) w̄

′(0)
3 (t2)

w̄
′(0)
1 (t1) w̄

′(0)
2 (t1) w̄

′(0)
3 (t1)

I1 I2 I3

∣∣∣∣∣∣∣∣∣
, A

(n)
3 =

∣∣∣∣∣∣
w̄

′(n)
1 (t2) w̄

′(n)
2 (t2)

w̄
′(n)
1 (t1) w̄

′(n)
2 (t1)

∣∣∣∣∣∣
.

Direct computation shows that the following relation holds:

A
(n)
3 A(n) = A

′(n)
1 (t1)A

′(n)
2 (t2)−A

′(n)
1 (t2)A

′(n)
2 (t1).

Using it we rewrite (4.17)

V1V2A
(n) − V1η2A

′(n)
2 (t2)− V2η1A

′(n)
1 (t1) + η1η2A

(n)
3 = 0. (4.18)

4.5 Relations between conditionsQ(n)
ii = 0

Consider the BC (4.15) and use the representation of the perturbation modes (3.19) forn = 0 and (3.23) for

n > 0, respectively. For the axisymmetric mode we find the solvability condition for (4.15) as vanishing

determinant

D
(0)
M =




V2w̄
(0)
1 (t2)/η2 − w̄

′(0)
1 (t2) V2w̄

(0)
2 (t2)/η2 − w̄

′(0)
2 (t2) V2w̄

(0)
3 (t2)/η2 − w̄

′(0)
3 (t2)

V1w̄
(0)
1 (t1)/η1 − w̄

′(0)
1 (t1) V1w̄

(0)
2 (t1)/η1 − w̄

′(0)
2 (t1) V1w̄

(0)
3 (t1)/η1 − w̄

′(0)
3 (t1)

I1 I2 I3


 . (4.19)

Direct computation shows that the conditiondetD(0)
M = 0 coincides with (4.18) forn = 0. Similarly,

introducing a condition

detD
(n)
M =

∣∣∣∣∣∣
V2w̄

(n)
1 (t2)/η2 − w̄

′(n)
1 (t2) V2w̄

(n)
2 (t2)/η2 − w̄

′(n)
2 (t2)

V1w̄
(n)
1 (t1)/η1 − w̄

′(n)
1 (t1) V1w̄

(n)
2 (t1)/η1 − w̄

′(n)
2 (t1)

∣∣∣∣∣∣
= 0, (4.20)

we find that it coincides with (4.18) forn > 0.

This observation implies that the BC (2.37) with arbitraryδτj are consistent with the conditions (4.16).

It also means that the stability boundaryB(n) for then-th perturbation mode is determined solely by the

conditionQ(n)
33 = 0.
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5 Computation of stability regions

From the computational point of view, the determination of the stability regionStab requires first to deter-

mine all regions of stabilityCn for the fixed CL bounded byC(n) and find their intersectionC = ∩∞

n=0Cn.

Then for eachn ≥ 0 find Stabn bounded byB(n) which lies withinC, and obtainStab = ∩∞

n=0Stabn.

5.1 Stability region boundary for menisci with fixed CL

The boundaryC(0) is specified by the conditiondetD(0) = 0, where the matrixD(0) is given in (3.21), and

its elements presented in (4.4). Forn > 0, the relationdetD(n) = 0 defines the boundaryC(n) where the

matrixD(n) is given in (3.24). It can be written as

A(n) = w̄
(n)
1 (t1)w̄

(n)
2 (t2)− w̄

(n)
1 (t2)w̄

(n)
2 (t1) = 0, (5.1)

which implicitly defines a curve in the plane{t1, t2}. In Appendix B we discuss a computational procedure

establishing the curveC(n) and show that the boundaryC(1) exists only for nodoids (B > 1).

For n > 1 the boundaryC(n) must be computed numerically. Numerical simulations show that the

boundaryC(n) of then-th perturbation mode exists forB > n only. This means that for unduloids (0 <

B < 1) the only restriction imposed by the fixed CL is given byC(0), while for the nodoids withB > 1

the boundariesC(n) with n > 0 may reduce the stability region. First, we checked relativeposition of the

boundariesC(0) andC(1) for 1 < B < 2. We found that for1 < B < π/2 these curves intersect, while for

B > π/2 the curveC(1) lies inside the regionC0 (see Figure 2). ForB > 2 we checked the influence of

C(2) on the shape of the stability region, and find out that it always lies outside ofC1. The relative position

of betweenC(0) andC(2) changes withB, namely, forB values close to2 we observeC(2) outside ofC0,

but with growth ofB is approachesC(0), then intersects it and thenC(2) is completely betweenC(0) and

C(1).

