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Abstract

A variety of stationary and wave patterns that show a complicated spatial structure
but are ordered in the Fourier space can be constructed by considering interaction of non-
collinear modes near a symmetry breaking bifurcation point. The planform selection is
particularly rich in the presence of resonant (phase-dependent) interactions among degen-
erate modes. We consider the problem of pattern selection for two optical systems: a cavity
with two nonlinear elements and a cavity with a rotated optical field. Complex quasicrys-
talline patterns sustained by resonant interactions arise under conditions when wave and
Turing modes are excited simultaneously. The excited patterns may be saturated even by
the action of quadratic (three-wave) interactions only, and may exhibit periodic amplitude
modulation on a slow time scale.

PACS 42.65.Sf

1 Introduction: complex order

Spontaneous symmetry breaking and pattern formation is a universal phenomenon observed in
a wide variety of non-equilibrium systems [1, 2]. Most commonly, patterns have a simple basic
structure, usually stripes or hexagons, which is distorted on a long scale, so that the pattern
has disordered local orientations, and contains various defects – domain walls, dislocations or
disclinations. Complexity of patterns is usually understood in the sense of disorder; this is a
fascinating but uncontrollable kind of complexity.

A rarer kind of complexity is complex order: a well-controlled structure ordered in a non-
trivial way. Quasicrystalline patterns belong to this variety: they have a complicated spatial
structure that never repeats itself, but are well ordered in the Fourier space. In principle,
constructing such patterns is easy: in two dimensions they can be formed just by superposing
four or more non-collinear modes. Near a symmetry-breaking transition from a homogeneous to
a patterned or crystalline state (in both equilibrium and non-equilibrium systems) these modes
appear formally as degenerate neutrally stable eigenmodes of linearized macroscopic equations,
and may admit, in various contexts, different physical interpretations, e.g. density waves in the
equilibrium theory [3].

Since a symmetry-breaking transition in an isotropic system implies a preferred wavelength
but no preferred direction, an indefinite number of modes may be excited, with the wave vectors
kj having the same absolute value but arbitrary directed. The emerging pattern or crystalline
structure is selected by nonlinear interactions. For stationary (Turing) patterns, lowest-order
triplet interactions among modes forming an equilateral triangle are prevalent sufficiently close
to a symmetry-breaking transition (unless forbidden by symmetry). These interactions are
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resonant, i.e. phase-dependent. The phases of the interacting modes always become locked
in such a way that the interaction is destabilizing [4], which is responsible for the subcritical
(first-order) character of the transition. In a two-dimensional setting (most common in non-
equilibrium systems), triplet interactions favor a hexagonal pattern, which is selected, in a
generic case, sufficiently close to the bifurcation point.

It turned out to be not easy to overcome the boring pervasiveness of hexagons. A possible
source of quasicrystalline patterns is a superposition of two resonant triplets [5]. This pattern
can be, however, stabilized only by quadruplet interactions which strongly inhibit multimode
patterns because of the occurrence of small angles between the modes. Generally, we expect that
non-resonant quadruplet interaction coefficients (involving pairs of modes and their complex
conjugates) smoothly depend on the angle between the modes, and therefore interactions at
a small angle do not differ very much from interactions at zero angle. The self-interaction
coefficient is, for combinatorial reasons, exactly one-half the interaction coefficient of two modes
at zero angle, and therefore waves at small angles tend to be mutually damping. Quasicrystalline
patterns of Turing type were, however, observed in experiments with parametric excitation of
surface waves (Faraday instability) [6, 7]. Conditions suitable for formation of quasicrystalline
Turing patterns were detected by the analysis of model equations [8] as well as of amplitude
equations of Faraday instability [9]. Patterns formed by two resonant triplets were shown to be
one of possible states of Marangoni convection in a layer with a deformable interface [10].

In the case when a symmetry-breaking transition leads to wave patterns, triplet interactions
are forbidden. The lowest-order quadruplet interactions are usually non-resonant, although
resonance is possible among non-collinear standing waves [11]. Quasicrystalline wave patterns
are possible in principle [11] but again are, apparently, rather rare, and not easy to locate
because of technical difficulties in evaluation of mode interaction coefficients. Most commonly,
wave patterns (as well as Turing patterns in the presence of symmetry to inversion of the order
parameter) contain one or two basic modes forming, respectively, a striped or square pattern.

Nonlinear optics provides more possibilities for formation of complex patterns than more
conventional chemical or convective systems. A sure recipe for creating a quasicrystal is rotation
of the optical field in a nonlinear cavity [12] –[16]. The number of modes is dictated then by the
rotation angle. If it is commensurate with 2π, so that ∆ = 2πn/N (where n and N are integers
that do not have common factors), the basic planform is a rotationally invariant combination of
N or N/2 plane waves (respectively, for N odd or even) which yields a quasicrystalline pattern
at N = 5, 7, or more.

