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The profiles of a spreading wetting film are computed taking into account intermolecular forces and
introducing a kinetic slip condition at a molecular cutoff distance. This eliminates the stress singularity,
so that both “true” and “visible” contact angles are defined unequivocally. The true contact angle at the
cutoff distance depends on the slip length as well as on the edge propagation speed but not on gravity or
asymptotic inclination angle. These macroscopic factors influence, however, the visible contact angle observed
in the interval where the actual film profile departs from the intermediate asymptotic curve.

I. Introduction
The two basic unsolved problems in the theory of a

moving three-phase contact line are defining the contact
angle and resolving the infamous viscous stress singular-
ity. Different approaches to both problems, neither of them
satisfactory, have been reviewed by Shikhmurzaev.1 Even
under equilibrium conditions, the structure of the three-
phase region cannot be understood without taking into
account intermolecular interactions between the fluid and
the solid support.2-4 It becomes apparent that motion of
a contact line is an intrinsically mesoscopic problem, and
the dynamical theory should blend factors contributed by
hydrodynamics and physical kinetics.

The “standard” equilibrium contact angle θe is defined
by the Young-Laplace formula

which involves surface tension σ of an interface between
two semi-infinite fluid phases (in the simplest case, a one-
component liquid and its vapor) and (nonmeasurable)
surface tensions between the solid support and either fluid,
σl and σv. Since, by definition, the standard surface tension
refers to a boundary between semi-infinite phases, the
surface properties should be modified when the three-
phase region falls within the range of intermolecular
forces, and therefore the classical formula is likely to fail
in a close vicinity of the contact line. This region is too
small to be detected by available measurement techniques,
but modification of interfacial properties is often revealed
by the formation of a precursor film. Thus, even under
equilibrium conditions the contact angle, generally, varies
with the distance from the contact line and cannot be
defined unequivocally.

In a dynamical situation, such as wetting, spreading,
or drawdown of a meniscus, the interfacial curvature and
hence the change of the contact angle are further
influenced by the viscous stress. A properly defined contact
angle fixes the boundary condition at the edge of an

advancing or receding film and is therefore a necessary
ingredient for computation of macroscopic flows, influ-
enced also by external forces, such as gravity, and by
changes in temperature and chemical composition through
buoyancy and Marangoni effect. Macroscopic measure-
ments yield the so-called “visible” contact angle, differing
from both the standard value in eq 1 and a hypothetical
“true” (microscopic) value. Both true and visible contact
angles should depend on the flow velocity and are subject
to hysteresis.

One should be warned that the very notion of a true
interfacial angle is precarious, since it extrapolates the
concept of a sharp interface of a continuous theory to
molecular distances. This notion is eliminated altogether
in molecular simulations5,6 and in diffuse interface
theories.7-10 In continuum theories incorporating inter-
molecular forces, the true contact angle can be defined at
most at the molecular cutoff distance d. This is sometimes
forgotten when hydrodynamic theory leads to the ap-
pearance of unphysically narrow boundary layers.

Bearing in mind limitations of continuum mechanics
extended to molecular scales, we attempt in this com-
munication to combine the standard hydrodynamic theory
with a simple kinetic description of sliding motion in the
first molecular layer adjacent to the solid support. The
thickness of the sliding layer is identified with the cutoff
length in the van der Waals interaction potential; thus,
the theory is expected to operate at about the same crude
level as the classroom derivation of the van der Waals
equation of state.11

The paper is organized as follows. We start in section
II with a detailed discussion of the slip condition. Basic
equations in lubrication approximation are formulated in
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section III. Intermediate asymptotics of the solutions at
relatively short macroscopic distances from the contact
line, where gravity still does not come into play, are
discussed in section IV. Solutions describing the form of
a stationary meniscus on a moving inclined plane are given
in section V.

II. Slip Condition

With any finite contact angle given as a boundary
condition, a moving contact line still cannot be described
within the framework of conventional hydrodynamics,
since the classical no-slip condition on a solid substrate
generates a multivalued velocity and, hence, an infinite
stress in the vicinity of a contact line, leading formally to
an infinite drag force.12,13

The most common way to eliminate the viscous stress
singularity is to impose a phenomenological slip condition.
Presence of slip at a microscopic scale comparable with
intermolecular distances is an established fact in Max-
well’s14 kinetic theory of gases; for dense fluids, it is a
feasible hypothesis supported by molecular dynamics
simulations.5,6 The two alternatives are slip conditions of
the “hydrodynamic” and “kinetic” types.

