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Abstract. We find the existence conditions of unduloidal and nodoidal menisci
between two solid spheres and study their stability in the framework of non-
spectral theory of stability of axisymmetric menisci between two axisymmetr
solid bodies in the absence of gravity.

1. Introduction

Pendular rings (PR) in the absence of gravity between tweyaxnetric solid
bodies (SB) with free contact lines (CL) are surfaces of lgian with constant
mean curvature (CMC) classified by Delaunay in [1]: cylinfleyl), sphere $ph),
catenoid Cat), nodoid (Nod) and unduloid Und). Two questions are important in
this regard: what is an exact shape (meniscus) of PR in trengietup and how
stable is it. The first question would be answered once onlel éound a solution of
the Young-Laplace equation (YLE) supplemented with boapndanditions (BC) of
free CL and given PR volume. Recent progress [7] in the PRI@nobas shown an
existence of multiple solutions of YLE for given PR volumelaas a consequence
poses a question on menisci stability as a menisci seleailen

There are two different approaches to study stability of RRvben two SB
with free CL. The first approach was initiated by T. Vogel [9] &nd based on the
study of the Sturm-Liouville equation (SLE) and its spestrumplementation of
this approach is a difficult task: only several exact residtsCat [16], Sph [8]
andUnd (with special contact angle values) [3, 10] between twogdlare known.
Investigation of menisci between other surfaces encosieign more difficulties of
finding analytically a spectrum of SLE with given shape of §I((11] and convex
Und andNod between equal spheres [12, 14]).

Another approach was suggested recently [2] as a part ofatieenal problem
with minimized and constrained functionals and free enalfgsanoving along two
given planar curves, Ss. It is based on Weierstrass’ formula of second variation
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52W for isoperimetric problem. A freedom of endpoints allowslarives?1V as a
quadratic form in perturbation®p; of the endpoints; alongsS;(v;),

S*W = Qu1 (801)” + 2Q12601605 + Q22 (502)”, Quj = Qij(da, 1), (L.1)
and find in the plang¢:, ¢»} a stability domairStab whered?W > 0 (see The-
orem 4.1 in [2]). Stability of menisci between parallel patwere studied in [2]
for all Delaunay’s surfaces. We also have fougdb for Cat andCyl between two
SB: spheres, paraboloids, catenoids, ellipsoids and leetsghere and plane. This
approach has no limitations to firsdab analytically for arbitrary meniscus and SB
shapes.
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FIGURE 1. Sketches (meridional sections) of three menisci be-
tween two equal spheres of radiusshowing the contact an-
glesés, 6, filling anglesyy, v5 and coordinates of the endpoints
o1, ¢2: (@) concave meniscus, F-F setup, (b) convex meniscus, B-
B setup, (c) meniscus with one inflection point, F-B setup.

The present paper deals with a more difficult case wiethandNod menisci
are trapped between equal solid spheres. Compared wittsongeiometry between
two plates, this problem leads to the questiomm@nisci existencdetermined by
Und andNod geometry between two spheres. Thus, we have to considetathié s
ity Stab and existenc&xst domains such th&itab C Exst; to establish the latter
we need a simple analytical geometry. We consider threerdift setups of semi-
spheresfaceandback where the meniscus is approaches the sphéaes:to-face
(F-F),face-to-backF-B) andback-to-backB-B).

The paper is organized in seven sections. In section 2 wedmarfeur differ-
ent types of constraints which define the existence of mebetween two convex
SB (not necessarily spheres), and derive the conditions ey occur. In section
3 we specify them for the case of two solid spheres; we distheis coexistence
and establisltxst domain in different setups. In sections 4,5 and 6, based en Th
orem 4.1 in [2], we give a detailed analysisSihb domains for menisci between
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equal spheres with F-F, B-B and F-B setups, respectivetyfiad the stabléJnd
with two inflection points (IP). In section 7 we show how a rexpivalence of the
spheres affects botab andExst domains.

2. Axisymmetric menisci between solid bodies and their
existence

Consider axisymmetric PR between two SB in absence of graiie axial symme-
try of SB is assumed alongaxis (see Figure 1). The shapes of menideys), z(¢) }
and two SB{R;(v,),d; + Z;(v;)} are given in cylindrical coordinates. The filling
angley; along thej-th solid-liquid interface satisfie® < v; < oo for unbounded
SB and0 < 7; < oo for bounded SB.