Thus, the numerical analysis implies that the stability region C for nodoids with fixed CL for1 < B <

π/2 is determined by interplay of the boundariesC(0) andC(1), while for larger values ofB it is completely

defined byC(1) only.

5.2 Stability region boundary for menisci with free CL

Turning to computation of the stability region for the menisci with free CL between two axisymmetric

solid bodies one has first to establish the region of existence for the given meniscus (i.e., given values of

B andSH ) and the given SB (i.e., givenRj). This regionExist(B,SH ,R1,R2) is determined by a set of
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The boundariesC(n) of the stability regionsCn for fixed CL forn = 0 (red),n = 1 (blue),n = 2

(green), and a)B = 0.5, b)B = 1.4, c)B = π/2, d)B = 2.1, e)B = 2.4, f) B = 2.8.

conditions (some of them are discussed in details in [15]). Then the construction of the boundariesB(n)

should be done only inside the existence region.
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The method developed in [11] states that in order to establish the meniscus stability w.r.t. asymmetric

perturbations it is sufficient to determine the boundaryB(1) of the first mode (n = 1) only, except the case

of the meniscus between two parallel plates when the boundary B(2) for n = 2 also should be taken into

account. We start with this particular case.

5.2.1 Two parallel plates

It is easy to check that in this caseZ ′ = Z ′′ = R′′ = 0, andR′ = 1, so that we findηj = z′j , andVj = η′j.

The condition (4.15) reduces to

ηjw
′(n)(tj) = η′jw

(n)(tj), w(n)(tj) = ηj = z′j.

Substitute it into (4.5) we obtain

(rη′)′ − n2

r
η − (rr′′)′

r′
η = 0.

Note thatη = z′ identically satisfies equation (4.5) withn = 1. This means that the first mode boundary

B(1) does not exist, whileB(n) for n > 1 should satisfy an meniscus existence conditionηj = z′(tj) = 0,

mentioned above. Using the explicit expression forz′(t) = (1+B cos t)/r, we find the boundariestj = t∗,

wherecos t∗ = −1/B.

This result shows that the stability regionsStab0 found in [6] for unduloids between two parallel plates

coincide with the stability regionsStab valid for arbitrary asymmetric perturbations. It also indicates that

the boundaryB(n) of the stability region for the asymmetric perturbations exist only for nodoids (B > 1),

and this boundary coincides with the existence boundary of nodoids between two parallel plates. Thus, in

this case the stability regionStab is determined by intersection of the stability region of theaxisymmetric

perturbation and the stability regions for asymmetric perturbation modes with fixed CL:Stab = Stab0∩C.

The computations nevertheless show thatStab = Stab0 (see Figure 3); the boundaryC(1) only touches

the regionStab0, but never intersects it. The contact point ofC(1) andStab0 for the convex [concave]

nodoid shown in Figure 3 is given byt2 = t∗, t1 = t∗[2π− t∗], when the matrixD(1)(t2, t1) is degenerate.

5.3 Influence of asymmetric perturbations on stability region

In [15] the stability regions for the axisymmetric menisci under axisymmetric perturbations were estab-

lished for various geometrical settings. It is instructiveto figure out how asymmetric perturbations affect

these stability regions.
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(a) (b)

Figure 3: The stability region for nodoids with a)B = 1.1 and b)B = 1.4 between parallel plates. The

shaded areas determine the stability region w.r.t. axisymmetric perturbations for the convex (SH = 1, blue)

and concave (SH = −1, orange) nodoids. Solid curves represent fixed CL stabilityboundaryC(n) for

n = 0 (red) andn = 1 (blue).

The condition (4.15) leads to the explicit expression for the stability boundaryB(1) of the first asym-

metric perturbation mode

C11C22 − C12C21 = 0, Cij = ηjw
′(1)
i (tj)− Vjw

(1)
i (tj), (5.2)

wherew(1)
i are given by (4.6). In Appendix C we discuss a computational procedure determining the

boundaryB(n) for asymmetric modes withn > 1. The approach used in [11] implies that in order to find

the stability regionStab1 for asymmetric perturbations it is enough to consider only apart of the boundary

B(1) that lies insideC1. Numerical simulations show that the boundaryB(1) in some cases might exist

for arbitrary positiveB. This means that both unduloid and nodoid stability regionsmight be reduced by

asymmetric perturbations. Nevertheless, we did not find anycombinations of the parameters for which the

boundaryB(1) crosses the stability region for axisymmetric perturbations. The same time the boundary

C(1) does reduce the stability region of nodoid menisci withB > 1. As an example we discuss below the

stability of the nodoid menisci between two solid spheres.

