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The effect of van der Waals forces on the fingering instability of a thin liquid film wetting a solid
substrate and moving under the action of a thermal gradient applied along the film is investigated. Both
horizontal films and films climbing a vertical wall are considered. A linear stability analysis shows the
stabilizing action of the van der Waals forces. The effect of gravity forces can be either stabilizing or
destabilizing, depending on the relative strength of the effects of gravity and surface-tension gradients.
A weakly nonlinear analysis of the unstable wetting front shows that the frontal evolution is described
by the Kuramoto-Sivashinsky equation, revealing the possibility of chaotic behavior of fingerlike patterns
near the instability threshold.

1. Introduction

The motion and stability of a three-phase (gas-liquid-
solid or liquid-liquid-solid) contact line plays an im-
portant role in many processes encountered in modern
technologies, such as printing, dyeing, coating, separation
processes in chemical engineering such as distillation,
absorption in packed columns, and so forth, cleaning of
oil films from water surfaces, oil recovery from porous
rocks, drying and cleaning in the electronics and micro-
processor industries, and others. It is also a challenging
fundamental problem that has been attracting wide
attention during the past decade and is still far from being
completely resolved.1-4 Its complexity (and challenge for
fundamental science) is in the coupling between the
macroscopic hydrodynamical processes governing the
motion of a liquid film and the microscopic processes
connected with the intermolecular forces controlling the
creation of new interfaces in the moving contact line region.

If a thermal gradient is applied along a solid surface
supporting a liquid film, the latter starts to flow because
of the surface-tension gradient at the film’s free surface.
Such thermally driven liquid films have been recently
attracting a great deal of attention because of the
importance of this mechanism for the control of liquid
flow in microfabricated devices.5-8 A wetting liquid film
spreads over the solid surface under the simultaneous
action of van der Waals forces and the surface-tension
gradient. Such thermally assisted spreading can lead to

the propagation of a stationary wave consisting of a nearly
flat liquid film, a thin precursor film with a decaying
thickness, governed by the van der Waals forces, and a
narrow intermediate region associated with a moving
“contact line”. This propagating contact line is often
unstable exhibiting the formation of growing fingers.9-11

This phenomenon is schematically shown in Figure 1. A
similar instability is observed in gravity-driven films (see
refs 12-14 and references therein) as well as in films
with spreading surfactants.17

The linear stability analysis performed in refs 10-14
took into account the presence of the precursor film with
a fixed thickness as an independent parameter which is
assumed to be known from experiments. The evolution of
this precursor film is governed by van der Waals forces.
In the present paper, we focus on the investigation of the
effect of van der Waals forces on the dynamics of the
precursor film and its coupling to the fingering instability
of the contact line region of a thermally driven wetting
film. We shall demonstrate that the van der Waals forces
have a stabilizing effect on the fingering instability as
has been speculated in refs 15 and 16.

2. Governing Equation

Consider a liquid film supported by an inclined solid
substrate with a constant thermal gradient, â, applied
downward along the substrate. Because of the dependence
of the film surface tension σ on temperature T, which is
assumed to be linear, σ ) σ0 - σT(T - T0), with σT ) const
> 0 which is the case for most liquids, the film is spreading
upward, in the direction opposite to the direction of the
applied thermal gradient. Because in experiments liquid
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films are usually very thin (a few micrometers thick),
following the suggestion in ref 10, we neglect the tem-
perature variation across the film, thereby assuming the
film surface temperature to be equal to that of the solid
substrate. The effect of molecular forces in the precursor
film can be described by the van der Waals potential φ,
which, in the long-wave approximation, can be taken as
φ ) A0/h3, where h is the local film thickness and A0 )
A/(6π) is the Hamaker constant. The evolution of the film
is described by18

where µ and F are the liquid viscosity and density,
respectively, g| ) g sin θ, g⊥ ) g cos θ, where g is the
acceleration of gravity, and θ is the inclination angle of
the solid substrate (θ ) 0 corresponds to a horizontal film);
x is the coordinate along the substrate whose direction is
chosen so that the film propagates in the direction of
negative x.

