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Abstract. We find the existence conditions of unduloidal and nodoidal menisci
between two solid spheres and study their stability in the framework of non-
spectral theory of stability of axisymmetric menisci between two axisymmetric
solid bodies in the absence of gravity.

1. Introduction

Pendular rings (PR) in the absence of gravity between two axisymmetric solid
bodies (SB) with free contact lines (CL) are surfaces of revolution with constant
mean curvature (CMC) classified by Delaunay in [1]: cylinder(Cyl), sphere (Sph),
catenoid (Cat), nodoid (Nod) and unduloid (Und). Two questions are important in
this regard: what is an exact shape (meniscus) of PR in the given setup and how
stable is it. The first question would be answered once one could found a solution of
the Young-Laplace equation (YLE) supplemented with boundary conditions (BC) of
free CL and given PR volume. Recent progress [7] in the PR problem has shown an
existence of multiple solutions of YLE for given PR volume and as a consequence
poses a question on menisci stability as a menisci selectionrule.

There are two different approaches to study stability of PR between two SB
with free CL. The first approach was initiated by T. Vogel [9, 10] and based on the
study of the Sturm-Liouville equation (SLE) and its spectrum. Implementation of
this approach is a difficult task: only several exact resultsfor Cat [16], Sph [8]
andUnd (with special contact angle values) [3, 10] between two plates are known.
Investigation of menisci between other surfaces encounters even more difficulties of
finding analytically a spectrum of SLE with given shape of SB (Cyl [11] and convex
Und andNod between equal spheres [12, 14]).

Another approach was suggested recently [2] as a part of a variational problem
with minimized and constrained functionals and free endpoints moving along two
given planar curvesS1, S2. It is based on Weierstrass’ formula of second variation
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δ2W for isoperimetric problem. A freedom of endpoints allows toderiveδ2W as a
quadratic form in perturbationsδφj of the endpointsφj alongSj(ψj),

δ2W = Q11 (δψ1)
2

+ 2Q12δψ1δψ2 + Q22 (δψ2)
2
, Qij = Qij(φ2, φ1), (1.1)

and find in the plane{φ1, φ2} a stability domainStab whereδ2W ≥ 0 (see The-
orem 4.1 in [2]). Stability of menisci between parallel plates were studied in [2]
for all Delaunay’s surfaces. We also have foundStab for Cat andCyl between two
SB: spheres, paraboloids, catenoids, ellipsoids and between sphere and plane. This
approach has no limitations to findStab analytically for arbitrary meniscus and SB
shapes.
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FIGURE 1. Sketches (meridional sections) of three menisci be-
tween two equal spheres of radiusa showing the contact an-
glesθ1, θ2, filling anglesψ∗

1 , ψ∗
2 and coordinates of the endpoints

φ1, φ2: (a) concave meniscus, F-F setup, (b) convex meniscus, B-
B setup, (c) meniscus with one inflection point, F-B setup.

The present paper deals with a more difficult case whenUnd andNod menisci
are trapped between equal solid spheres. Compared with menisci geometry between
two plates, this problem leads to the question ofmenisci existencedetermined by
Und andNod geometry between two spheres. Thus, we have to consider the stabil-
ity Stab and existenceExst domains such thatStab ⊆ Exst; to establish the latter
we need a simple analytical geometry. We consider three different setups of semi-
spheres (faceandback) where the meniscus is approaches the spheres:face-to-face
(F-F), face-to-back(F-B) andback-to-back(B-B).

The paper is organized in seven sections. In section 2 we consider four differ-
ent types of constraints which define the existence of menisci between two convex
SB (not necessarily spheres), and derive the conditions when they occur. In section
3 we specify them for the case of two solid spheres; we discusstheir coexistence
and establishExst domain in different setups. In sections 4,5 and 6, based on The-
orem 4.1 in [2], we give a detailed analysis ofStab domains for menisci between
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equal spheres with F-F, B-B and F-B setups, respectively, and find the stableUnd
with two inflection points (IP). In section 7 we show how a non-equivalence of the
spheres affects bothStab andExst domains.

2. Axisymmetric menisci between solid bodies and their
existence

Consider axisymmetric PR between two SB in absence of gravity. The axial symme-
try of SB is assumed alongz-axis (see Figure 1). The shapes of meniscus{r(φ), z(φ)}
and two SB{Rj(ψj), dj + Zj(ψj)} are given in cylindrical coordinates. The filling
angleψj along thej-th solid-liquid interface satisfies0 ≤ ψj ≤ ∞ for unbounded
SB and0 ≤ ψj < ∞ for bounded SB.