Functionsr(¢) and z(¢) are defined in the rang®, < ¢ < ¢; and satisfy
YLE with curvatureH,

Z/ Z//,r/ _ Z/T//

Sn = r (2 + 212)1/2 + (r2 + 2/2)3/2’ (2.1)
whereSy = +1 correspond to the menisci with positive and negative curegt,
respectively. Equation (2.1) is supplemented with Youmgn@versality) relations
for given contact angles;,

/ . 7" (*
i (¢]) — arctan (%)

' (¢5) R(v¥5)
and consistency equalities,

(1) =di + Z1 (Y1), 71(o1) = Ri (Y1),

2(p2) =do + Z2 (Y3), 1(d2) = Ra (¢3). (2.3)

whered = d; — ds is a distance between centers&f and .S,. Throughout this
paper we make use of a standard parametrization [2] for miemith H # 0 which
goes back to [4, 5],

r(¢) = /14 B2 + 2B cos(Su o),

z(¢) = M(Suo, B) — M(Sud2, B) + Z2(¥3), (2.4)

M(¢, B) = (14 B)E(¢/2,m) + (1 — B)F(¢/2,m), m =2VB/(1+ B).
where F'(z,m) and E(z, m) denote elliptic integrals of the first and the second
kind. Formulas (2.4) describe four Delaunay’s surfacef winzero curvaturéf:
Cyl, B=0;Und,0 < B < 1; Sph, B =1 andNod, B > 1. We assume that in the

rangegs < ¢ < ¢; the ordinatez(¢) is a growing functiorz(¢s) < 2z(¢) < z(¢1).
According to (2.4) we get

A((bla(vaSHyB):M(SH¢17B)_-Z\/[(SH¢27B)>07 (25)

that determines$'y; introduced in (2.1). This value cannot be defined whef ) =
z(¢o) for ¢1 # ¢o. The condition (2.5) implies that all unduloids have pesiti
curvature, i.e.Sy = 1. It follows from the explicit expression’(¢) = Sy (1 +
Bcos(Su¢))/r, leading to positiver’ (¢) for B < 1.

0; = (—1)771 (arctan ) ,i=12, 6;>0, (2.2)
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Oncer(¢) andz(¢) are parameterized by (2.4) we have to determine the PR
existence as a physically valid object. This leads to retgtn on parameterB, ¢,
¢2, important for nonplanar SB and makes the stability donsaib substantially
dependent on conditions of PR existence. This phenomensolbserved in [2] for
Cat between two spheres and also announced in [14)éat between equal spheres
with contact angle90° < 6; < 180°. In other words, a meniscus geometry has to
satisfy requirements oB, ¢, ¢» to avoid different types of meniscus nonexistence
which can be distributed into four major types.

e Type A: meniscus does not reach solid surface, Figeae

This condition is applicable only to SB with finite maximatiial sizeR,,4.,
1+ B%*+2Bcos¢ > R, . (2.6)

max

o TypeB: meniscus reaches solid surface with negative contact aRggares
2b and3c.

Let PR be trapped between two SB and let a contact ahghe S, be given.
ConsiderS; and requirgd; > 0, otherwise the meniscus "pierceS; and contacts
it from "inside”. The critical endpoint; corresponding t@; = 0 satisfies three
equalities:

(0)/r'(91) = ZL W/ RL(47), (o)) = Ra (05),
2(¢1, ¢2) = d1 + Z1 (Y7) . (2.7)
For given B we have to findg{, ¢2, %7, 5 and locationsd; of SBs onz axis.

Choose a reference frame in such a way tat) = 0. According to (2.2-2.4), we
havez(¢) = M(Su¢, B) — M(Su¢2, B). Thus, solving another three equations,

Zy (V3) = —dg, r(p2) = Ra (¥3), 0(d2,v3) = 02, (2.8)

we findv3, 9o andd, as explicit (or implicit) expressions. Resolving now thetw
first equations in (2.7) w.r.ipj and; we find them also as explicit (or implicit)
expressions.

The shiftd; follows from the third equationin (2.7); = z(¢$, ¢2)—Z1 (V7).
The computation of; and«; can be performed as follows. First, note that =
Bsin(Sy¢), andrz’ = 1+ Bcos(Sp¢). From (2.4) we obtair2 B cos(Sy ¢3) =
R2(¢7) — 1 — B2, and find

2Bsin(Su¢i) = i\/[RQ(UJT) — (1= BYJ[(1+ B)? — R2(¢7)],

where the sign is determined by the valueggf Thus, the first equation in (2.7)
reads

+7Z) (1/)1‘)\/[1%2(1/1?) - (1=B)?[(1+ B)? - R*(y7)] =
Ry (y1)[R*(¥7) + 1~ B,
and it should be resolved w.rit; in the prescribed range of the values/gf Substi-

tution of this value); into condition2B cos(Sy ¢5) = R%(¢y}) — 1 — B?, allows to
computep;. Similarly one can obtain the relation describing the ctadif, = 0.
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FIGURE 2. Sketches of menisci which have not physical meaning
due to the different reasons: (@gniscus does not reach the solid
surfaceSs, (b) meniscus reaches solid surfaSe with negative
contact angleand (c)meniscus reache$,; at the endpoint which

is immersed irfs.