Introducing the scaling x f λx, t f τt, h f H0h, where
H0 is the liquid film thickness at x f ∞, far from the leading
edge, and

one rewrites eq 1 in the dimensionless form:

Equation 3 contains three dimensionless parameters,
G, K, and V:

The parameter G characterizes the effect of hydrostatic
pressure normal to the substrate relative to the effect of
capillary and Marangoni (surface tension gradient driven)
forces, the parameter K characterizes the strength of the
gravity-induced flow along the substrate relative to the
Marangoni flow (K ) 0 for a horizontal film), and the
parameter V characterizes the effect of the van der Waals
forces relative to surface-tension forces. Taking A ) 10-19

J, g ) 9.81 m/s2, and θ ) 45°, for a 2 µm thick film of a
silicon oil with F ) 0.9 g/cm3, σ ) 20 dyn/cm, and σT ) 0.07
dyne/(cm K), with the applied thermal gradient â ) 4
K/cm, one obtains V ) 1.6 × 10-4, G ) 3.1 × 10-3, and K
) 0.46. Note that none of the parameters V, G, or K depends
on the viscosity of the film; the latter affects only the
characteristic time scale of the film dynamics but neither
the conditions of the fingering instability nor its charac-
teristic spatial scale.

3. Uniformly Spreading Thermally Driven Films
We are interested in a solution of eq 3 describing a

uniformly spreading thermally driven film. This solution
has the shape of a front, h(x + Ut), uniformly moving from
right to left with a constant speed U. Far to the right, as
x f ∞, h f H0. Far to the left, as x f -∞, one can consider
one of two boundary conditions: (i) h f b ) const > 0 and
(ii) h f 0. Condition i corresponds to the existence of a
precursor film of constant thickness b. This case was
considered in refs 10-14; the precursor film thickness b
is an additional parameter which is assumed to be known
from experiments. It is assumed in this case that the
characteristic time of the precursor film formation is much
smaller than that of the spreading of the thermally (or
gravitationally) driven film. Condition ii corresponds to
a precursor film whose thickness gradually decays to zero
far from the contact line region. In this case, it is assumed
that the characteristic time of the precursor film formation
(governed by the van der Waals forces) is of the same
order of magnitude as that of the driven film spreading
under the action of Marangoni or gravity forces. The
conditions of the fingering instability can thus be expected
to depend strongly on the interplay between the van der
Waals forces and thermocapillary forces driving the film
spreading. Note that because the formation of the precur-
sor film is a slow process, both cases usually correspond
to rather thin films or to films on inclined planes whose
thermocapillary flow rate is retarded by viscosity or
gravity.

Substitute the anzatz h(x + Ut) in eq 3 and integrate
from -∞ to ∞ to obtain the spreading velocity of the driven
film as

For b ) 0, one obtains U ) 1/2 - K/3. One can see that
the solution in the form of a uniformly spreading film
exists only if K < 1.5 or, in dimensional variables, if 3âσT
> 2Fg|H0. This is the condition for the net mass flux in the
liquid film in the direction of its motion to be positive,

(18) Oron, A.; Bankoff, S. G.; Davis, S. H. Rev. Mod. Phys. 1997, 69,
931.

Figure 1. Schematic representation of a thermally driven
liquid film and its fingering instability.
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that is, for the surface tension gradient induced driving
force to be sufficient to overcome gravity and to pull the
film upward. For b ) 0 and K ) 0 (horizontal film), one
obtains U ) âH0σT/2µ.

Consider now the asymptotic behavior of the precursor
film far ahead of the contact line region. The equation for
the stationary wave h0(ê) (where ê ) x + Ut) reads

The asymptotic behavior of the precursor film is described
by the equation

Integration of (7) with the boundary condition h f b as
ê f -∞ gives

and the boundary condition h f 0 as ê f -∞ gives

where C1 and C2 are integration constants to be determined
by matching with the solution in the outer region.

One can see that if the formation of the precursor film
with a constant thickness ahead of the contact line region
is much faster than the thermally driven spreading, the
film profile approaches the constant thickness exponen-
tially. If the formation of the precursor film governed by
the van der Waals forces occurs on the same time scale
as the film spreading caused by the surface-tension
gradient, the precursor film thickness decreases alge-
braically as 1/ê.