Functionsr(φ) andz(φ) are defined in the rangeφ2 ≤ φ ≤ φ1 and satisfy
YLE with curvatureH,

SH =
z′

r (r′2 + z′2)
1/2

+
z′′r′ − z′r′′

(r′2 + z′2)
3/2

, (2.1)

whereSH = ±1 correspond to the menisci with positive and negative curvatureH,
respectively. Equation (2.1) is supplemented with Young (transversality) relations
for given contact anglesθj ,

θj = (−1)j−1

(

arctan
z′(φj)

r′(φj)
− arctan

Z ′(ψ∗
j )

R′(ψ∗
j )

)

, j = 1, 2, θj ≥ 0, (2.2)

and consistency equalities,

z(φ1) = d1 + Z1 (ψ∗

1) , r(φ1) = R1 (ψ∗

1) ,

z(φ2) = d2 + Z2 (ψ∗

2) , r(φ2) = R2 (ψ∗

2) . (2.3)

whered = d1 − d2 is a distance between centers ofS1 andS2. Throughout this
paper we make use of a standard parametrization [2] for menisci with H 6= 0 which
goes back to [4, 5],

r(φ) =
√

1 + B2 + 2B cos(SHφ),

z(φ) = M(SHφ,B) − M(SHφ2, B) + Z2(ψ
∗

2), (2.4)

M(φ,B) = (1 + B)E(φ/2,m) + (1 − B)F (φ/2,m), m = 2
√

B/(1 + B).

whereF (x,m) and E(x,m) denote elliptic integrals of the first and the second
kind. Formulas (2.4) describe four Delaunay’s surfaces with nonzero curvatureH:
Cyl, B = 0; Und, 0 < B < 1; Sph, B = 1 andNod, B > 1. We assume that in the
rangeφ2 < φ < φ1 the ordinatez(φ) is a growing functionz(φ2) < z(φ) < z(φ1).
According to (2.4) we get

∆(φ1, φ2, SH , B) = M(SHφ1, B) − M(SHφ2, B) > 0, (2.5)

that determinesSH introduced in (2.1). This value cannot be defined whenz(φ1) =
z(φ2) for φ1 6= φ2. The condition (2.5) implies that all unduloids have positive
curvature, i.e.,SH = 1. It follows from the explicit expressionz′(φ) = SH(1 +
B cos(SHφ))/r, leading to positivez′(φ) for B < 1.
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Oncer(φ) andz(φ) are parameterized by (2.4) we have to determine the PR
existence as a physically valid object. This leads to restriction on parametersB, φ1,
φ2, important for nonplanar SB and makes the stability domainStab substantially
dependent on conditions of PR existence. This phenomenon was observed in [2] for
Cat between two spheres and also announced in [14] forNod between equal spheres
with contact angles90o ≤ θj < 180o. In other words, a meniscus geometry has to
satisfy requirements onB, φ1, φ2 to avoid different types of meniscus nonexistence
which can be distributed into four major types.

• TypeA: meniscus does not reach solid surface, Figure2a

This condition is applicable only to SB with finite maximal radial sizeRmax,

1 + B2 + 2B cos φ ≥ R2
max . (2.6)

• TypeB: meniscus reaches solid surface with negative contact angle, Figures
2b and3c.

Let PR be trapped between two SB and let a contact angleθ2 at S2 be given.
ConsiderS1 and requireθ1 ≥ 0, otherwise the meniscus ”pierces”S1 and contacts
it from ”inside”. The critical endpointφs

1 corresponding toθ1 = 0 satisfies three
equalities:

z′(φs
1)/r′(φs

1) = Z ′

1(ψ
∗

1)/R′

1(ψ
∗

1), r(φs
1) = R1 (ψ∗

1) ,

z(φs
1, φ2) = d1 + Z1 (ψ∗

1) . (2.7)

For givenB we have to findφs
1, φ2, ψ∗

1 , ψ∗
2 and locationsdj of SBs onz axis.

Choose a reference frame in such a way thatz(φ2) = 0. According to (2.2-2.4), we
havez(φ) = M(SHφ,B) − M(SHφ2, B). Thus, solving another three equations,

Z2 (ψ∗

2) = −d2, r(φ2) = R2 (ψ∗

2) , θ (φ2, ψ
∗

2) = θ2, (2.8)

we findψ∗
2 , φ2 andd2 as explicit (or implicit) expressions. Resolving now the two

first equations in (2.7) w.r.t.φs
1 andψ∗

1 we find them also as explicit (or implicit)
expressions.

The shiftd1 follows from the third equation in (2.7),d1 = z(φs
1, φ2)−Z1 (ψ∗

1).
The computation ofφs

1 andψ∗
1 can be performed as follows. First, note thatrr′ =

B sin(SHφ), andrz′ = 1 + B cos(SHφ). From (2.4) we obtain2B cos(SHφs
1) =

R2(ψ∗
1) − 1 − B2, and find

2B sin(SHφs
1) = ±

√

[R2(ψ∗
1) − (1 − B)2][(1 + B)2 − R2(ψ∗

1)],

where the sign is determined by the value ofφs
1. Thus, the first equation in (2.7)

reads

±Z ′

1(ψ
∗

1)
√

[R2(ψ∗
1) − (1 − B)2][(1 + B)2 − R2(ψ∗

1)] =

R′

1(ψ
∗

1)[R2(ψ∗

1) + 1 − B2],

and it should be resolved w.r.t.ψ∗
1 in the prescribed range of the values ofψ1. Substi-

tution of this valueψ∗
1 into condition2B cos(SHφs

1) = R2(ψ∗
1)−1−B2, allows to

computeφs
1. Similarly one can obtain the relation describing the condition θ2 = 0.
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FIGURE 2. Sketches of menisci which have not physical meaning
due to the different reasons: (a)meniscus does not reach the solid
surfaceS2, (b) meniscus reaches solid surfaceS1 with negative
contact angleand (c)meniscus reachesS1 at the endpoint which
is immersed inS2.