After obtaining the value; one has to check if the meniscus arrives at the
corresponding SB is indeed outside of the SB. To do thisdhice:* = z(¢;) +
0zj, 0z; = (—1)7 92, such that als@’; = Z;(¢5) + dz;. Writing

25 +0¢5) = 2(63) + 0z, Z; (Y] + 0j) = Z;(45) + 0z,
expresgy; < 1inthe linear approximatiodie; = dz;/2'(¢3), 6v; = d2;/Z5(¥7).
Write down the radial coordinates of the meniscus and the SB-at*:

(65 +0¢;) = r(65) +1'(65)30; +1"(65)543 /2,
Ri(W; +0v;) = R;(Y5) + Rj(;)00; + R} (¢js)0u5 /2. (2.9)

Calculate a difference,

(%) R

5 1L50) — R(* + 60.;) = J/_ TNTg

(0 +005) = B3 + 0uy) L%;—) 7205

which sign is defined by the expression in the square brackstthe meniscus is

outside of the SB when this difference is positive we obtaipssituting (2.4) into
(2.10) the following condition

] —= (2.10)

5o T8 RIWG) _ r*(8)Beoss + Bisin® g5 Ry()
P72 T 2P r(@)(1+ Beos¢))?  Z2(WT)
(2.11)
or its equivalent
r(¢%)  RI(W7) 1 r2(¢3)Beosdl | RI(¥)
S = Jj, Nl J J J
PTG TR (@) [H Brsm?o; | RPWD)

(2.12)
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The derived conditions (2.11,2.12) are particular casesmbre general case when
the meniscus is partially immersed into SB.

e TypeC: meniscus reaches one SB at the endpoint which is immersetthént
other SB, Figure’c

Let a lower of two intersecting SB be "pierced” by meniscubo@se a ref-
erence frame in such a way thaltps) = ds + Z2(¢5) = 0. A point A(zs) € Sy
is located at{ Ro(v)3),d2 + Zo(vp3) = 2(¢1)} wherez(¢,) = M(Sg¢1, B) —
M (Su¢2, B). The meniscus does not existih(v3) > Ry (¥7) = r(¢1). Summa-
rizing necessary formulas we arrive at requirements of goeIsi nonexistence

ZQ(wd) - ZQ(/(b;) = A(¢17 ¢27 SH7 B)7
Ry (Y3) = 7(¢2), Ra(¥z) > r(¢1). (2.13)

Using an invariance of nonexistence phenomenon under pationuthe upper and
lower SB write the requirements of meniscus nonexistenoenven upper of two
intersecting SB is "pierced” by meniscus,

Z1(Y3) — Zo(¥7) = —A(¢1, ¢2, Su, B),
Ry (V1) = r(¢1), Ri(vs) > r(¢2). (2.14)

o TypeD: the center of5; is above the center ¢, Figure 3a

This leads to meniscus that reactsat the endpoint which is immersed in

S and reaches at the endpoint which is immersed #i. To find the restricting
relation make use of (2.3) and eliminate there Thus, we arrive at the restricting
relation @, = ds),

21(¢1) — 22(P2) = A(@1, ¢2, Su, B) = Z1 (Y1) — Za(13),

U5 = Ri ()] (2.15)
wheref~! denotes the inverse function w.rft.
3. Existence of axisymmetric menisci between two spheres

In this section we specify formulas (2.6-2.14) for two saheres given by follow-
ing formulas,

R;(;) = asingy,  Z;(¢;) = (=1) acos ;. (3.1)
3.1. Constraints of A and B types

There exists a critical anglg, related to the menisci nonexistence of type type
(see Figures 2a). It corresponds to a meniscus which doeeacit a solid sphere
with radiusa,

a> =1+ B*+2Bcospy — cospa=(a®>—1— B?)/2B. 3.2)