5.3.1 Two equal spheres

For two spheres of the same radiusa we haveRj = a sin τj , Zj = (−1)ja cos τj, where the an-

gles τj parameterize the spherical surfaces and are found from the condition Rj = rj, i.e., a sin τj =
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√
1 +B2 + 2B cosSHtj. It is easy to obtain the following relations:

ηj =
aSH

rj

[
cos τj +B cos(SHtj + (−1)j+1τj)

]
, Ṽj = (−1)j+1.

Substitution of these expressions and the solutions (4.6) into (5.2) produces an explicit condition for the

boundaryB(1). We found that in some casesB(1) can intersectC(1), but it happens outside of the existence

region. On the contrary, the curveB(1) never crossedStab0.

Figure 4 shows the stability regions for convex nodoid (SH = 1) between two equal solid spheres which

demonstrates that onlyC(1) but notB(1) crosses the axisymmetric stability regionStab0.

(a) (b)

Figure 4: The stability region for nodoids with a)B = 1.05 and b)B = 1.25 between equal spheres with

a = 1.2. Blue shaded area determines the stability region w.r.t. axisymmetric perturbations. Solid curves

represent fixed CL stability boundaryC(n) for n = 0 (red) andn = 1 (blue). The boundaryB(1) lies outside

of the shown regions.

It is important to underline that asymmetric perturbationsjust reduce the stability region for the nodoids

but not completely forbid their stability contrary to the statement in [20] that ”. . . a convex unduloidal bridge

between two balls is a constrained local energy minimum for the capillary problem, and a convex nodoidal

bridge between two balls is unstable”.

6 Discussion

In this manuscript we consider an extension of the analysis of axisymmetric menisci stability presented in

[6] to the case of asymmetric perturbations. The method itself is a development of the Weierstrass’ general

method valid in case of fixed CLs [21, 2]. The asymmetric perturbations in our approach presented as an
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expansion into the Fourier angular modes, the same way it wassuggested in [11]. The stability analysis

of the first perturbation mode is made analytically for all possible setups of the solid bodies. The case of

arbitrary meniscus between two parallel plates is considered in Section 5.2.1, we found that its stability

coincides withStab0. Another significant conclusion of our computations is thatthere exist stable convex

nodoids between two solid spheres.

Several important facts were established using numerical solutions of equation (4.5) with zero BC

w(tj) = 0 for menisci with fixed CL, and with mixed BC(Vj/ηj)w(tj)−w′(tj) = 0 for menisci with free

CL. These are:

1. The solution of Jacobi equation forn-th perturbation mode with fixed CL exists only forB > n.

2. Forn > 0 the boundaryC(n+1) lies outside the stability regionCn, i.e.,C = C0 ∩ C1.

3. Forn > 0 the boundaryB(n+1) lies outside the stability regionStabn, i.e.,Stab = Stab0 ∩ Stab1.

Qualitatively similar result was obtained in [11] using theanalysis of the eigenvalues spectrum of the

SLE for an arbitrary perturbation mode. It would be very useful to have a proof of the abovementioned

observations.
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A Computation of χj

Consider a derivation of an explicit expression for the parameterχj introduced in [11] for the computation

of stability region. This quantity appears in the BCχjw
(n)(tj) + (−1)jw′(n)(tj) = 0. The definition ofχj

in [11] reads

χj sin θj = κj cos θj − κ̄j , (A1)

whereκj and κ̄j denote the planar curvature of the meridional cross sections of the meniscus and solid

body, respectively, computed at thej-th contact pointt = tj, wherer(tj) = Rj(τj). The contact angleθj

is determined ascos θj = 〈tj,Tj〉/(|tj ||Tj|). As for the meniscus it holds that|tj | = 1, we can write