After obtaining the valueφs
j one has to check if the meniscus arrives at the

corresponding SB is indeed outside of the SB. To do this introducez∗ = z(φs
j) +

δzj , δzj = (−1)jδz, such that alsoZ∗
j = Zj(ψ

∗
j ) + δzj . Writing

z(φs
j + δφj) = z(φs

j) + δzj , Zj(ψ
∗

j + δψj) = Zj(ψ
∗

j ) + δzj ,

expressδψj ≪ 1 in the linear approximationδφj = δzj/z′(φs
j), δψj = δzj/Z

′
j(ψ

∗
j ).

Write down the radial coordinates of the meniscus and the SB atz = z∗:

r(φs
j + δφj) = r(φs

j) + r′(φs
j)δφj + r′′(φs

j)δφ
2
j/2,

Rj(ψ
∗

j + δψj) = Rj(ψ
∗

j ) + R′

j(ψ
∗

j )δψj + R′′

j (ψ∗

j s)δψ2
j /2. (2.9)

Calculate a difference,

r(φs
j + δφj) − Rj(ψ

∗

j + δψj) =

[

r′′(φs
j)

z′2(φs
j)

−
R′′

j (ψ∗
j )

Z ′2
j (ψ∗

j )

]

δz2
j

2
, (2.10)

which sign is defined by the expression in the square brackets. As the meniscus is
outside of the SB when this difference is positive we obtain substituting (2.4) into
(2.10) the following condition

δρ =
r′′(φs

j)

z′2(φs
j)

−
R′′

j (ψ∗
j )

Z ′2
j (ψ∗

j )
= −

r2(φs
j)B cos φs

j + B2 sin2 φs
j

r(φs
j)(1 + B cos φs

j)
2

−
R′′

j (ψ∗
j )

Z ′2
j (ψ∗

j )
> 0,

(2.11)
or its equivalent

δρ∗ =
r′′(φs

j)

r′2(φs
j)

−
R′′

j (ψ∗
j )

R′2
j (ψ∗

j )
= − 1

r(φs
j)

[

1 +
r2(φs

j)B cos φs
j

B2 sin2 φs
j

]

−
R′′

j (ψ∗
j )

R′2
j (ψ∗

j )
> 0.

(2.12)
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The derived conditions (2.11,2.12) are particular cases ofa more general case when
the meniscus is partially immersed into SB.

• TypeC: meniscus reaches one SB at the endpoint which is immersed into the
other SB, Figure2c

Let a lower of two intersecting SB be ”pierced” by meniscus. Choose a ref-
erence frame in such a way thatz(φ2) = d2 + Z2(ψ

∗
2) = 0. A point A(ψ3) ∈ S2

is located at{R2(ψ3), d2 + Z2(ψ3) = z(φ1)} wherez(φ1) = M(SHφ1, B) −
M(SHφ2, B). The meniscus does not exist ifR2(ψ3) > R1(ψ

∗
1) = r(φ1). Summa-

rizing necessary formulas we arrive at requirements of meniscus nonexistence

Z2(ψ3) − Z2(ψ
∗

2) = ∆(φ1, φ2, SH , B),

R2 (ψ∗

2) = r(φ2), R2(ψ3) > r(φ1). (2.13)

Using an invariance of nonexistence phenomenon under permutation the upper and
lower SB write the requirements of meniscus nonexistence when an upper of two
intersecting SB is ”pierced” by meniscus,

Z1(ψ3) − Z2(ψ
∗

1) = −∆(φ1, φ2, SH , B),

R1 (ψ∗

1) = r(φ1), R1(ψ3) > r(φ2). (2.14)

• TypeD: the center ofS2 is above the center ofS1, Figure3a

This leads to meniscus that reachesS1 at the endpoint which is immersed in
S2 and reachesS2 at the endpoint which is immersed inS1. To find the restricting
relation make use of (2.3) and eliminate thereψ∗

j . Thus, we arrive at the restricting
relation (d1 = d2),

z1(φ1) − z2(φ2) = ∆(φ1, φ2, SH , B) = Z1(ψ
∗

1) − Z2(ψ
∗

2),

ψ∗

j = R−1
j [rj(φj)] . (2.15)

wheref−1 denotes the inverse function w.r.t.f .