Further possibilities arise in optical systems because of a relative ease of arranging a degener-
ate bifurcation of modes with different wavelengths. Recent experiments by the Florence group
[15, 16] demonstrated simultaneous excitation of phase-locked families with different wavenum-
bers, leading to more complicated quasicrystalline patterns. We shall consider this system in
detail in Section 3, emphasizing resonant interaction among Turing and wave modes.

The degeneracy may also help to enhance complexity in “natural” patterns where the sym-
metry is not imposed externally but is selected by nonlinear interactions. In fact, presence
of several minima strongly affects the pattern even when the levels are not degenerate (see
Section 4.2). An example of selection of a quasicrystalline pattern in a feedback cavity has
been recently demonstrated analytically and numerically [17]. We shall consider in Section 4 a
cavity with two nonlinear optical elements [18] which can provide a variety of easily switchable
quasicrystalline patterns.

Complex order may mean not only spatial but temporal complexity. Patterns involving
resonant interactions are likely to exhibit complex dynamics of amplitude modulation on a slow
time scale due to intermittent phase locking. In this way, one arrives at a dynamic pattern with
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ever changing appearance but a permanent composition of the Fourier spectrum; examples are
given in Section 3.3 and 4.2. We shall emphasize resonant triplet interactions among Turing and
wave modes as a source of dynamic complexity. Unlike purely Turing triplets, these interactions
may stabilize a pattern either statically or dynamically within a wide parametric range.

2 Amplitude equations and pattern selection

2.1 Multiscale expansion

The standard method for the analysis of pattern selection near a symmetry-breaking bifurcation
is multiscale expansion. The method is well formalized, and Mathematica-based software is now
available [19, 20]. One can take as a starting point a general system written in an operator
form

F(∇, ∂/∂t,u(r, t,R),R) = 0, (1)

where u is an arrays of state variables, dependent on spatial coordinates r and time t, and R is
an array of parameters of the problem. We suppose that Eq. (1) has a homogeneous stationary
solution u = u0(R); it is convenient to shift the variables in such a way that u0(R) = 0. Picking
a certain set of parameters R0, we expand both the variables and parameters in powers of a
dummy small parameter ε:

u = εu1 + ε2u2 + . . . , R = R0 + εR1 + ε2R2 + . . . . (2)

We also introduce a hierarchy of time scales:

∂/∂t = ∂/∂t0 + ε∂/∂t1 + ε2∂/∂t2 + . . . , (3)

and expand Eq. (1) in Taylor series. The spatial derivative ∇ may be expanded in the same
way to describe modulation of a pattern on a long scale but we shall not be concerned with
this here.

The first-order equation contains a matrix Fu which is the linearization of F with respect
to the state variables:

Fu(∇0, ∂/∂t0,u0,R0)u1 = 0. (4)

Using here u1 = U exp(λt + ik · r) leads to an eigenvalue problem

Fu(ik, λ,u0,R0)U = 0. (5)

We suppose here that the system is isotropic, and therefore the spectrum depends only on
the wavenumber k = |k| but not on the direction of the wave vector. R0 is a symmetry-
breaking bifurcation point, and k0 is the wavenumber of the emerging pattern if the leading
eigenvalue λ(k0,R0) of Fu, i.e. that with the largest real part, satisfies Re λ(k,R0) = 0,
Re ∂λ(k,R0)/∂k = 0 at k = k0. It is often convenient to draw a neutral curve R(k), where R
is the value of one of parameters determined by the condition Re λ(k, R) = 0. The bifurcation
point R = R0 (at all other parameters fixed) is found as the absolute minimum of the neutral
curve.

Due to the isotropy, the bifurcation is always degenerate. An additional “accidental” de-
generacy occurs when two minima of the neutral curve are equal (generally, the locus of a
degenerate bifurcation is a codimension two hypersurface in the parametric space R). The
solution of Eq. (4) is expressed as

u1 =
∑

aj(t1, t2, . . .)Uj exp(ikj · r + iωjt0) + c.c., (6)
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where aj are as yet indefinite amplitudes which may vary on a slower time scale, and ωj =Im λj ;
ωj = 0 for a Turing mode, and ωj 6= 0 for a wave mode. This expression may contain an
indefinite number of modes with kj directed in a different way, but Uj , ωj are distinct only for
“accidentally” degenerate modes.