In the following sections, we will be interested in the
case when the characteristic time of the precursor film
formation governed by the van der Waals forces is
comparable to the characteristic time of spreading caused
by the surface tension gradient driven forces, that is, the
case described by the boundary condition h f 0 as ê f
-∞. In this case, the interplay between the van der Waals
forces and the Marangoni forces is most important.

On the other side of the film, far from the contact line
region on the right, as x f ∞, the film profile approaches
the constant value h ) 1 in an oscillatory manner (see refs
10 and 11), which can be found by linearizing eq 6 around
h ) 1 and solving the corresponding linear equation for
h̃ ) h - 1. One finds that as ê f ∞ (for the case b ) 0, U
) 1/2 - K/3) h ∼ 1 + Ceλrê cos(λiê), where λr < 0 and λi are
the real and imaginary parts of two complex conjugate
roots of the cubic equation

In the following sections, we shall perform the linear
stability analysis of the stationary wave solutions h0(x +
Ut) of eq 3 for two cases: (i) when the film spreads along
a horizontal surface and (ii) when the film climbs up a
vertical wall.

4. Linear Stability of a Uniformly Spreading
Thermally Driven Film

To study the linear stability of the solution h0(ê) of eq
6 corresponding to the stationary spreading wave, we
consider the perturbations h̃ ) h - h0 in the form

where k is the wavenumber of harmonic perturbations in
the transverse direction y along the contact line. Substi-
tuting (11) in (3), one obtains the following eigenvalue
problem for the perturbations u:

where

with

We consider the cases of a film spreading on a horizontal
substrate and the case of a film climbing along a vertical
wall separately.

4.1. Horizontal Film. In the case of a horizontal film,
K ) 0 and U ) 1/2. Figure 2 shows numerical solutions
of eq 3 obtained by means of a finite difference method in
a co-moving frame (ê ) x + Ut) in a large interval ê ∈ [-L1,
L2] with the boundary conditions hê ) hêêê ) 0 for ê ) L2
> 0 and h ) 6V/L1, hê ) 6V/L1

2 for ê ) -L1 < 0. We have
used a semi-implicit Crank-Nicolson discretization scheme
which appears to be highly stable and did not produce any
divergence in higher derivatives.

The eigenvalue problem (12) has been solved numeri-
cally, by using the numerical solution for h0 described
above, that is, by discretizing eq 12 on the interval [-l1,
l2] ∈ [-L1, L2], and solving the eigenvalue problem for the
corresponding system of linear equations numerically.

Because the original problem is formulated in an infinite
region and the eigenvalue problem can be solved numeri-
cally only in a finite region, we need to choose appropriate
boundary conditions for the numerical solution of the
eigenvalue problem. In the infinite region, the natural
boundary conditions correspond to the decay of the
perturbation u and its derivatives far from the contact
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[h0
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-3)ê]ê ) 0 (6)
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(8)

h0 ) - 1
C2 + Uê/(3V)

(9)

λ3 - (3V + G)λ - 1/2 + 2K/3 ) 0 (10)

Figure 2. Shape of a uniformly propagating thermally driven
film corresponding to the solution of eq 6 for G ) 0.001 and (1)
V ) 0.0006, (2) V ) 0.02, and (3) V ) 0.04.
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line region. In a finite computational region, appropriate
boundary conditions are those which mimic the asymptotic
behavior of the perturbation u at (∞. Obviously, this
behavior also exhibits the decay of the perturbation and
its derivatives. Therefore, the boundary conditions for the
perturbation u and its derivatives should be uniform, that
is, c1

(0)u + c1
(1)uê + c1

(2)uêê + ... ) 0 for ê ) -l1 and c2
(0)u +

c2
(1)uê + c2

(2)uêê + ... ) 0 for ê ) l2. The coefficients c1,2
(i) should

be chosen in such a way that the perturbation u is affected
by the finite length of the computational domain as little
as possible. The mode which is most vulnerable to this
effect is the zero eigenmode u ) h0ê corresponding to ω )
k ) 0 which is present because of the translational
invariance of the problem. This mode is also crucial for
the computation of the nonlinear behavior of the system
near the instability threshold where the instability is long-
wave. Therefore, we have chosen the coefficients c1,2

(i) so
that the zero eigenmode u ) h0ê, whose asymptotic
behavior at the left end of the interval (ê ) -l1) is u ∼
3V/(Uê2) and at the right end of the interval (ê ) l2) is u
∼ exp(λê), with λ determined by eq 10, satisfies these
boundary conditions, namely,

The interval [-l1, l2] has been chosen so that the basic
solution h0 essentially coincides with its asymptotic
behavior at the ends of the interval. We have checked, by
significantly changing the interval [-l1, l2], that the effect
of its length on the result of the stability analysis (the
dispersion curve ω(k)) was negligible (because the as-
ymptotic behavior has been achieved at the ends of the
interval).