A critical angle¢p of the typeB corresponds to the meniscus on Figure 2b. To
calculate it use the relations
R (Yp) _ 1" (¢B)
= .o =R%), =z =d+ Z(V%), 3.3
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FIGURE 3. (a) Sketch of B-B meniscus forbidden due to the
exchange of the SB centers. Sketch of two B-B menisci which
(b) has and (c) has not physical meaning. In the latter case a
meniscus pierces; at its back at the endpoigt;: 7 < ¢1 <

2m — arccos [—(1 + a + B?)/(B(2 + a))].

in (2.4, 3.1) and obtain for menisci with positive curvat(fg, = 1),

1+ Bcos¢p . . \/1+B2+2Bcos¢p

T o sin wB = )
Bsin¢p a

where + (-) sign corresponds the lower (upper) sphere. Bétitig ofy;;, from (3.4)

we obtain

(3.4)

tanyp = F

COS¢B:_1;—(QB_2|_—£)Z)’ b= +a. (3.5
When2 + b > 0, represent (3.5) as follows
B2+0b)>1+B2+b>—-B>2+b) — { glggglgizgig
In case ofund we have a negative= —a,
B<1l, -2<b<B-1, -B-1<b —
1-B<a<min{l+ B,2} =1+ B. (3.6)
In case of convelod we have a positivé = q,
B>1 b>B-1>-B—-1 — a>B-1 3.7)
When2 + b < 0, represent (3.5) as follows

-B(2+b) >1+B*+b>B(2+b) — { 81381512?8

In case ofund we have a negative= —a,
B<l, B-1<b<-1—-B, b<-2 —
max{l+ B,2} =2<a<1-B, (3.8)
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which is a contradiction. In case of convisod we have a negative= —a,

B>1, b<-B-1<B-1, b<-2, —
a>max{B+ 1,2} = B+ 1. (3.9

We have to make certain that all menisci have a physical mgamtNamely, we
require that the menisci approaching contact point on thergpwith¢ s given by
(3.5) are outside of the sphere. &Y (v7)/Z7? (%) = —1/R;(¢}) = —1/r(¢3),

using the condition (2.11) we find

Becos ¢pp(l + B? +2Bcos¢p) + B?sin® ¢
r(¢p)ip = 1- 5
(1+ Bcos¢p)

1— B2
_ s 3.10
1+ Bcos¢p T ( )

where the "+” sign is selected fd¥od in (3.7), and the "-” sign stands fddnd
in (3.6) andNod in (3.9). In the last case > 2, so that theNod meniscus in (3.9)
approaches the contact pointimmersed into the sphere aad g8hould be removed
from further consideration.

Summarize (3.6, 3.7). The menisci exist when

B <1, cos pp = _11;(5:)&7
Und : 1-B2
la — 1] < B, 1+BCOS¢B=2:7Q7
1—- B2
2 ik
tan® Yy = m, (3.11)
PP GOvR—
Nod : 1-B?
a+1> B, 1+ Bcosop = 7,
B%2-1
t 2 /% - @ 3.12
an ’(/JB (a+1)2*82 ( )

A choice of the sign ofan ¢} is dictated by the value afz running in the range
[0,27]. To choose a correct sign introduce fibie upper and lower spherawo
variabless, andos, respectively. The ranges< ¢ < n/2 (¢; = 1) andn/2 <
Y5 < 7 (o; = —1) are called thdaceside andoackside of sphere, respectively.
Thus,o; ando, are valuated as follows,

upper sphere, face sidéF) — o1 =1,

upper sphere, back sidB) — o7 = —1,

lower sphere, face sid¢F) — o9 =1,

lower sphere, back sid¢B) — o, = —1. (3.13)

Bearing in mind that + B2 —a in (3.11, 3.12) may obtain both positive and negative
values, the ranges of variation ¢fz may be specified if all restrictions an B
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would be taken into account (see Table below).

PR Und Und Nod, H >0 Nod, H <0
B’<a—-1<B|-B<a—-1<B?| B<a+1 B<a+1
F/B oo =10rc; = —1 cp=10roy = —1
o | [0,7/2]+2r | [n/2,7]x2r |[r,37/2]+2n [r/2,7] £ 27
F/B oo =—10rc; =1 oo =10ro; = —1
¢op | Br/2,2x]£2r | [r,3n/2]+2rn [ [r/2,7]+2r [7,37/2] + 27
A concaveNod (S = —1) is considered separately. In (3.4, 3.5) the first
formula in (3.4) is changed,
« 1+ Bcos¢p B
tanyp = £ Bsimop b=a, (3.14)

where - (+) sign corresponds to the lower (upper) spherepikgen mind that only
the face sides of lower and upper spheres are permitted fmaweNod we arrive

at the range of 5 given in Table above, where a symbo|, v2] + 27 denotes three
different rangesfy:, v2], [v1 + 27,72 + 27| and[y; — 27,2 — 27]. See Figure 3¢
whereg, € [r,37/2] andgsy € [—m, —37/2].