3. Existence of axisymmetric menisci between two spheres

In this section we specify formulas (2.6-2.14) for two solidspheres given by follow-
ing formulas,

Rj(ψj) = a sin ψj , Zj(ψj) = (−1)ja cos ψj . (3.1)

3.1. Constraints of A and B types

There exists a critical angleφA related to the menisci nonexistence of type typeA
(see Figures 2a). It corresponds to a meniscus which does notreach a solid sphere
with radiusa,

a2 = 1 + B2 + 2B cos φA → cos φA = (a2 − 1 − B2)/2B. (3.2)

A critical angleφB of the typeB corresponds to the meniscus on Figure 2b. To
calculate it use the relations

R′ (ψ∗
B)

Z ′ (ψ∗
B)

=
r′ (φ∗

B)

z′ (φ∗
B)

, r(φB) = R(ψ∗

B), z(φB) = d + Z(ψ∗

B), (3.3)
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FIGURE 3. (a) Sketch of B-B meniscus forbidden due to the
exchange of the SB centers. Sketch of two B-B menisci which
(b) has and (c) has not physical meaning. In the latter case a
meniscus piercesS1 at its back at the endpointφ1: π < φ1 <
2π − arccos

[

−(1 + a + B2)/(B(2 + a))
]

.

in (2.4, 3.1) and obtain for menisci with positive curvature(SH = 1),

tan ψ∗

B = ∓1 + B cos φB

B sin φB
, sin ψ∗

B =

√

1 + B2 + 2B cos φB

a
, (3.4)

where + (-) sign corresponds the lower (upper) sphere. Eliminating ofψ∗
B from (3.4)

we obtain

cos φB = −1 + B2 + b

B(2 + b)
, b = ±a. (3.5)

When2 + b > 0, represent (3.5) as follows

B(2 + b) > 1 + B2 + b > −B(2 + b) →
{

(1 − B)(1 − B + b) < 0,
(1 + B)(1 + B + b) > 0.

In case ofUnd we have a negativeb = −a,

B < 1, −2 < b < B − 1, −B − 1 < b →
1 − B < a < min{1 + B, 2} = 1 + B. (3.6)

In case of convexNod we have a positiveb = a,

B > 1, b > B − 1 > −B − 1 → a > B − 1. (3.7)

When2 + b < 0, represent (3.5) as follows

−B(2 + b) > 1 + B2 + b > B(2 + b) →
{

(1 − B)(1 − B + b) > 0,
(1 + B)(1 + B + b) < 0.

In case ofUnd we have a negativeb = −a,

B < 1, B − 1 < b < −1 − B, b < −2, →
max{1 + B, 2} = 2 < a < 1 − B, (3.8)
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which is a contradiction. In case of convexNod we have a negativeb = −a,

B > 1, b < −B − 1 < B − 1, b < −2, →
a > max{B + 1, 2} = B + 1. (3.9)

We have to make certain that all menisci have a physical meaning. Namely, we
require that the menisci approaching contact point on the sphere withφB given by
(3.5) are outside of the sphere. AsR′′

j (ψ∗
j )/Z ′2

j (ψ∗
j ) = −1/Rj(ψ

∗
j ) = −1/r(φs

j),
using the condition (2.11) we find

r(φB)δρ = 1 − B cos φB(1 + B2 + 2B cos φB) + B2 sin2 φB

(1 + B cos φB)2

=
1 − B2

1 + B cos φB
= 2 ∓ a, (3.10)

where the ”+” sign is selected forNod in (3.7), and the ”-” sign stands forUnd

in (3.6) andNod in (3.9). In the last casea > 2, so that theNod meniscus in (3.9)
approaches the contact point immersed into the sphere and thus it should be removed
from further consideration.

Summarize (3.6, 3.7). The menisci exist when

Und :

{

B < 1,
|a − 1| < B,

{

cos φB = − 1+B2
−a

B(2−a) ,

1 + B cos φB = 1−B2

2−a ,

tan2 ψ∗

B =
1 − B2

B2 − (a − 1)2
, (3.11)

Nod :

{

B > 1,
a + 1 > B,

{

cos φB = − 1+B2+a
B(2+a) ,

1 + B cos φB = 1−B2

2+a ,

tan2 ψ∗

B =
B2 − 1

(a + 1)2 − B2
. (3.12)

A choice of the sign oftan ψ∗
B is dictated by the value ofφB running in the range

[0, 2π]. To choose a correct sign introduce forthe upper and lower spherestwo
variablesσ1 andσ2, respectively. The ranges0 ≤ ψ∗

B ≤ π/2 (σj = 1) andπ/2 ≤
ψ∗

B ≤ π (σj = −1) are called thefaceside andbackside of sphere, respectively.
Thus,σ1 andσ2 are valuated as follows,

upper sphere, face side(F) → σ1 = 1,

upper sphere, back side(B) → σ1 = −1,

lower sphere, face side(F) → σ2 = 1,

lower sphere, back side(B) → σ2 = −1. (3.13)

Bearing in mind that1+B2−a in (3.11, 3.12) may obtain both positive and negative
values, the ranges of variation ofφB may be specified if all restrictions ona,B
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would be taken into account (see Table below).