A conservative discretization scheme, described in
Appendix A, has been used. The resulting eigenvalue
problem has been solved by means of MATLAB software,
and the behavior of the largest eigenvalue ω(k) with the
variation of the parameters V and G has been studied.
The instability was found to be monotonic. Figure 3a shows
the dependence ω(k) for G ) 0.001 and selected values of
V, and Figure 3b presents the dependence ω(k) for V )
0.002 and selected values of G.

One can see, for example, that the thermally driven
film with G ) 0.001 and V < 0.0188 is linearly unstable
with respect to transverse perturbations with a finite

wavenumber, which results in the formation of a periodic
cellular structure at the moving contact line region
(fingering instability). The wavelength of the most un-
stable mode depends on the parameters V and G. One can
also see that the dispersion curves for G < 0.01 are
practically the same as for G ) 0. The decrease of V and
the increase of G promote the film instability. This shows
the interplay between the capillary pressure and viscous,
gravity, and van der Waals forces. As has been shown in
refs 10 and 11, the primary cause of the fingering
instability is the formation of a capillary ridge in the
contact line region (see Figure 2: (a) film is unstable, (b)
film is neutrally stable, and (c) film is stable). Gravity
tends to flatten the film and to diminish the ridge height,
and van der Waals forces pull the film toward the region
of smaller thickness, thus also tending to flatten it. On
the other hand, the applied thermal gradient pushes the
film, thus promoting the ridge formation in the contact
line region. The increase of the film thickness decreases
the drag effect of the viscous forces and promotes ridge
formation.

One can see also that there exists a threshold value
V*(G) at which the fingering instability occurs. Because
of the weak dependence of the dispersion curves on G for
small G corresponding to realistic physical situations, one
can set G ) 0 and obtain a single threshold value for the
fingering instability, Vcr ) V*(0). We have computed the
threshold value Vcr in the following way. For small
wavenumbers k, the perturbation growth rate ω(k) )
ω2(V, G)k2 + ω4(V, G)k4 + ... ≈ ω2(V, 0)k2 + ω4(V, 0)k4 +
.... The threshold value Vcr corresponds to ω2(V, 0) ) 0.
Expanding u ) u0 + k2u2 + ..., one obtains from eq 12 the
following problem for u2:

whose solvability condition gives

Here, u0 is the null eigenvector of L′0 corresponding to ω
) 0, and u0

/ is the conjugate null eigenvector which can
easily be found by solving the described eigenvalue
problem with the transposed matrix.

Using (4), one obtains Vcr ) 0.0188 (for G ) 0). This
allows one to get a relation between the physical param-
eters which gives the threshold for the fingering instability
of a thermally driven horizontal film to occur. Namely,
the instability occurs if

The condition (20) allows one to predict and control the
fingering instability of a thermally driven horizontal film
on the basis of physically measurable and controllable
quantities (film thicknessH0 and applied thermal gradient
â) and physical properties of the system (surface ten-
sion σ, Hamaker constant A, and the derivative of the
surface-tension dependence on temperature σT). For the
values of physical parameters typical of experiments on
thermally driven films,19,20 one gets Aσ-1/3H0

-8/3(âσT)-2/3

(19) Ludviksson, V.; Lightfoot, E. N. AIChE J. 1971, 17, 1166.
(20) Brzoska, J. B.; Brochardwyart, F.; Rondelez, F. Europhys. Lett.

1992, 19, 97.