In the consequent orders we arrive at the equations of the form:

Fu(∇0, ∂/∂t0,u0,R0)un = gn, (7)

where gn denotes the n-th order inhomogeneity dependent on the amplitudes aj . Amplitude
equations are obtained as solvability conditions of Eq. (7), i.e. conditions of orthogonality of
the inhomogeneity to all eigenfunctions of the adjoint linear problem. In the second order, a
nontrivial solvability condition is obtained when the quadratic term (a product of two eigen-
functions, say, ψi and ψj) is in resonance with another eigenmode, say, ψl. This requires that
the frequencies and wavenumbers of the three modes involved satisfy the conditions

ki + kj + kl = 0, ωi + ωj + ωl = 0. (8)

A resonant triplet may involve either three Turing modes or two wave modes with identical
frequencies and one Turing mode. The amplitude equations obtained in this order have a
general form

ȧl = µlal + νijla
∗
i a
∗
j , (9)

where µl are linear growth coefficients dependent on first-order parametric deviations R1, νijl

are mode interaction coefficients, dot denotes the derivative with respect to the slow time
variable t1, and ∗ denotes a complex conjugate. It may be possible to confine the dynamics to
a small-amplitude region by combining slightly subcritical and slightly supercritical modes, if
the nonlinear terms also act in a mutually contradictory way; an example of such behavior is
given below. If these conditions are not met, the amplitudes may be stabilized at higher levels
by quadruplet interactions that involve terms cubic in amplitudes, and appear in the next order
of the expansion.

2.2 Wave–Turing resonance

The simplest wave and Turing resonant structure includes two wave modes with a wavenumber
k and amplitudes b, c, and one Turing mode with a wavenumber Q and an amplitude a; both
k and Q ≤ 2k should correspond to accidentally degenerate minima of the respective neutral
curves. The Fourier space structure is an isosceles triangle. The general form of amplitude
equations is

ȧ = µsa + νsbc
∗,

ḃ = µwb + νwac,
ċ = µwc + νwa∗b, (10)

where µs and νs are real, while µw and νw are complex. The imaginary part of µw can be
absorbed in frequency, so this parameter will be also viewed as real.

It is advantageous to use the polar representation of the complex amplitudes,

a = ρae
iθa , b = ρbe

iθb , c = ρce
iθc . (11)

Then Eqs. (10) is reduced to the following system of four real equations including a single phase
combination θ = θa + θc − θb:

ρ̇a = µsρa + νsρbρc cos θ,
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ρ̇b = µwρb + νρaρc cos(θ − α),
ρ̇c = µwρc + νρaρb cos(θ + α),
θ̇ = −νs

ρbρc

ρa
sin θ − ν

ρaρb

ρc
sin(θ + α)− ν

ρaρc

ρb
sin(θ − α), (12)

where we have set νw = νe−iα.
The stationary values of the amplitudes ρa, ρb, ρc are

ρa =
µw

ν
√

cos(θ − α) cos(θ + α)
, ρb,c =

√
µsµw

ννs cos(θ ± α) cos θ
. (13)

The stationary value of the composite phase θ verifies the equation

tan θ +
µ sin 2θ

cos(θ − α) cos(θ + α)
= 0, (14)

where µ = µw/µs. A simple solution of this equation satisfies sin θ = 0, yielding θ = π at
µsνs > 0 and µw cosα > 0, and θ = 0 for the opposite sign of these products. This is a
symmetric solution with equal amplitudes of the wave modes: ρb = ρc =

√
µsµw/(ννs cosα).

The stability conditions of the symmetric solution are

µw > 0,
π

4
< α <

3π

4
, −1/4 < µ < −1

2
cos2 α. (15)

At µw = 0 the symmetric solution merges with the trivial solution ρa = ρb = ρc = 0; µ = −1/4
is the locus of a supercritical Hopf bifurcation, and µ = −1

2 cos2 α corresponds to a pitchfork
bifurcation to a pair of asymmetric solutions, which is also supercritical at µ > −1

4 .
The composite phase of an asymmetric solution verifies the relation

cos2 θ =
sin2 α

1 + 2µ
. (16)

It is immediately seen that the solution exists provided µ ≥ −1
2 cos2 α. It is required for

positiveness of the amplitudes that cos(θ− α) cos(θ + α) > 0. This inequality can be rewritten
in the form µ sin2 α < 0, and hence, µ < 0. The two asymmetric solutions are transformed one
to the other by interchanging the amplitudes of the wave modes.

At still higher values of µ, the asymmetric solutions undergo a supercritical Hopf bifurcation.
The bifurcation locus in the plane (α, µ) is given implicitly by the relation

−(1 + 4µ)(1 + 5µ + 8µ2) sin4 α + 3(4 + 7µ + 4µ2)(2µ + cos2 α)2+
[3 + 8µ(µ + 2)(1 + 2µ)](2µ + cos2 α) sin2 α = 0. (17)

The additional stability condition is µs < 0. The resulting bifurcation diagram in the plane
µ, α is presented in Fig. 1. The picture in the range π/2 < α ≤ π is symmetric relative to the
axis α = π/2.