PR Und Und Nod, H > 0 Nod, H < 0
B2 < a − 1 < B −B < a − 1 < B2 B < a + 1 B < a + 1

F/B σ2 = 1 or σ1 = −1 σ1 = 1 or σ2 = −1
φB [0, π/2] ± 2π [π/2, π] ± 2π [π, 3π/2] ± 2π [π/2, π] ± 2π
F/B σ2 = −1 or σ1 = 1 σ2 = 1 or σ1 = −1
φB [3π/2, 2π] ± 2π [π, 3π/2] ± 2π [π/2, π] ± 2π [π, 3π/2] ± 2π

A concaveNod (SH = −1) is considered separately. In (3.4, 3.5) the first
formula in (3.4) is changed,

tan ψ∗

B = ±1 + B cos φB

B sin φB
, b = a, (3.14)

where - (+) sign corresponds to the lower (upper) sphere. Keeping in mind that only
the face sides of lower and upper spheres are permitted for concaveNod we arrive
at the range ofφB given in Table above, where a symbol[γ1, γ2]± 2π denotes three
different ranges:[γ1, γ2], [γ1 + 2π, γ2 + 2π] and[γ1 − 2π, γ2 − 2π]. See Figure 3c
whereφ1 ∈ [π, 3π/2] andφ2 ∈ [−π,−3π/2].

According to [2], section 6.2, there exist theUnd andNod menisci with com-
pletely concave meridional profiles (without IP, see Figure1a) which are allowed
for the F-F spheres arrangement. Such menisci do exist in theF-B arrangements if
the spheres radiiaj and menisci parameterB satisfy,

Nod : arccos

(

−1 + B2 + a1

B(2 + a1)

)

< arccos

(

−1 + B2 + a2

B(2 + a2)

)

, (3.15)

a1 > a2,

Und : arccos

(

−1 + B2 − a1

B(2 − a1)

)

> arccos

(

−1 + B2 − a2

B(2 − a2)

)

,

a1 > a2.

According to (3.15) both concave menisci (Und andNod) do not exist in the F-B
arrangement ifa1 = a2. In Figure 4 we present two concave menisci in the F-B
arrangement of spheres with zero contact angles. Finally, in case of the B-B spheres

Nod, H<0 Und, H>0

(a) (b)

FIGURE 4. Two concave menisci in the F-B setup between two
spheres: a)Nod, B = 1.2, a1 = 2.2, a2 = 0.5, φ∗

1 = 204o,
φ∗

2 = 192o; b) Und, B = 0.8, a1 = 0.8, a2 = 0.25, φ∗
1 = 209o,

φ∗
2 = 187o.
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setup the existence of the concave menisci is forbidden.

3.2. Constraint of C type

The conditions (2.13,2.14) derived for the third case of meniscus nonexistence re-
duce to the following relations for1 < B < ai + 1 in an assumption that the
meniscus does not ”pierce” thei-th SB:

M(SHφ1, B) − M(SHφ2, B) + [σIAi(φI) − Ai(φi)] = 0, (3.16)

Ai(φj) =
√

a2
I − (1 + B2 + 2B cos φj), I = (i + 1)(mod2).

Coexistence of theA, B andC types of constraints may be found in Figure 10.

3.3. Constraint of D type

Substitute (2.4, 3.1) into (2.15) and obtain the condition of the proper SB position-
ing,

M(SHφ1, B) − M(SHφ2, B) + σ1A2(φ1) + σ2A1(φ2) = 0. (3.17)

Coexistence of theA, B andD types of constraints may be found in Figures 13c and
14c,d. In Figure 5 we present two typical domains of menisci existence.
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FIGURE 5. Coexistence of theA (black), B (blue), C (magenta)
and D (green) types constraints forNod between two equal
spheres: (a) F-F setup,B = 1.205, a = 2.2; (b) B-B setup,
B = 1.5, a = 1.2.

4. Menisci between equal spheres. Face-to-Face setup

In the following we present a gallery of images showing for given value ofB in the
plane{φ1, φ2} the regions of existence (limited by the dashed curves) and inside
them the regions of stability (shading shown inbluefor SH = 1 and inlight orange
for SH = −1). These images should not be understood as solution of the problem
of meniscus existence between the two solid spheres at a given distanced between
their centers with prescribed contact anglesθi. On the contrary, a point(φ1, φ2)
in the region of existence determines an axisymmetric meniscus with a meridional
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profile given by (2.4) forφ2 ≤ φ ≤ φ1. This meniscus makes some contact anglesθi

with the solid spheres which can be computed using simple trigonometric relations,
while the distanced is computed from (2.3). If this point appears in the shaded area
the corresponding meniscus is stable.