Figure 3. (a) Dispersion curves ω(k) for the perturbations of
thermally driven spreading films for G ) 0.001 and (1) V )
0.0006, (2) V ) 0.001, (3) V ) 0.002, (4) V ) 0.004, (5) V ) 0.01,
(6) V ) 0.02, and (7) V ) 0.04. (b) Dispersion curves ω(k) for
the perturbations of thermally driven spreading films for V )
0.002 and (1) G ) 0.0, (2) G ) 0.001, (3) G ) 0.01, and (4) G
) 0.1.
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≈ 0.02 which is far beyond the instability threshold. This
explains the well-developed fingering usually observed in
experiments.

4.2. Vertical Film. Consider now a liquid film climbing
up a vertical plane under the action of a surface-tension
gradient induced by the thermal gradient applied down
the plane. As already mentioned, solutions of eq 3 in the
form of a uniformly propagating stationary wave exist for
K < 1.5; otherwise, gravity is too strong and pulls the
fluid down and therefore does not allow the film to climb
up and to form a uniformly propagating wave. Note also
that because, as shown above, the gravity component
normal to the film surface is not important, all conclu-
sions about vertical films are also true for a film climbing
up an inclined surface, except for those with very small
slopes.

We have performed a linear stability analysis of the
stationary wave solution of eq 3 in this case which is
completely analogous to that described in the previous
subsection for thecaseofa horizontal film.However,unlike
the case of a horizontal film, we have observed two types
of instability. The first type is observed when the
parameter K is not large: one observes the usual
transverse fingering instability of a uniformly propagating
film with a capillary ridge in the contact line region (see
Figure 2). The second type is found for larger K: one no
longer observes a uniformly propagating film, but the ridge
region starts to widen forming a structure containing two
shocks, the so-called “undercompressive shock”, near the
precursor film, and the “Lax shock”, between the almost
flat ridge and the uniform film far from the contact line
region (see Figure 4). These two shocks move with different
speeds so that the ridge region constantly widens (see
Figure 4) and one never observes a uniformly traveling
film with an unchanged shape. This double shock structure
is rather robust and was observed for different initial and
boundary conditions. (As initial conditions, we used
arctangent-shaped functions as well as linear functions,
with values at the ends of the computational interval close
to those prescribed by the asymptotic behavior. Different
boundary conditions were also chosen in such a way that
the asymptotic solution would satisfy them, for example,
h ) 3V/(UL1), hê ) 3V/(UL1

2) at the left end and h ) 1, hê
) 0 at the right end or h - L1hê ) hê - (L1/2)hêê ) 0 at

the left end and hê ) hêêê ) 0 at the right end.) The double-
shock structure of a widening capillary ridge of a thermally
driven fluid film climbing along an inclined solid surface
was observed in refs 21 and 22, and the theory of such
two-shock structures has been developed in refs 21, 23,
and 24.

The stability diagram in the (K, V) parameter plane is
shown in Figure 5. The solid line depicts the boundary of
the fingering instability of a uniformly propagating film
with a contact line region, whose shape is similar to those
shown in Figure 2. One can see that the threshold value
Vcr decreases with increasing K. This is the result of the
interplay between van der Waals and gravity forces. As
discussed in the previous subsection, larger van der Waals
forces (growing V) stabilize the thermally driven film
because they push the fluid into the region of the pre-
cursor film thus diminishing the height of the bump. In
the case of a vertical film, gravity pulls the fluid down-
ward, which also diminishes the bump height. Thus,
because of the additional stabilizing action of gravity
forces, the fingering instability occurs at Vcr(K) which is
smaller than Vcr(0) ) 0.188, corresponding to a horizontal
film. For 0.5 < K < 0.76, the effect of gravity is so strong
that it drives the longitudinal instability of a thermally
driven film and leads to the formation of the double-shock
structure shown in Figure 4. The boundary of this
instability is shown in Figure 5 by the dashed line. For
K > 0.76, the film climbing up the vertical wall, with a
precursor film ahead (as shown in Figure 2), is always
unstable with respect to formation of the double-shock
structure.

For 0.012 < V < 0.0188, the film is stable only in a finite
interval of K. Thus, with the decrease of K (e.g., the
decrease of the slope of the solid surface along which the
film is climbing) one observes the fingering instability,
and with the increase of the slope (increase of K) one will
see that the film will become unstable with respect to the
double-shock structure formation. For K > 0.76, there is
no stable vertical film climbing uniformly under the action
of the thermal gradient.