A pair of asymmetric periodic solutions further merges into a symmetric attractor as a result
of a homoclinic bifurcation. We were unable to determine the locus of this bifurcation exactly
because of a very complicated dynamics in the vicinity of a saddle point in the four-dimensional
phase space. This is a saddle-focus with two-dimensional stable and unstable manifolds, both
oscillatory. Our numerical estimates suggest that the homoclinic boundary is roughly defined
by the relation µ = −πα (marked by a dashed line in Fig. 1). On the other side of this
boundary, the dynamics is apt to be chaotic. A period doubling of the symmetric periodic
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Figure 1: Bifurcation diagram of Eq. (12) in the parametric plane (α, µ). Letters S and A
denote the regions of stable stationary symmetric and asymmetric solutions; P stands for a
pair of periodic solutions, and U for a symmetric periodic solution or other symmetric dynamic
attractor. The dashed line shows an approximate location of the homoclinic bifurcation.

solution observed close to the double zero singularity at µ = 1/4, α = π/4 is illustrated in
Fig. 2.

While an asymmetric periodic solution cannot transcend the saddle point, there are no
apriori limits on the amplitude of symmetric oscillations, which tends to grow as µ becomes
more negative. Confinement in the small-amplitude region by quadratic interactions is only
possible when the Turing mode is subcritical and the wave mode is supercritical but not too
strongly. When runaway to large amplitudes is observed in Eqs. (12), the actual pattern may
be stabilized by non-resonant quadruplet interactions.
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Figure 2: Amplitude oscillations at α = 0.22π and µ = −0.23 (a), µ = 0.28 (b). Oscillations of
the Turing mode have the smallest amplitude.
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3 Optical cavity with a rotated beam

3.1 Basic Equations

Our first example is an optical cavity with a rotated beam. The successive transformations of
the complex envelope of the electric field Ei(r) of a light beam in a nonlinear optical cavity
with a rotated beam include three stages: (a) point transformation in the nonlinear medium,
adding a phase shift dependent on the transverse coordinate r; (b) diffraction in the empty part
of the cavity, described by a linear operator D, and (c) rotation of the image, described by an
operator J (∆).

The first transformation takes place in a thin slice of a nonlinear Kerr-type medium, which
is assumed to be uniform in the longitudinal direction. The field is transformed as

Ei(r) → R1Ei(r) exp(−iχ(r) + iΩ), (18)

where χ is the normalized refractive index of the medium, Ω is a constant phase shift and R1

is the attenuation coefficient due to the absorption in the layer.
Propagation and diffraction of the beam in the free part of the cavity is described by

the diffractional transform D(z) which is obtained in the paraxial approximation [21] as the
resolvent of the parabolic equation

iEz = ∇2E. (19)

Here the coordinate z in the direction of propagation is scaled by the length L of the diffrac-
tional path, and the transverse coordinates, by the diffractional length

√
Lλ, where λ is the

wavelength; ∇2 denotes the two-dimensional transverse Laplacian. Formally, one can write
D(z) = exp(−iz∇2), so that D(z) = exp(izk2) when it operates upon a Fourier mode with a
transverse wave number k.

Before closing the loop, the image is rotated by a certain angle ∆. The rotation is described
by the operator

J (∆) : J (∆){r, φ} = {r, φ + ∆}. (20)

The resulting output field Eo can be written as

Eo(r) = J (∆)RD(1)Ei(r) exp[−iχ(r) + iΩ], (21)

where the attenuation coefficient R lumps all losses during a single round-trip.
The model of material dynamics can be written, assuming a Kerr-type nonlinearity, in the

dimensionless form [22]
χ̇ = δ2∇2χ− χ− κ1|Eo (χ(r)) |2, (22)

The material response time is taken as the time scale; δ is the ratio of the photocarrier diffusion
length to the diffraction length. Although typically δ ¿ 1, the thin sample approximation can
be retained, provided the diffusional length far exceeds λ, so that longitudinal wavelength scale
grating is washed out by diffusion. Then Eq. (22) retains only the transverse Laplacian ∇2.
Dynamics of the refractive index modulation χ depends on the strength of the nonlinearity κ1,
which is positive for a defocusing medium.

We shall assume that the material response time is much larger than the round-trip time in
the cavity. Under these conditions, the electric field envelope is quasistationary, being slaved to
the material variable. Combining the cavity transform Eq. (21) with the appropriate feedback
conditions allows then to express E(r) as a nonlinear functional of the material field χ(r). Now
Eq. (22) is rewritten as

χ̇ = δ2∇2χ− χ− κJ (∆)I| exp(−i∇2) exp(−iχ)|2, (23)
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where I denotes the input beam intensity and κ = κ1R
2.

Equation (23) always has a stationary homogeneous solution χ0 = −κI which, however, may
lose stability when the input intensity exceeds a certain critical level. The critical intensity, as
well as the preferred transverse wavelength of the emerging pattern is determined by the linear
stability analysis of the homogeneous solution.