According to [2], section 6.2, there exist thied andNod menisci with com-
pletely concave meridional profiles (without IP, see Figliag which are allowed
for the F-F spheres arrangement. Such menisci do exist iR-Barrangements if
the spheres radii; and menisci parametéd? satisfy,

1+BQ+a1> ( 1+ B? +ay
< arccos | —

Nod : 2 T i
o BICCOS( B(2+a1) B(2+a2)

) , (3.15)

a3 > as,
1+ B2% -~ 1+ B?—
Und : arccos (_M) > arccos (_5(2(120)/2) 5
a1 > as.
According to (3.15) both concave menistind andNod) do not exist in the F-B

arrangement ifi; = ao. In Figure 4 we present two concave menisci in the F-B
arrangement of spheres with zero contact angles. Finalbgse of the B-B spheres

Und, H>0

(a) (b)

FIGURE 4. Two concave menisci in the F-B setup between two
spheres: aNod, B = 1.2, a; = 2.2, as = 0.5, ¢7 = 204°,

¢35 = 1922, b)Und, B = 0.8, a1 = 0.8, az = 0.25, ¢7 = 209°,

@5 = 187°.
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setup the existence of the concave menisci is forbidden.

3.2. Constraint of C type

The conditions (2.13,2.14) derived for the third case of is@rs nonexistence re-
duce to the following relations fot < B < a; + 1 in an assumption that the
meniscus does not "pierce” thieh SB:

M(Su¢1, B) — M(Sud2, B) + lorAi(¢r) — Ai($:)] =0, (3.16)
Ai(p;) = \/a% —(1+ B2 +2Bcos¢;), I=(i+1)(mod2).

Coexistence of thd, B andC types of constraints may be found in Figure 10.

3.3. Constraint of D type

Substitute (2.4, 3.1) into (2.15) and obtain the conditibthe proper SB position-
ing,

M(Su¢1, B) — M(Su¢2, B) + 0142(¢1) + 02A1(d2) = 0. (3.17)

Coexistence of thd, B andD types of constraints may be found in Figures 13c and
14c,d. In Figure 5 we present two typical domains of menisisitence.

o

150

$2
&2

(@) (b)

FIGURE 5. Coexistence of thA (black), B (blug), C (magenta

and D (greer) types constraints foNod between two equal
spheres: (a) F-F setul3 = 1.205,a = 2.2; (b) B-B setup,

B=15a=12.

4. Menisci between equal spheres. Face-to-Face setup

In the following we present a gallery of images showing faegi value ofB in the
plane{¢1, #2} the regions of existence (limited by the dashed curves) asidé
them the regions of stability (shading showrbinefor Sy = 1 and inlight orange
for Sy = —1). These images should not be understood as solution of tixegon
of meniscus existence between the two solid spheres at a distancel between
their centers with prescribed contact anglesOn the contrary, a pointg:, ¢2)

in the region of existence determines an axisymmetric noeisvith a meridional
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profile given by (2.4) for, < ¢ < ¢;. This meniscus makes some contact angjes
with the solid spheres which can be computed using simglertimetric relations,
while the distance is computed from (2.3). If this point appears in the shaded ar
the corresponding meniscus is stable.

Thered curves in Figures show the location®fab domain boundary for the
menisci with the fixed CL with SB. Thierownlines show the change in the number
of IP in the meridionalUnd profile. The number of IPs ibind profile is denoted in
red, e.g.,2™ means two IPs on the meniscus meridional sedlibwhich is convex
in vicinity of ¢ = ¢; and1~ means one IP oM which is concave in vicinity of
¢ = ¢1. Four different types of meniscus existence boundariedemeted irblack
(A), blue (B), magenta(C) andgreen(D) colors. In the first series of the images
in Figure 6, the coordinates,, ¢, are labeled, but further on they are dropped to
improve a visual perception.

4.1. Unduloidal menisci between two solid spheres

In this section we present the stability diagramsiad menisci between two equal
spheres. These diagrams were found by analyzing a positgesf the matrix);;

in (1.1). In Figure 6 and Figure 8 a,b such diagrams are pteddar a wide range

of B. Inthe cas&3 = a—1 we find another phenomenon: the boundaries of stability
domains for fixed and free CL meet (this question was left apg8]). In all cases
there exist three kinds of stablind menisci: without IPs and with one or two IPs.

