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A phenomenon of optical bistability draws attention as important and simple example of
nonequilibrium phase transition (generation of a ”coherent state” dissipative structure) in non-
linear active medium [1], and also in relation to possible technical applications like optical
memory cells, optical amplifiers, cutoffs, etc., see [2]. Existence of the bistable regime in two-
level media with absorptive nonlinearity is experimentally confirmed in two cases: (a) in exact
frequency resonance of external driving field and atomic transition [2], (b) for nonzero frequency
detuning [4]. We show that in a system of three-level centers interacting with two modes of the
external field even in a simplest case of purely absorptive nonlinearity (under exact resonance
condition and neglecting all other types of nonlinearities) one can observe not only bistability
but even more complicate nonequilibrium critical phenomena like three- and tetrastability and
multiple transitions. Other types of nonlinearities leading to multistability were discussed in
[5]-[7].

Consider an active medium of N three-level centers inside the bimodal cavity excited by
the external driving beam through the semitransparent mirror. We assume that intensities
of optical oscillations corresponding to different cavity modes are controlled independently.
Denote the basic state of ν-th active center as |0, ν〉, the excited states of the same atom are
|±, ν〉. The Hamiltonian of the system is defined as

H = ih̄
N∑

ν=1

∑

I=±
gI(E∗

I |0, ν〉〈I, ν| − EI |I, ν〉〈0, ν|), (1)

where EI denotes complex amplitude of I-th mode in dimensionless units and gI is the in-
teraction coefficient of I-th mode (I = ±). Introduce averaged polarizations and population
inversions (normalized to the number of active centers), which expressed through the elements
of one-particle density matrix:

p± = N−1
N∑

ν=1

ρ
(ν)
0± , d± = N−1

N∑

ν=1

ρ
(ν)
±∓, n± = N−1

N∑

ν=1

(ρ(ν)
±± − ρ

(ν)
00 ). (2)

Using semiclassical approximation and mean field approximation (applicability field of the latter
is discussed for example in [8]), we obtain the system of equations:

ṅ± = −(2g±E±p± + g∓E∓p∓ + c.c.)− τ−1
‖ (n± + 1)∓ T−1

‖ (n+ − n−),

ṗ± = g±E∗
±d± + g∓E∗

∓d∓ − τ−1
⊥ p±, (3)

ḋ± = −g±E±p∓ − g∓E∗
∓p∗± − T−1

⊥ d±,

Ė± = Ng±p∗± − k±(E± −E0
±),

where we add to the r.h.s. of equations the relaxation terms containing phenomenologigal
relaxation times τ⊥, τ‖ and T⊥, T‖ for transitions (0) ⇔ (±) and (+) ⇔ (−) respectively. We
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Figure 1: .

introduced notations: kI for relaxation constant for I-th mode of optical field in the cavity, E0
I

for the steaty state value of the I-th mode in absence of the active media. In order to simplify
the problem, we assume T⊥ ¿ T‖, τ⊥, τ‖ (coherence in the excited state returns to the basic
value very fast). In steady state regime the system (4) reduces to:

y± = x±(1 + 4C±S∓/P ), (4)

where
S± = |x±|2 + 2(1 + 2Γ), P = 3S+S− − 2(1 + 3Γ)(S+ + S−), Γ = τ‖/T‖,

C± = g2
±Nτ⊥/2k±, x± = 2g±E±

√
τ‖τ⊥, y± = 2g±E0

±
√

τ‖τ⊥.

From (4) it follows that arg x± = arg y±, so that x±, y± can be assumed to be real and
positive. System (4) has up to four stable solutions denoted as A,B, C, D; stability boundaries
are show in Figs. 1 and 2 (C± = 20). At Γ = 0 (solid lines) stability regions are located in the
first quadrant: A is to the right and above the line I, B is to the left and below the line II, C
is to the left and above the line III, D is to the right and below the line IV.

As it is seen from Fig. 1, at different sets of parameters y+, y− there exist from 1 to 4 stable
solutions. When the parameters are varied (by changing of external excitation intensities)
some solutions became unstable, and system undergoes drasic changes. Boundaries of stability
regions represent a bifurcation set generated by projections of the fold and cusp catastrophe
points onto the plane (y+, y−) [9]. Dashed lines (1) and (2) in fig. 1 correspond to Γ = 1 and
Γ = 2; number of stable states is equal to two for Γ > 1. Note that detailed description of switch
dynamics in this model requires to go beyond the semiclassical approximation and considering
nonstationary regime (for the two-level model it was discussed in [10]). The stationary stable
states are characterized by large population differencies of (+) and (−) levels, which leads to
nonzero stationary polarization in the excited state (or magnetization, if the excited levels are
Zeeman sublevels; see [6]).

Authors are grateful to L.A. Shelepin for his interest to this work and fruitful discussions.
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