3.2 Linear Analysis

The standard procedure of linear analysis involves testing stability to arbitrary infinitesimal
perturbations, usually plane waves. The rotation of the optical field mixes different Fourier
modes, and thereby limits the choice of basis functions. Proceeding in a standard way, we set
χ = χ0 + εχ1(r), where ε ¿ 1, and linearize Eq. (23) presenting the linear term χ1 as the sum
of N modes with the wave vectors qi (i = 1, 2, . . . , N) equispaced by the angle ∆, and their
complex conjugates:

χ1 =
N∑

j=1

aj exp(iqjr + λt) + c.c. (24)

The linear eigenvalue problem then reads:

Lχ1 ≡
[
λ + 1 + δ2q2 + 2κI sin(q2)J (∆)

]
χ1 = 0. (25)

Because the action of the rotation operator has the form J (∆)qi = qi+1, the term J (∆)χ1 is
expressed as

J (∆)χ1 =
N∑

j=1

aj exp(iqj+1r + λt) + c.c., (26)

where the indices are cyclic modulo N . The amplitude vector a comprised of the amplitudes
aj satisfies the eigenvalue problem Ma = λa with a circulant matrix M, such that Mi,i =
−(1+δ2q2) and Mi,i−1 = −2κI sin q2; all other elements of M are zeroes. The set of eigenvalues
of the matrix M is

λj = −(1 + δ2q2 + 2κIrN−1
j sin q2). (27)

The components Uj,k of the corresponding eigenvectors Uj are

Uj,k = rk−1
j ≡ e2πij/N , j = 1, . . . , N, (28)

where rj denotes the j-th root of unity of Nth degree.
The basic state χ0 loses stability at Reλj = 0, which determines the location of the neutral

curve:

I = − 1 + δ2q2

2κ sin q2 cos(∆j)
. (29)

The positive branches of this curve give the critical value of the bifurcation parameter I cor-
responding to excitation of a planform with the wavenumber q. The selected type of planform
and the wavenumber correspond to the absolute minimum of I(q).

The cases of even and odd values of N should be considered separately, and we restrict
ourselves to the more interesting case of odd N which provides a possibility of a resonance
among composite modes bifurcating at different wavelengths. The lowest minima of the positive
branches of the neutral curve may have close levels. Such minima are reached at j = (N +1)/2
and j = N , respectively.
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For the case j = N , the eigenvalue is real, and a composite Turing mode is excited. The
neutral curve is given by

I = −1 + δ2q2

2κ sin q2
. (30)

In the case j = (N + 1)/2, the eigenvalue is complex, and the critical value of the bifurcation
parameter I is

I =
1 + δ2q2

2κ cos(∆/2) sin q2
. (31)

The emerging structure can be characterized as a composite wave mode with a non-zero fre-
quency ω = (1 + δ2q2) tan(∆/2).

In the diffractional limit, δ ¿ 2π/q, all branches have minima at q2 = (2m + 1)π/2 with
integer m. Only first branches which have the lowest minima are relevant for the pattern
selection. The wave mode has the lowest minimum at q =

√
π/2, while the first positive

minimum of the Turing mode is located at q =
√

3π/2.
It can be shown that for small odd N the composite Turing mode is most dangerous, while

for large N the composite wave mode has the lowest threshold. It is easy to determine the
critical value of N when both modes can be excited simultaneously. This value is given by

Ncr = (1/π) arccos
1 + 2/(πδ2)
3 + 2/(πδ2)

. (32)

The calculations using the values of the parameters reported in [14] give the best fit integer
value N = 11. The first two positive branches of the neutral curve I(q) for the composite wave
and Turing modes each comprised of 11 plane wave modes are shown in Fig. 3. Their minima
are close to each other, and both may be excited simultaneously.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

q

0.535

0.54

0.545

0.55

w T

Figure 3: First positive branches of the neutral curves (30), corresponding to a composite
Turing mode (T), and (31), corresponding to a composite wave mode (w), for N = 11.

9



3.3 Three-mode resonance

A possible resonant structure that may be excited at odd N consists of two composite wave
modes with a wavenumber q and one composite Turing mode with the wavenumber Q =

√
3q.

The pattern in the Fourier space it is built of N identical isosceles triangles with acute angles
equal to π/6 (and their conjugates produced by rotating the original triangles by π). The
triangles are spaced by the angle ∆ = 2π/N . Altogether, this resonant planform is built of 3N
plane wave modes:

χ1 =
N∑

j=1

{
aje

iQjr + eiωt(bje
iqjr + cje

ikjr)
}

+ c.c. , (33)

where |qj | = |kj | = |Qj |/
√

3, and the following relations are satisfied:

qj − kj = Qj , aj = a, bj = (−ei∆/2)jb, cj = (−ei∆/2)jc. (34)

The first of these is the resonance condition (8). The relations among the amplitudes of the
Fourier modes are imposed by the rotational symmetry, and correspond to the eigenvectors
(28).

A snapshot of the pattern defined by Eq. (33) and the corresponding structure in the Fourier
space are shown in Fig. 4. The planform has a complicated non- stationary quasicrystalline
structure. Since the plane waves comprising the pattern are out of phase by ∆/2, the pattern
exhibits rotational motion at each location.

a b

Figure 4: The planform (33) with N = 11. (a) A snapshot of a real space (near field) image.
(b) The structure in the Fourier space (far field image). The inner circle corresponds to wave
modes, and the outer circle, to Turing modes. Complex conjugate modes are omitted. One of
the resonant isosceles triangles is shown, and the participating Turing mode is indicated by the
dashed line.