cos θj = (−1)j+1
R′

jr
′

j + Z ′

jz
′

j√
R′2

j + Z ′2
j

, sin θj =
z′jR

′

j − r′jZ
′

j√
R′2

j + Z ′2
j

=
ηj√

R′2
j + Z ′2

j

, (A2)
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where the prime′ denotes differentiation w.r.t.t when it acts onr and w.r.t. τ when it acts onR. The

curvatureκ of the planar curve defined parametrically{r(t), z(t)} readsκ = (r′z′′ − z′r′′)/(r′2 + z′2)3/2,

so that we obtain

κj = r′jz
′′

j − z′jr
′′

j = −r′′j /z
′

j , κ̄j = (−1)j+1
R′

jZ
′′

j − Z ′

jR
′′

j

(R′2
j + Z ′2

j )
3/2

, (A3)

where we use the relationr′jr
′′

j + z′jz
′′

j = 0. Substituting (A3) into (A1) we find

χjηj = (−1)j+1

[
R′

jz
′′

j − Z ′

jr
′′

j −
R′

jZ
′′

j − Z ′

jR
′′

j

R′2
j + Z ′2

j

]
= (−1)j+1Vj , χj = (−1)j+1Vj/ηj . (A4)

B Stability region C for menisci with fixed CL

In the case of fixed CL the solution̄w(n)(t) of the Jacobi equation (4.5) with zero BC̄w(n)(tj) = 0 can be

expressed as a superposition of two fundamental solutions.When one of these two solutions, say,w̄
(n)
2 is

known, the other one can be found asw̄
(n)
1 = U (n)w̄

(n)
2 , whereU ′(n) = g/(r[w̄

(n)
2 ]2), andg is a constant

depending on the parameterB (see [6]). For example, forn = 1 we have

U (1)(t) =
w̄

(1)
1 (t)

w̄
(1)
2 (t)

= z(t) +
r(t)r′(t)

z′(t)
.

Using this representation in (5.1) we write it asU (n)(t1) = U (n)(t2), wheret1 > t2. For givent2 introduce

a functionΨ(n)(t) = U (n)(t)− U (n)(t2), and write the condition on the boundaryC(n) asΨ(n)(t
(n)
1 ) = 0.

As we haveΨ′(n) = U ′(n), this derivative retains its sign but it can diverge (whenw̄
(n)
2 = 0 or r = 0 for a

spherical meniscus atB = 1). The conditionw̄(n)
2 = 0 indicates that the functionΨ(n)(t) might vanish, so

that a roott(n)1 exists. It is easy to see that forn = 1 the relationw̄(n)
2 = 0 can be valid only forB > 1,

so that for unduloids the boundaryC(1) does not exist. ForB = n > 1 there are no boundariesC(k) with

1 ≤ k ≤ n; it follows from the fact thatw̃(n)
2 (t) never vanishes whilẽw(n)

1 (t) is always positive.

For n > 1 the solution of (4.5) with zero BC can be found numerically byemploying the shooting

method when the above conditions are replaced byw(n)(t2) = 0, w′(n)(t2) = 1, used as initial conditions

(IC) for numerical integration of equation (4.5). The resulting solution is used to find a valuet = t
(n)
1 at

whichw(t) vanishes, and (in case such a value exists) it provides a point (t(n)1 , t2) belonging to the stability

region boundary forn-th perturbation mode. The set of such points completely defines the boundaryC(n).

The computational analysis of equation (4.5) shows thatt
(n)
1 exists only forB > n (see Appendix D).

It is instructive for given value oft2 compare the valuest(n)1 and t(n+1)
1 . It appears that it holds always

that t(n+1)
1 > t

(n)
1 , which implies that the boundaryC(n+1) lies outside of the regionCn bounded byC(n).
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This observation indicates that the stability regionC for menisci with fixed CL is determined exclusively by

intersectionC = C0 ∩C1 of the regions for axisymmetric and first asymmetric modes. This result confirms

the statement made in [11] about the stability region for thecase of fixed CL.

C Stability region Stab for menisci with free CL

The relation (4.20) which determines the stability boundaries B(n) employs matricesA(n)
k that de-

pend on the fundamental solutionsw(n)
i (t) and their derivatives. Using the representationw

(n)
1 (t) =

U (n)(t)w
(n)
2 (t), we rewrite (4.20) forn > 0 as

(U1 − U2)[V1V2 − η1G1V2 + η2G2V1 + η1η2G1G2]− η1V2U
′

1 + η2V1U
′

2 + η1η2[G2U
′

1 −G1U
′

2] = 0,

where

Uj = U (n)(tj), U ′

j = U ′(n)(tj), Gj = w
′(n)
2 (tj)/w

(n)
2 (tj).