Instability of Und menisci with more than one IP became a sort of folklore
although there is no any rigorous claim in this regards.,Elealing with menisci
between solid sphere contacting the plate the authors [gga statement which
was not supported by calculation: "There might be more thanl®. .. . Multiple
IPs in the meridional profiles are known but such meniscii&edyl to be unstable”.
Although in [2] we have shown th&aind menisci with more than one IP between
two solid parallel plates are always unstable, the gentatdrment for two arbitrary
SB remains elusive.

A strong statement about stability of axisymmetric menistiveen two solid
spheres has been announced in [12], namely, Theorem atip.BlZj and its equiv-
alent version at p.397 in [13] reads: "the conwgrd or Sph menisci are stable,
while the conveXNod meniscus is unstable. The solid spheres have not to be equal
or have equal contact angles”. The examples of the stableegk@nd concavéind
menisci with two IP are shown in Figure 7c,d.

4.2. Nodoidal menisci between solid spheres (2 types of ctraints)

Considering thé&lod menisci it should be underlined that part of the pldne, ¢, }
where the meniscus withy = —1 exists is determined by relation (2.5) and the
existence conditions. THetab domain (shown idight orange covers either a part

of (Figure 8c) or the whol€&xst (Figure 8d). The same time the conwéad menisci
with Sy = 1for 1 < a < 2 appear to be stable everywhere they exist (Figure 8c,d).
Examples of the stablod menisci are shown in Figure 9.

4.3. Nodoidal menisci between solid spheres (3 types of ctnagnts)

For some parameter values one can observe a special caseEwtetomain is
bounded by three types of constraint. Such an example ®rifited in Figure 10
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FIGURE 6. Stability diagrams for F-F setup of (&Yl meniscus,
B = 0, and thredJnd menisci, (b)B = 0.15, (c) B = 0.2 and
(d) B = 0.25, between two solid spheres of radius= 1.2. The
number of IPs inUnd profile is denoted ined throughout the
whole manuscript.

(@) (b) (© (d)

FIGURE 7. StableUnd menisciB = 0.25 with one and two IPs
(black point$ for F-F setup between two solid spheres of radius
a = 1.2 and endpoints: (@) ~, ¢o = —60°,¢; = 135°, (b) 1T,

o = 60°, 1 = —135°,(C) 27, ¢ = —135°, ¢y = 135° and (d)
2T, g2 = 60°, 1 = 300°.
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-200 -100 0 100 200

(©) (d)

FIGURE 8. Stability diagrams for F-F setup of (@hd meniscus,
B = 0.8, (b) Sph meniscus,B = 1, and twoNod menisci, (c)
B = 1.03, (d) B = 1.25, between two solid spheres of radius
a=1.2.

whereExst andStab regions for theNod menisci are shown. Note that the concave
Nod meniscus folB = 1.05 is unstable in small part dxst, while for larger values
of B these menisci are stable everywhere in the correspoidistgegion.

4.4. Menisci between two equal contacting spheres

In this section we analyze a special case of liquid bridgéwdwen two equal con-
tacting spheres to check recent claims made in [14]. Forerience we make use
of menisci classification given independently in [7] and][IBollowing formulas
(6,7) in [7] definex as a real root of equation,

1+4da(a —1)sin® (0 + 1) = B>, 0 =01 =05, 1) = by = 1)y (4.1)

| [Nod”™ [Cat| Und | Cyl[ Und [Sph|Nod™ |
al <0 [0 [O12)]12[02n] 1] >1
Bl >1 [ -] @©1n o] @On[1]>1

This produces a correspondenge— B (excluding theCat meniscus). The only
difference with [13] is that it used = —«, whereCyl occurs only ifd 4 ) = 7 /2
and Nod* denote the nodoid menisci with negative (-) or positive (tjvature
H, respectively. A sequence of menisci listed in Table isgmésd in Figure 6 in
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FIGURE 9. Stable conveNod menisciB = 1.25 with one and
two IPs and without IPs for F-F setup between two spheres of
radiuse = 1.2 and endpoints ()™, ¢o = —135°, ¢y =135°, (b)

1T, ¢ = —155°, 1 = 1352, (€) 17, o = —135°, ¢y = 155°, (d)

27, ¢po = —157°, ¢y = 157°. Stable concav&lod meniscus (e)

B = 1.25 between two spheres of radius= 1.2 and endpoints
P2=163°, 1 =193°.