Thered curves in Figures show the location ofStab domain boundary for the
menisci with the fixed CL with SB. Thebrown lines show the change in the number
of IP in the meridionalUnd profile. The number of IPs inUnd profile is denoted in
red, e.g.,2+ means two IPs on the meniscus meridional sectionM which is convex
in vicinity of φ = φ1 and1− means one IP onM which is concave in vicinity of
φ = φ1. Four different types of meniscus existence boundaries aredenoted inblack
(A), blue (B), magenta(C) andgreen(D) colors. In the first series of the images
in Figure 6, the coordinatesφ1, φ2 are labeled, but further on they are dropped to
improve a visual perception.

4.1. Unduloidal menisci between two solid spheres

In this section we present the stability diagrams forUnd menisci between two equal
spheres. These diagrams were found by analyzing a positiveness of the matrixQij

in (1.1). In Figure 6 and Figure 8 a,b such diagrams are presented for a wide range
of B. In the caseB = a−1 we find another phenomenon: the boundaries of stability
domains for fixed and free CL meet (this question was left openin [2]). In all cases
there exist three kinds of stableUnd menisci: without IPs and with one or two IPs.

Instability of Und menisci with more than one IP became a sort of folklore
although there is no any rigorous claim in this regards. E.g., dealing with menisci
between solid sphere contacting the plate the authors [6] posed a statement which
was not supported by calculation: ”There might be more than one IP. . . . Multiple
IPs in the meridional profiles are known but such menisci are likely to be unstable”.
Although in [2] we have shown thatUnd menisci with more than one IP between
two solid parallel plates are always unstable, the general statement for two arbitrary
SB remains elusive.

A strong statement about stability of axisymmetric meniscibetween two solid
spheres has been announced in [12], namely, Theorem at p.374in [12] and its equiv-
alent version at p.397 in [13] reads: ”the convexUnd or Sph menisci are stable,
while the convexNod meniscus is unstable. The solid spheres have not to be equal
or have equal contact angles”. The examples of the stable convex and concaveUnd
menisci with two IP are shown in Figure 7c,d.
4.2. Nodoidal menisci between solid spheres (2 types of constraints)

Considering theNod menisci it should be underlined that part of the plane{φ1, φ2}
where the meniscus withSH = −1 exists is determined by relation (2.5) and the
existence conditions. TheStab domain (shown inlight orange) covers either a part
of (Figure 8c) or the wholeExst (Figure 8d). The same time the convexNod menisci
with SH = 1 for 1 < a < 2 appear to be stable everywhere they exist (Figure 8c,d).
Examples of the stableNod menisci are shown in Figure 9.

4.3. Nodoidal menisci between solid spheres (3 types of constraints)

For some parameter values one can observe a special case whenExst domain is
bounded by three types of constraint. Such an example is illustrated in Figure 10
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FIGURE 6. Stability diagrams for F-F setup of (a)Cyl meniscus,
B = 0, and threeUnd menisci, (b)B = 0.15, (c) B = 0.2 and
(d) B = 0.25, between two solid spheres of radiusa = 1.2. The
number of IPs inUnd profile is denoted inred throughout the
whole manuscript.

(a) (b) (c) (d)

FIGURE 7. StableUnd menisciB = 0.25 with one and two IPs
(black points) for F-F setup between two solid spheres of radius
a = 1.2 and endpoints: (a)1−, φ2 = −60o, φ1 = 135o, (b) 1+,
φ2 = 60o, φ1 = −135o, (c) 2−, φ2 = −135o, φ1 = 135o and (d)
2+, φ2 = 60o, φ1 = 300o.
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FIGURE 8. Stability diagrams for F-F setup of (a)Und meniscus,
B = 0.8, (b) Sph meniscus,B = 1, and twoNod menisci, (c)
B = 1.03, (d) B = 1.25, between two solid spheres of radius
a = 1.2.

whereExst andStab regions for theNod menisci are shown. Note that the concave
Nod meniscus forB = 1.05 is unstable in small part ofExst, while for larger values
of B these menisci are stable everywhere in the correspondingExst region.

4.4. Menisci between two equal contacting spheres

In this section we analyze a special case of liquid bridges between two equal con-
tacting spheres to check recent claims made in [14]. For convenience we make use
of menisci classification given independently in [7] and [13]. Following formulas
(6,7) in [7] defineα as a real root of equation,

1 + 4α(α − 1) sin2 (θ + ψ) = B2, θ = θ1 = θ2, ψ = ψ1 = ψ2. (4.1)

Nod− Cat Und Cyl Und Sph Nod+

α < 0 0 (0, 1/2) 1/2 (1/2, 1) 1 > 1
B > 1 − (0, 1) 0 (0, 1) 1 > 1

This produces a correspondenceα ↔ B (excluding theCat meniscus). The only
difference with [13] is that it usedA = −α, whereCyl occurs only ifθ + ψ = π/2
and Nod± denote the nodoid menisci with negative (-) or positive (+) curvature
H, respectively. A sequence of menisci listed in Table is presented in Figure 6 in
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(d) (e)