(21) Bertozzi, A. L.; Munch, A.; Fanton, X.; Cazabat, A. M. Phys. Rev.
Lett. 1998, 81, 5169.

(22) Schneemilch, M.; Cazabat, A. M. Langmuir 2000, 16, 9850.
(23) Munch, A.; Bertozzi, A. L. Phys. Fluids 1999, 11, 2812.
(24) Bertozzi, A. L.; Munch, A.; Shearer, M. Physica D 1999, 134,

431.

Figure 4. Double-shock structure of a widening capillary ridge
of a thermally driven film: solution of eq 3 for V ) 0.01, K )
0.6. Successive curves correspond to equal time intervals ∆t )
200. UCS, undercompressive shock; LS, Lax shock.

Figure 5. Stability regions for a thermally driven film climbing
along a vertical solid surface.
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5. Nonlinear Analysis
It is interesting to study the nonlinear evolution of the

fingering instability of a thermally driven film. For values
of V close to Vcr(K) on the solid line of Figure 5, the
instability is long-scale, that is, it occurs for small
wavenumbers, k < k/ ) O(ε) , 1, where k/ is the
wavenumber corresponding to ω ) 0 (see Figure 3), and
ε2 ∼ V - Vcr(K). One can then employ a long-wave analysis
and consider perturbations of a uniformly propagating
film profile in the form

where ê ) x + Ut, Y ) εy is the large-scale transverse
coordinate, T ) ε4t is the slow time, andφ(Y, T) is a function
describing the shape of contact line perturbations.

Substituting (21) into eq 3, one obtains, to order O(ε6)
of the perturbation theory, the Kuramoto-Sivashinsky
(KS) equation for φ(Y, T), describing the nonlinear
evolution of the fingering instability:

where

can both be computed from the dispersion relation, and
the nonlinear coefficient ν is obtained in terms of the basic
solution h0(ê) by means of our bifurcation analysis code
written using the Mathematica symbolic computations
package. The expression for ν is given in Appendix B. For
example, in the case of a horizontal film, K ) 0, eq 22
reads

Note that all terms in this equation are O(ε6) ) O((V -
Vcr)3). Because the governing eq 1 was itself derived in
the long-wave approximation for hx ) O(δ) , 1, with
terms O(δ2) in the averaged velocity profiles being
uniformly omitted, eq 22 is asymptotically correct for
(hx)2 , (V - Vcr)3 , 1. Note also that, because of the
translation invariance of the problem, eq 22 contains only
derivatives of φ. An equation similar to (22) was recently
obtained for the nonlinear evolution of the fingering
instability of a gravity-driven contact line with a precursor
film.25

Equation 22 is known to exhibit cellular solutions
resembling fingers forming at the unstable contact line
of a thermally driven film. Depending on the values of the
coefficients, this equation is also known to exhibit complex
oscillations, traveling and modulated waves as well as
chaotic spatiotemporal dynamics, in which the birth and
death of cells (fingers) occur in a chaotic manner.26-28 It
is important that eq 22 can be reduced to a standard form
by appropriate scaling transformations so that there is
only one bifurcation parameter, namely, thedimensionless
length of the region, L, where the instability develops.
According to the numerical computations performed in
ref 27, chaotic behavior would be observed for L > 34.05.

In our case, this corresponds to the domain ∼45.6(V -
Vcr)-0.5 which for the chosen parameter values and the
supercriticality V - Vcr ∼ 1 ÷ 10% corresponds to an actual
physical domain which is approximately several meters
long along the contact line! This is due to the fact that
eq 22 describes the system behavior near the bifurca-
tion point where the growing perturbations are long.
Experiments with thermally driven contact lines made so
far corresponded to conditions far from the bifurcation
point V ) Vcr where the system dynamics is not de-
scribed by eq 22. On one hand, this explains why the
fingering dynamics observed in experiments differs
strongly from the KS dynamics. On the other hand, our
computations of the critical conditions for the fingering
instability with van der Waals forces and the computed
coefficients of eq 22 may encourage experiments near the
bifurcation point in order to verify possible complex KS
dynamics of the fingering instability of a thermally driven
contact line.
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Appendixes