(b) - (©

FIGURE 10. Stability diagrams for F-F setup Nibd menisci (a)
B =1.05, (b) B =1.2,(c) B = 1.205 between two solid spheres
of radiusa = 2.2. In Figure 10c we focus on that part of stabil-
ity domain which corresponds to the converd: its boundaries
comprise all three types of constraints.
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[7]. The following statements about existence of axisynrim@tenisci between two
equal contacting spheres have been announced in [14]:

Theorem 3.3, 3.4For 7/2 < 6 < manda < 0 [Nod™] andn/2 < 6 < 7
anda < 1 [Nod™, Cat, Und, Cyl], no liquid bridge between contacting balls exists
which is both axisymmetric and symmetric across the planetwib the perpendic-
ular bisector of the line segment between the centers ofalig b

Note 3.5.'"For a@ > 1 [Nod*], there may be axisymmetric bridges between
contacting balls, but these are known to be unstable [12rd'Ho not exist stable
axisymmetric bridges between contacting balls withd &} = /2, b) rotation sym-
metry, ¢) symmetry across the perpendicular bisector ofitteesegment between
the centers of the balls. Open question: whether the laslitton may be dropped'.

Consider the case when the meniscus has a contact angléevighhere equal
to w/2 and two spheres contact each other. The inclination anglih the plane of
the meniscus tangent at the contact point can be expressedththe similar angle
¢ of the tangent to the sphere as follows:= « + 7/2, where the lower (upper)
sign is chosen fob < ¢ < w/2 (/2 < ¢ < 7). The same time we have

1+ Bcos
—;Tsj;qs:tana, asiny = \/1+ B2 + 2B cos ¢,
a—acos) = M(¢,B), (4.2)

where the last two equations determine the conditidgg = R(v)), z(¢) = Z ()
at the contact point. These equations produce

20— 35 [

T

18 3.0 /

16 2.5]

. . /

14 20
\ 1.5]

12

10| \ . ]

0 50 100 150 10 12 14 16 18

¢ B
(@) (b)

FIGURE 11. PlotsB = B(¢) anda = a(B) for contacting
spheres and contact angtes- 90°.

_ 1%(¢) + M?(¢, B) _ 2r(¢)M(¢, B)
"M ) T ) - M0 B

Using the relationan ) = — cot « from the first equation in (4.2) we find

2(1+ Beosd)r(¢)M(p, B) = (1*(¢) — M?(¢, B)) Bsing,  (4.4)

which allows to find for giver3 the coordinat@ of the contact point, and the sphere
radiusa. In Figure 11 we present the plots of implicit solutions o0f3(44.4). They
both define a unique triplg, B, a, for which such meniscus exists.

(4.3)
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Another interesting case of contacting equal spheres ofatieisa and the
meniscus forp, < ¢ < ¢ poses a question about a relation betweermand ¢,.
The contact points on the spheres has the coordinates/gadisiie relations:

(@) | (b) (c)

FIGURE 12. A stable domain (a) folod menisci B = 2.15)
with F-F setup between two touching spheres of radits 1.75
with (b) and without (c) symmetry across the perpendicular b
sector of the line segment between the centers of the bh)s: (
1 = —po ~ 129.15°, ¢ ~ 76° and  ~ 115°; (c) ¢1 ~ 1337,

¢o ~ —127.5°. Red and magenta points (a) stand for stable
menisci in (b) and (c), respectively.

r; = asiny; = \/1 + B2 + 2B cos ¢;,
z1 = M(¢1) =dy —acoshy, 2o = M(¢s) =ds+ acosis,

whered; denotes the position of thieth sphere center on the vertical axes, so that
for the contacting spheres we havge— a = ds + a, or dy — ds = 2a. The last
equality leads to the desired relation

M(¢1) — M(¢2) = 2a—+/a?2—(1+ B2+2Bcos¢y) —
Va2 — (14 B2+ 2Bcos ¢s). (4.5)

In Figure 12 we present the stability diagram fdod meniscus and label byed
and magentgoints (belonging to thgray curve defined by (4.5)) the location of
stable menisci between two equal contacting spheres wittacbangled > 7 /2.
This refutes the statement Note 3.5 in [14] in both casesw(th) and (c) without
symmetry across the perpendicular bisector of the line segivetween the centers
of the balls.