FIGURE 9. Stable convexNod menisciB = 1.25 with one and
two IPs and without IPs for F-F setup between two spheres of
radiusa = 1.2 and endpoints (a)0+, φ2 =−135o, φ1 =135o, (b)
1+, φ2 =−155o, φ1 = 135o, (c) 1−, φ2 =−135o, φ1 = 155o, (d)
2−, φ2 = −157o, φ1 = 157o. Stable concaveNod meniscus (e)
B = 1.25 between two spheres of radiusa = 1.2 and endpoints
φ2 =163o, φ1 =193o.
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FIGURE 10. Stability diagrams for F-F setup ofNod menisci (a)
B = 1.05, (b)B = 1.2, (c)B = 1.205 between two solid spheres
of radiusa = 2.2. In Figure 10c we focus on that part of stabil-
ity domain which corresponds to the convexNod: its boundaries
comprise all three types of constraints.
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[7]. The following statements about existence of axisymmetric menisci between two
equal contacting spheres have been announced in [14]:

Theorem 3.3, 3.4.‘For π/2 < θ < π andα < 0
[

Nod−
]

andπ/2 ≤ θ < π

andα < 1
[

Nod−,Cat,Und,Cyl
]

, no liquid bridge between contacting balls exists
which is both axisymmetric and symmetric across the plane which is the perpendic-
ular bisector of the line segment between the centers of the balls‘.

Note 3.5.‘For α > 1
[

Nod+
]

, there may be axisymmetric bridges between
contacting balls, but these are known to be unstable [12]. There do not exist stable
axisymmetric bridges between contacting balls with: a)θ ≥ π/2, b) rotation sym-
metry, c) symmetry across the perpendicular bisector of theline segment between
the centers of the balls. Open question: whether the last condition may be dropped‘.

Consider the case when the meniscus has a contact angle with the sphere equal
to π/2 and two spheres contact each other. The inclination angleα with the plane of
the meniscus tangent at the contact point can be expressed through the similar angle
ψ of the tangent to the sphere as follows:ψ = α ± π/2, where the lower (upper)
sign is chosen for0 ≤ ψ ≤ π/2 (π/2 ≤ ψ ≤ π). The same time we have

−1 + B cos φ

B sin φ
= tanα, a sin ψ =

√

1 + B2 + 2B cos φ,

a − a cos ψ = M(φ,B), (4.2)

where the last two equations determine the conditionsr(φ) = R(ψ), z(φ) = Z(ψ)
at the contact point. These equations produce
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FIGURE 11. PlotsB = B(φ) and a = a(B) for contacting
spheres and contact anglesθ = 90o.

a =
r2(φ) + M2(φ,B)

2M(φ,B)
, tan ψ =

2r(φ)M(φ,B)

r2(φ) − M2(φ,B)
. (4.3)

Using the relationtan ψ = − cot α from the first equation in (4.2) we find

2(1 + B cos φ)r(φ)M(φ,B) =
(

r2(φ) − M2(φ,B)
)

B sin φ, (4.4)

which allows to find for givenB the coordinateφ of the contact point, and the sphere
radiusa. In Figure 11 we present the plots of implicit solutions of (4.3, 4.4). They
both define a unique tripleφ,B, a, for which such meniscus exists.
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Another interesting case of contacting equal spheres of theradiusa and the
meniscus forφ2 ≤ φ ≤ φ1 poses a question about a relation betweenφ1 andφ2.
The contact points on the spheres has the coordinates satisfying the relations:

130 140 150
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-140

-150

(a) (b) (c)

FIGURE 12. A stable domain (a) forNod menisci (B = 2.15)
with F-F setup between two touching spheres of radiusa = 1.75
with (b) and without (c) symmetry across the perpendicular bi-
sector of the line segment between the centers of the balls: (b)
φ1 = −φ2 ≃ 129.15o, ψ ≃ 76o and θ ≃ 115o; (c) φ1 ≃ 133o,
φ2 ≃ −127.5o. Red and magenta pointsin (a) stand for stable
menisci in (b) and (c), respectively.

ri = a sin ψi =
√

1 + B2 + 2B cos φi,

z1 = M(φ1) = d1 − a cos ψ1, z2 = M(φ2) = d2 + a cos ψ2,

wheredi denotes the position of thei-th sphere center on the vertical axes, so that
for the contacting spheres we haved1 − a = d2 + a, or d1 − d2 = 2a. The last
equality leads to the desired relation

M(φ1) − M(φ2) = 2a −
√

a2 − (1 + B2 + 2B cos φ1) −
√

a2 − (1 + B2 + 2B cos φ2). (4.5)

In Figure 12 we present the stability diagram forNod meniscus and label byred
and magentapoints (belonging to thegray curve defined by (4.5)) the location of
stable menisci between two equal contacting spheres with contact angleθ > π/2.
This refutes the statement Note 3.5 in [14] in both cases: (b)with and (c) without
symmetry across the perpendicular bisector of the line segment between the centers
of the balls.