The dynamic equations for the amplitudes a, b and c are obtained following the standard
procedure outlined in Section 2. Using the relations (34) we arrive after some algebra at the
following system of amplitude equations:

ȧ = µsa− νbc∗,
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ḃ = (µwb + νac)e−i∆/2,
ċ = (µwc + νa∗b)e−i∆/2, (35)

where ν = κI0, µs = 2κI1s, and µw = 2κI1w; I1s and I1w denote small deviations from the
critical value I0 for the Turing (stationary) and wave composite modes, respectively. These
deviations may have different signs due to different values of the corresponding minima of the
neutral curve. Further on, we choose them to be of the opposite sign. This means that one of the
composite modes is subcritical and the other one is supercritical. This case is most interesting,
as it allows to prevent both decay to the trivial state and runaway to large amplitudes through
the action of quadratic interactions.

Equations (35) are a particular case of Eqs. (10), and are reduced to the latter by replacing
µw cos(∆/2) → µw, and setting νs = ν, ∆ = 2α. All results of the analysis in Section 2.2
are applicable. At N = 11, the small-amplitude dynamics is periodic, as follows from the
bifurcation diagram in Fig. 1. The long-time oscillations of the type shown in Fig. 5 modulate
the non-stationary quasicrystalline structure shown in Fig. 4. The periodic orbit seen here
is rather close to the homoclinic bifurcation discussed in Section 2.2. At a certain moment
during the oscillation cycle, two amplitudes become nearly extinct, while the composite phase
undergoes sharp oscillations and switches to an alternative level.

110 120 130 140 150 160 170 t

1

2

3

4

5

6

7

8

Figure 5: A periodic solution of the system Eq. (35) for N = 11 at µw/µs = −1/20. The com-
posite phase θ remains nearly constant during a larger part of each half-period, and undergoes
sharp oscillations before and after switching to the alternative level. Oscillations of the two
wave modes are identical but shifted by half-a-period. Oscillations of the Turing mode have a
smaller amplitude, and a twice shorter period.

3.4 Strained resonance

One can also envisage a structure based on a single composite wave mode and a single composite
Turing mode. It is clear that, while in this structure all resonant triangles remain isosceles,
the acute angles have slightly different values, and the wavelengths must be different from
the exact minima of the neutral curve. We call it therefore a strained resonance. Excitation
of a strained planform is likely because modes at small acute angles are usually damped by
quadruplet interactions, and tend to “merge”. The smallest angle between two wave modes
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involved in the exact resonant planform corresponds to a mismatch between mπ/N and nπ/6,
where m,n are integers, and comes at N = 11 to a mere π/66, i.e. less than 3◦.

Although quadruplet interactions are weaker than triplet ones at small amplitudes, and we
do not consider them here explicitly, we may expect that the system might choose to reduce
the number of modes and adjust to the resonance by straining the wavelength slightly off the
optimal value. The required value can be achieved by reducing the wavenumber of the wave
mode from q to q(1 − εN ), where εN ¿ 1 depends on N . The calculation for N = 11 gives
ε11 ≈ 0.048.

A strained resonant pattern has a simpler structure than the exact resonant planform be-
cause it is built up of only 2N plane waves, and contains only two independent amplitudes:

χ1 =
N∑

j=1

[
aje

iQjr + bje
iωteiqjr

]
+ c.c. , (36)

where the amplitudes satisfy the relations (34).
At the first sight, the amplitude equations appear to be more involved in this case, since

each elementary wave mode qj takes part in two resonant triangles: Qj = qj − qj+n and
QN+j−n = qN+j−n − qj . In fact, the dynamic equations can be reduced with the help of the
relations (34) to a simple form

Ȧ = µsA + νs|b|2,
ḃ = µwe−i∆/2b + νwe−i∆/2b(A + A∗). (37)

where A = aein∆/2, and

νs = (−1)n+12κI0 sin2(Q2/2), νw = (−1)n2κI0 sin2(q2/2),
µs = −2κI1s sinQ2, µw = 2κI1w sin q2. (38)

The dynamic behavior under conditions of strained resonance is much simpler. One can
see that the relevant dynamic variables in Eqs. (37) are the real part of the composite Turing
mode r = Re A and the modulus of the wave mode p = |b|2. Transforming to these variables
we obtain the system of two real equations only:

ṙ = µsr + νsp,
ṗ = 2p(µw + 2νwr) cos(∆/2). (39)

The stationary solution is
r = − µw

2νw
, p =

µwµs

2νwνs
. (40)

According to Eq. (38), νwνs < 0, and the above solution exists only if µwµs < 0. The stability
conditions of the solution are µs < 0, µw > 0, and cos(∆/2) > 0. Thus, the stability region is
greatly enlarged, compared to the exact resonance, and encompasses now the entire quadrant
µ < 0, 0 < ∆ < π in Fig. 1, while periodic long-time dynamics is not observed anymore.