5. Menisci between equal spheres. Back-to-Back setup

A special version of th® type constraint in case of théod meniscus at the B-B
spheres is presented in Figure 3. The stability analyshisrcase is performed sim-
ilarly to the case of F-F setup, but the sequence and striofStab with increasing
value of B appears to be much simpler. One of the reasons of such sicagitifi is
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that theNod meniscus with negative curvature is forbidden in this setapillus-
trate this point we consider three characteristic rangeslofes of the solid sphere
radiusia < 1, 1 < a < 2, anda > 2. First consider the cask < a < 2,
choosinga = 1.2; the computation shows that thimd meniscus has no IPs and is
stable everywhere it exists (Figure 13a). a&d meniscus is stable in smaller part
of the existence regioBxst which boundary may be determined by the existence
conditionD (see Figures 13b,c).

100] 125 J
-1
1

(@) (b) (©)

FIGURE 13. Stability diagrams for B-B setup of (&)nd menis-
cus,B = 0.8, and twoNod menisci, (b)B = 1.25, (c) B = 1.5,
between two solid spheres of radius= 1.2.

In the casex < 1 we observe that thelnd meniscus has two IPs and again
is stable everywhere it exists (Figure 14a); the same §itak region of the convex
Nod meniscus covers only some partoét (Figure 14b). Finally, when > 2 the
existence region of thod meniscus is strongly limited by the existence condition
D and these menisci are stable in the large pabBxsf (see Figure 14c,d).

6. Menisci between equal spheres. Face-to-Back setup

The F-B setup is quite simple for the analysis, as in this tas®&oundaries dExst
can be described as a "outer product” of the correspondiyigms for F-F and B-B
setups. To explain this feature consider the case when thisows touches the face
of the upper SB abp = ¢, and the back of of the lower SB at= ¢,. The existence
conditionsA andB (represented by the black and blue broken lines) are datedni
for ¢1 and¢- independently. Itis illustrated in Figure 15a and Figurb there the
range of the accessible values f@aris much larger than fop,.

7. Menisci between nonequal spheres

The existence and stability analysis in the case of soliggshof unequal radii is
similar to the case of F-B setup considered in section 6. Thedaries ofExst
determined by the conditiors and B depend on the corresponding sphere radii
and have to be computed independently. This breaks the sirnafé&xst andStab
w.r.t. the line¢; + ¢ = 0. A difference in spheres radii may lead to existence of
special types of menisci which are forbidden in setup withadgadii.
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(©) (d)

FIGURE 14. Stability diagrams for B-B setup of (&nd menis-
cus,B = 0.8, and (b)Nod menisci,B = 1.25, between two solid
spheres of radius = 0.5. Stability diagrams for B-B setup of two
Nod menisci, (c)B = 1.25, and (d)B = 1.5, between two solid
spheres of radiug = 2.2.

7.1. Face-to-Face setup

In Figure 16 we present the stability diagrams brd andNod menisci forl <
a1 < 2 andas > 2. By comparison to Figures 6d and 16a; 8a and 16b; 10c and
16c, one may see how the stability diagrams become asynumetri. to the line

o1+ ¢2 = 0.

7.2. Face-to-Back setup

The F-B setup of menisci between two nonequal spheres gsesa existence of
concaveNod meniscus which is forbidden in F-B setup between two equztigs
(see Figure 16).

The trapezoidal geometry &ikst in Figure 17a appears due to intersection of
triangular existence region for concaMed meniscus in the F-F setup between two
equal spheres of radiug with existence constrait on sphere of radiug, < a;
that results in the triangle cut. Note that for the paransetetected in Figure 17athe
concaveNod meniscus is stable in every point Bst. In case of the conveXod
meniscus a part of the boundarieskskt may be related to th€ type constraint
(see Figure 17c).
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FIGURE 15. Stability diagrams for F-B setup bihnd menisci, (a)
B = 0.25 and (b)B = 0.8, andNod menisci, (c)B = 1.25 and
(d) B = 1.5, between two solid spheres of radius= 1.2.

,,,,,,,,,,,,,,,

b2

(@) (b) (©)

FIGURE 16. Stability diagrams for F-F setup &fnd menisci,
(&) B = 0.25, (b) B = 0.8, andNod meniscus, (c)B = 1.205,
between two nonequal solid spheres of radii= 1.2 anda, =
2.2.
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@ (b)

~170f

-175

(©) (d)

FIGURE 17. Stability diagrams for F-B setup of concave (a) and
convex (c)Nod menisci,B = 1.2, between two non equal solid
spheres of radii; = 2.2 andas = 0.25. Two stableNod menisci,

(b) p2 = 186°, ¢1 = 200°, and (d)po = —176°, ¢1 = 50°, are
labeled byblack pointsin diagramsA red linein (a) is a main
diagonal in the plané¢;, ¢2}. A magenta curvén (c) describes
the C constraint of existence.
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