The above relation can be rewritten as

(U1 − U2)(V1 − η1G1)(V2 − η2G2)− η1U
′

1(V2 − η2G2)− η2U
′

2(V1 − η1G1) = 0,

leading to the condition

Φ1 = Φ2, Φj = Uj −
ηjU

′

j

Vj − ηjGj
. (C1)

Returning to the original notation for the fundamental solutions we find a compact expression for (4.20) in

the form

Φ(n)(t1) = Φ(n)(t2), Φ(n)(t) =
V w

(n)
1 − ηw

′(n)
1

V w
(n)
2 − ηw

′(n)
2

. (C2)

It is easy to see that the condition (C2) is equivalent to (4.16) as expected. From the computational per-

spective the problem of finding a point(t1, t2) belonging to the boundaryB(n) is reduced to a problem of

finding the first zerot(n)1 > t2 of the functionΨ(n)(t) = Φ(n)(t) − Φ(n)(t2). Setting in (C2)η = 0 we

obtainΦ(n)(t) = U (n)(t), and we recover the condition for the stability boundaryC(n) derived in Appendix

B for the menisci with fixed CL.

The numerical computations show that the stability boundary B(1) might exist forB < 1 but it appears

that it does not intersectStab0. This observation implies that asymmetric perturbations with free CL do

not affect unduloid stability regionStab0 constructed using the analysis of axisymmetric perturbations

only. In other words, for all unduloids we haveStab = Stab0, because any asymmetric perturbation is less

dangerous than axisymmetric one. In case of nodoids withB > 1 we found thatB(1) also does not intersect

Stab0, so that onlyC(1) might lead to reduction of the stability region.
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D Analysis of Jacobi equation

Consider homogeneous Jacobi equation (3.16) and use a replacementw = y/r to produce

r2y′′ − rr′y′ + (B2 − n2 + rz′)y = 0. (D1)

Substituting an ansatzy = a0 + a1 cos t+ a2 sin t, into (D1) we arrive at

[a0(1 +B2 − n2)− a1B]− (a0B − a1n
2) cos t− a2n

2 sin t = 0,

which leads to a system

a0(1 +B2 − n2)− a1B = 0, a0B − a1n
2 = 0, a2n

2 = 0. (D2)

Direct substitution shows that forn = 0 we havea0 = a1 = 0, and we reproduce the solution (4.4). With

n = 1 we find a0 = 1, a1 = B a2 = 0, and we arrive at (4.6). Finally, settingB = n, we obtain

a0 = B, a1 = 1 a2 = 0, and generate the solution (4.7).

The ICw1(0) = 0, w′

1(0) = const > 0, for (3.16) convert intoy1(0) = 0, y′1(0) = const > 0, while

the ICw′

2(0) = 0, w2(0) = const > 0, lead toy′2(0) = 0, y2(0) = const > 0. We performed numerical

integration and found that for given value ofn the solutions to (D1) have qualitatively different behavior in

two regions –B < n, andB > n. These solutions are separated by the solution (4.7).

First, we found that forB < n, both y1(t) andy2(t) are positive functions and fort ≫ 1 it holds

asymptotically thaty1(t) ∼ c(B,n)y2(t), where positive constantc depends on bothB and n. This

observation implies that the functionΨ(n) introduced in Appendix C tends to constant for larget, and,

moreover, we observeΨ(n) ≈ U (n). This leads to a conclusion thatC(n) does not exist forB < n, so that

the stability region with fixed CL is found asC = ∩n−1
k=0Ck.

In the other caseB > n, we observed that both̄w(n)
i (t) change sign, so that the functionU (n) changes

sign too and thus the curveC(n) exists. Similarly, the functionΨ(n) changes sign and its first zero deter-

mines the curveB(n). The numerical simulations showed that the first root of the functionU (n) can be

approximated byt(n)1 ≈ a(n)/
√
ǫ, where0 < ǫ = B−n ≤ 1, anda(n+1) > a(n). A similar dependence

of t(n)1 − t2 ≈ a(n)/
√
ǫ is valid for nonzerot2. This implies thatt(n+1)

1 − t2 > t
(n)
1 − t2 for all n > 0, and

the boundaryC(n+1) lies outside of the regionCn bounded byC(n).
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