3.5 Double resonance

Interactions of composite waves are more complicated when N is divisible by 3. In this case,
one has to include also additional resonant terms corresponding to interaction of Turing modes
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comprising the Turing composite mode. The resonant conditions for these modes have the form
Qj + Qj+m + Qj+2m = 0 where m = N/3. It must be noted that the resonance involving
one Turing and two wave modes becomes in this case exact, i.e., it is excited at the values of
wavenumbers corresponding to the minima of the neutral curve.

Repeating the derivation procedure and using the relations (34) we arrive at the system of
amplitude equations:

Ȧ = 2µsA + (|b|2 + A2∗),
ḃ = be−i∆/2[2µw − (A + A∗)], (41)

where A = aje
im∆/2, µs = I1s/I0, µw = I1w/I0, and the time variable is rescaled by κI0.

Equations (41) including double resonance differ from Eq. (37) only by the presence of a
self-interaction term for the Turing composite mode. This term is destabilizing, and, in the
case of pure Turing patterns, one needs to include third-order terms dependent on four-wave
interactions to ensure amplitude saturation. We shall see that, due to the quadratic wave-
Turing resonance, the pattern can be stabilized in the small-amplitude region. The system,
however, still possesses a large-amplitude attractor.

Setting in (41) A = reiθ, b = peiτ yields

ṙ = 2µsr + (p2 cos θ + r2 cos 3θ),
ṗ = 2p(µw − r cos θ) cos(∆/2),
θ̇ = −(p2 sin θ + r2 sin 3θ)/r. (42)

The phase of the wave mode is irrelevant also in this case, so that the equation for τ is separated
and may be dropped. The phase of the Turing mode relaxes to zero; thus, the stationary solution
is

θ = 0, r = µw, p = −µs

√
−µ(µ + 2), (43)

where µ = µw/µs. The solution exists at µw > 0, µs < 0, 0 > µ > −2. For stability analysis,
it is sufficient to consider a simplified system with θ = 0:

ṙ = 2µsr + p2 + r2,
ṗ = 2p(µw − r) cos(∆/2). (44)

The trace of the linearized system is 2(µs + µw); thus, a Hopf bifurcation takes place at
µ = −1. This bifurcation is subcritical. The system always possesses an additional attractor
p → 0, r →∞, and an unstable orbit which exists at µ > −1 bounds the attraction domain of
the small-amplitude solution. At µ < −1, all trajectories are attracted to the large-amplitude
region, and taking into account higher-order terms is necessary to obtain finite solutions.

4 Optical cavity with two nonlinear elements

4.1 Basic equations and linear analysis

An optical cavity with two nonlinear elements is sufficiently versatile to generate quasicrystalline
symmetry spontaneously, and to display much of the phenomena described in the preceding
Section without externally imposed rotation. The system consists of two Kerr slices S1 and S2,
a mirror M, and a beam splitter BS coupling the two nonlinear elements (Fig. 6). We assume
that the incident beams Au and Av are orthogonally polarized, so that their interference can
be neglected.
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Figure 6: A scheme of the two-component system comprising the nonlinear elements S1 and
S2, a mirror M, and a beam splitter BS.

The basic equations are obtained [18] as a generalization of the model (23) of a single-slice
system:

u̇ + u−∇2u = I1|D(L1)eiu|2 + I2| exp(−i∇2)eiv|2,
τ v̇ + v − δ2∇2v = κI1|D(L2)eiu|2, (45)

Here u and v denote the nonlinear phase modulation introduced by the first and the second
slice, respectively; δ2, τ denote the material diffusivity and the characteristic relaxation time for
second slice; the corresponding coefficients values for the first slice are normalized to unity by
rescaling. The coefficients Ij , (j = 1, 2), are proportional to the intensities of the corresponding
incident beams; κ is the ratio of the nonlinear sensitivities of the two slices. The model (45)
describes the free space propagation in the same way as Eq. (23), and is also valid under
assumption that the material response time is much larger than the round-trip time in the
cavity.