5. Menisci between equal spheres. Back-to-Back setup

A special version of theB type constraint in case of theNod meniscus at the B-B
spheres is presented in Figure 3. The stability analysis in this case is performed sim-
ilarly to the case of F-F setup, but the sequence and structure ofStab with increasing
value ofB appears to be much simpler. One of the reasons of such simplification is
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that theNod meniscus with negative curvature is forbidden in this setup. To illus-
trate this point we consider three characteristic ranges ofvalues of the solid sphere
radius:a < 1, 1 < a < 2, and a > 2. First consider the case1 < a < 2,
choosinga = 1.2; the computation shows that theUnd meniscus has no IPs and is
stable everywhere it exists (Figure 13a). TheNod meniscus is stable in smaller part
of the existence regionExst which boundary may be determined by the existence
conditionD (see Figures 13b,c).
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FIGURE 13. Stability diagrams for B-B setup of (a)Und menis-
cus,B = 0.8, and twoNod menisci, (b)B = 1.25, (c) B = 1.5,
between two solid spheres of radiusa = 1.2.

In the casea < 1 we observe that theUnd meniscus has two IPs and again
is stable everywhere it exists (Figure 14a); the same timeStab region of the convex
Nod meniscus covers only some part ofExst (Figure 14b). Finally, whena > 2 the
existence region of theNod meniscus is strongly limited by the existence condition
D and these menisci are stable in the large part ofExst (see Figure 14c,d).

6. Menisci between equal spheres. Face-to-Back setup

The F-B setup is quite simple for the analysis, as in this casethe boundaries ofExst

can be described as a ”outer product” of the corresponding regions for F-F and B-B
setups. To explain this feature consider the case when the meniscus touches the face
of the upper SB atφ = φ1, and the back of of the lower SB atφ = φ2. The existence
conditionsA andB (represented by the black and blue broken lines) are determined
for φ1 andφ2 independently. It is illustrated in Figure 15a and Figure 15b where the
range of the accessible values forφ1 is much larger than forφ2.

7. Menisci between nonequal spheres

The existence and stability analysis in the case of solid spheres of unequal radii is
similar to the case of F-B setup considered in section 6. The boundaries ofExst

determined by the conditionsA andB depend on the corresponding sphere radii
and have to be computed independently. This breaks the symmetry of Exst andStab

w.r.t. the lineφ1 + φ2 = 0. A difference in spheres radii may lead to existence of
special types of menisci which are forbidden in setup with equal radii.
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FIGURE 14. Stability diagrams for B-B setup of (a)Und menis-
cus,B = 0.8, and (b)Nod menisci,B = 1.25, between two solid
spheres of radiusa = 0.5. Stability diagrams for B-B setup of two
Nod menisci, (c)B = 1.25, and (d)B = 1.5, between two solid
spheres of radiusa = 2.2.

7.1. Face-to-Face setup

In Figure 16 we present the stability diagrams forUnd andNod menisci for1 <
a1 < 2 anda2 > 2. By comparison to Figures 6d and 16a; 8a and 16b; 10c and
16c, one may see how the stability diagrams become asymmetric w.r.t. to the line
φ1 + φ2 = 0.

7.2. Face-to-Back setup

The F-B setup of menisci between two nonequal spheres gives rise to existence of
concaveNod meniscus which is forbidden in F-B setup between two equal spheres
(see Figure 16).

The trapezoidal geometry ofExst in Figure 17a appears due to intersection of
triangular existence region for concaveNod meniscus in the F-F setup between two
equal spheres of radiusa1 with existence constraintA on sphere of radiusa2 < a1

that results in the triangle cut. Note that for the parameters selected in Figure 17a the
concaveNod meniscus is stable in every point ofExst. In case of the convexNod
meniscus a part of the boundaries ofExst may be related to theC type constraint
(see Figure 17c).
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FIGURE 15. Stability diagrams for F-B setup ofUnd menisci, (a)
B = 0.25 and (b)B = 0.8, andNod menisci, (c)B = 1.25 and
(d) B = 1.5, between two solid spheres of radiusa = 1.2.
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FIGURE 16. Stability diagrams for F-F setup ofUnd menisci,
(a) B = 0.25, (b) B = 0.8, andNod meniscus, (c)B = 1.205,
between two nonequal solid spheres of radiia1 = 1.2 anda2 =
2.2.
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FIGURE 17. Stability diagrams for F-B setup of concave (a) and
convex (c)Nod menisci,B = 1.2, between two non equal solid
spheres of radiia1 = 2.2 anda2 = 0.25. Two stableNod menisci,
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diagonal in the plane{φ1, φ2}. A magenta curvein (c) describes
theC constraint of existence.
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