A. Discretization Scheme for the Linear Eigen-
value Problem. A conservative discretization scheme,
described in Appendix A, has been used, such that, for
example,

where j denotes the node value of the function on the
mesh and ∆ is the spatial step. Equation 12 yields the
following system of equations with a five-diagonal matrix:

where (Aj, Bj, Cj, Dj, Ej) ) (Aj
(0), Bj

(0), Cj
(0), Dj

(0), Ej
(0)) +

k2(0, Bj
(2), Cj

(2), Dj
(2), 0) + k4(0, 0, f 3

(j), 0, 0) and

(25) Kalliadasis, S. J. Fluid Mech. 2000, 413, 355.
(26) Hyman, J. M.; Nicolaenko, B. Physica D 1986, 18, 113.
(27) Hyman, J. M.; Nicolaenko, B.; Zaleski, S. Physica D 1986, 23,

265.
(28) Kevrekidis, I. G.; Nicolaenko, B.; Scovel, J. C. SIAM J. Appl.

Math. 1990, 50, 760.

h ) h(ê + ε
2
φ(Y, T)) (21)

φT + γφYY + øφYYYY + νφY
2 ) 0 (22)

γ ) - 1
2

∂
2ω

∂k2
ø ) - 1

24
∂

4ω
∂k4

φT ) 25.5(V - Vcr)φYY - 0.9φYYYY + 0.0027φY
2 (23)

d
dê

[f3u′′′] ) 1
∆

[f 3
(j+1/2)u′′′j+1/2 - f 3

(j-1/2)u′′′j-1/2]

Ajuj-2 + Bjuj-1 + Cjuj + Djuj+1 + Ejuj+2 ) ωuj (A1)

Aj
(0) ) 1

∆4
f 3

(j-1/2)

Bj
(0) ) 1

∆4
(-f 3

(j+1/2) - 3f 3
(j-1/2)) + 1

∆2
f 1

(j-1/2) - 1
2∆

f 0
(j-1)

Cj
(0) ) 3

∆4
(f 3

(j+1/2) + f 3
(j-1/2)) - 1

∆2
(f 1

(j+1/2) + f 1
(j-1/2))

Dj
(0) ) 1

∆4
(-3f 3

(j+1/2) - f 3
(j-1/2)) + 1

∆2
f 1

(j+1/2) + 1
2∆

f 0
(j+1)

Ej
(0) ) 1

∆4
f 3

(j+1/2)

Bj
(2) ) - 1

∆2
(f 3

(j-1/2) + f 3
(j))

Cj
(2) ) 1

∆2
(f 3

(j+1/2) + 2f 3
(j) + f 3

(j-1/2) - f 1
(j))

Dj
(2) ) - 1

∆2
(f 3

(j+1/2) + f 3
(j))
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Boundary conditions (16) and (17) give

B. Nonlinear Coefficient in KS Equation. Proceed-
ing with the perturbation theory up to sixth order and
applying the solvability condition, one obtains the fol-

lowing expression for the nonlinear coefficient ν in eq 22:

where

Here, h0(ê) is the solution of eq 6, prime denotes the
derivative with respect to the running coordinate ê ) x
+ Ut, the inner product 〈a(ê), b(ê)〉 ) ∫-∞

∞ a(ê)b(ê) dê, and
u0
/ is the zero eigenvalue solution of the linear problem

adjoint to (12). For K ) 0 (horizontal film), one obtains
from (B1) that ν ) -0.0027.

LA000859U

u-1 ) u1 + 4∆
êmin

u0 (A2)

u-2 ) u2 + 16∆
êmin

u1 + (- 8∆
êmin

+ 32∆2

êmin
2)u0

uN+1 )
2 - (a2 + b2)∆2

1 + a∆
uN + a∆ - 1

a∆ + 1
uN-1

uN+2 ) uN+1(2 - 4a∆ - (a2 + b2)∆2) + uN(8a∆) +

uN-1(-2 - 4a∆ + (a2 + b2)∆2) + uN-2

ν )
〈f, u0

/〉

〈h′0, u0
/〉

(B1)

f ) h′0 + 2Kh′0(h0
2 - 1

3) - 2h0h′0 + 3V
h0

(h′0
2

h0
- h′′0)
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