The stationary homogeneous solution of Eq. (23), u0 = I1+I2, v0 = κI1, loses stability when
the input intensity exceeds a certain critical level. If I1 is chosen as the bifurcation parameter,
the linear analysis [18] defines the neutral curves for the Turing instability

I1 = Is(q) =
(1 + δ2q2)(1 + q2)

2(1 + δ2q2) sin L1q2 + 2κI2 sin2 L2q2
, (46)

and the wave instability:

I1 = Iw(q) =
1 + τ + q2(τ + δ2)

2 sin L1q2
. (47)

If q = qw is the critical wavenumber corresponding to a minimum of Iw(q), the frequency of the
wave mode is defined as

ω2 = (1 + δ2q2
w)

(
1 + q2

w − 2Iw(qw) sinL1q
2
w

)
− 4κIw(qw)I2 sin2 L2q

2
w. (48)

The minima of the neutral curves (46, 47) are determined by transcendental equations, and
cannot be found analytically. A degenerate point where both coincide, so that the Turing and
wave modes are excited simultaneously, can be located numerically. The relative heights of the
minima of the neutral curves may interchange following a slight shift of the distance L1, as seen
in Fig. 7.
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Figure 7: First positive branches of the neutral curves (46), corresponding to a Turing mode
(T), and (47), corresponding to a composite wave mode (w), at L1 = 4.55 (solid line) and
L1 = 4.65 (dashed line). The minima of the curves are interchanged by a small shift of the
parameter. The values of other parameters are: τ = 1, L2 = 1, I2 = 1, δ2 = 0.5, κ = −4.5.

4.2 Amplitude dynamics

A precursor of the wave–Turing resonance can be detected by constructing an amplitude equa-
tion under conditions when the minimum of the wave branch is slightly lower, as shown by solid
lines in Fig. 7. For a wave bifurcation, the amplitude equation is obtained in the third order of
the multiscale expansion (Section 2.1):

ȧj =

[
µ + ν1|aj |2 +

∑

l

ν2(ϕjl)|al|2
]

aj , (49)

where ν2(ϕjl) are interaction coefficients dependent on the angle ϕjl between the jth and lth
modes (we omit here resonant terms that appear when standing waves are included [11]). The
angular dependence of Re ν2(ϕjl) shown in Fig. 8 has a sharp minimum. The vector sum of two
modes at the angle corresponding to this minimum gives the weakly damped Turing mode at
the minimum of the respective neutral curve. This indicates a near resonance when the levels
of the two minima in Fig. 7 are close one to the other.

The simplest resonant structure at the degenerate bifurcation point includes two wave modes
with the wavenumber k and one Turing mode with the wavenumber Q that both correspond
to the minima of the respective neutral curves. The Fourier space structure is an isosceles
triangle. The amplitude dynamics is described by Eqs. (10) where the coefficients are computed
numerically with the help of our bifurcation package [19, 20].

This structure can be viewed as a basic building block of more complex structures rotation-
ally invariant in the Fourier space. A single isosceles triangle structure in the Fourier space can
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Figure 8: The angular dependence of the real part of the wave mode interaction coefficient
ν2(ϕjl) calculated at L1 = 4.5, τ = 1, L2 = 1, I2 = 1, δ2 = 0.5, κ = −4.5.

be completed by one Turing and one wave modes in such a way that the new structure will be
comprised of two isosceles triangles having one common side. Still more complicated structures
can be constructed in a similar way.

The value of the acute angle between two wave modes in the triangle, which is determined
by the ratio of the wavenumbers of the Turing and wave modes can be changed smoothly within
a certain range by tuning the free parameter values. When the angle becomes commensurate
with π, one can also envisage a closed rotationally invariant structure consisting of 2N isosceles
triangles. Assuming that the amplitudes of all Turing modes are equal, a

(s)
j = a, and the

amplitudes of wave modes are equal alternatingly, a
(w)
2n = b, a

(w)
2n+1 = c, we arrive at the same

dynamical system (10) with the only replacement νw → 2νw. This means that the dynamics
is similar for both cases. Since, unlike the case considered in Section 3, rotationally invariance
is not compulsatory here, selection of either periodic or quasicrystalline pattern hinges upon
weaker quadruplet interactions.

An example of a periodic orbit is seen in Fig. 9. A few snapshots of a quasicrystalline
structure with N = 4 taken during the oscillation cycle are shown in Fig. 10. A square pattern
in one of snapshots is observed when one couple of wave modes becomes nearly extinct; at this
moment of time, the resonance breaks down, which triggers a sharp change of all variables, and
the quasicrystalline structure is recovered.
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Figure 9: An asymmetric periodic solution of the system Eq. (12) at µw/µs = −0.0238, νs =
0.0678, ν = 0.3523, α = −0.66π. Two periods are shown. The wave modes have different
amplitudes which both undergo sharp oscillations. Oscillations of the Turing mode have the
smallest amplitude, and the same period.

5 Conclusion

The nonlinear optical feedback systems considered in this communication have versatile and
easily controllable dynamics. Complex small-amplitude patterns near a symmetry-breaking
bifurcation point, that are very difficult to construct in other pattern-forming non-equilibrium
systems, appear here in a very natural way. The central and, to our knowledge, novel point
of this study is a primary role of resonant interactions between wave and Turing modes that
facilitates formation of quasicrystalline structures, and allows dynamic confinement to the small
amplitude region dominated by the action of triplet interactions only.

This research has been supported in part by the EU TMR network “Nonlinear dynamics
and statistical physics of spatially extended systems”.
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Figure 10: Snapshots taken during the oscillation cycle are shown in Fig. 9.
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