The version of the slip condition most commonly used
in fluid-mechanical theory is a linear relation between
the velocity component along the solid surface us and the
shear stress.15,16 The proportionality constant contains a
phenomenological parameter, slip length, characterizing
intermolecular interaction between the fluid and the solid;
in liquids, this length should be small, so that the effect
of sliding becomes significant only in the vicinity of a
moving contact line where stresses are very large. This
condition has been widely used for modeling macroscopic
flows involving the contact line motion.17-21 It does not
eliminate the stress singularity but only makes it inte-
grable, thus leaving a logarithmic (integrable) singularity
of the interfacial curvature. This leads formally to a
breakdown of the commonly used lubrication approxima-
tion in the vicinity of a contact line that can be remedied
only by further ad hoc assumptions, making the slip length
dependent on the distance from the contact line.18,21

This drawback may be merely technical, but a more
serious disadvantage of hydrodynamic slip theories lies
in their inherent inability to predict the dynamic contact
angle. Thus, the two basic problems become disentangled,
and, in addition to a phenomenological slip coefficient,
empirical relationships between the velocity and contact
angle have to be introduced in model computations.

Another version of the slip condition22,23 defines the slip

velocity through the gradient of thermodynamic potential
w along the solid surface:

where D is surface diffusivity,n is particle number density,
k is the Boltzmann constant, T is temperature, and ∇ is
the two-dimensional gradient operator along the solid
surface. The condition in (2) is rooted in physical kinetics
and follows rather naturally from considering activated
diffusion in the first molecular layer adjacent to the
solid.24,25 In contrast to the hydrodynamic slip condition,
the kinetic condition in (2) can be used to define the true
dynamic contact angle at the contact line in a unique way,
as we shall see below.

Extrapolating the continuous description of fluid motion
to a molecular scale might be conceptually difficult but
unavoidable as far as interfacial dynamics is concerned.
Long-range intermolecular interactions, such as London-
van der Waals forces, still operate on a mesoscopic scale
where continuous theory is justified, but they should be
bounded by an inner cutoff d of atomic dimensions. Thus,
distinguishing the first molecular layer from the bulk fluid
becomes necessary even in equilibrium theory. In dynamic
theory, the motion in the first molecular layer can be
described by eq 2, whereas the bulk fluid obeys hydro-
dynamic equations supplemented by the action of inter-
molecular forces. Equation 2 serves then as the boundary
condition at the solid surface. Moreover, at the contact
line, where the bulk fluid layer either terminates alto-
gether or gives way to a monomolecular precursor film,
the same slip condition defines the slip component of the
flow pattern, and eq 2 can be used to estimate the true
contact angle if it is assumed that the motion is pure slip
at the contact line.

Miller and Ruckenstein26 used the dependence of the
disjoining pressure generated by London-van der Waals
forces in a wedge to compute the true equilibrium contact
angle. This result has been used by Hocking27 to set the
boundary condition at the contact line in the hydrodynamic
theory. Order-of-magnitude estimates show, however, that
at small inclination angles necessary to justify the
lubrication approximation used in hydrodynamic theory
the correction to disjoining pressure due to surface
inclination is extremely small, and the true angle may be
formally attained only at distances far below atomic
dimensions. At higher inclination angles, the computation
fails technically, since the interface must be curved, and
its form should be determined by a very complicated
integro-differential equation involving intermolecular
interactions as well as viscous stress and surface tension.

Ruckenstein and Dunn22 computed the slip velocity by
combining eq 2 with the same expression for the disjoining
pressure in a wedge, with the intention to use the
dependence us(h) obtained in this way for hydrodynamic
theory in lubrication approximation. We propose to use
the kinetic slip condition in the another way and, rather
than fixing the true contact angle through an equilibrium
condition in a wedge,26 compute it dynamically by balanc-
ing the London-van der Waals forces and viscous dis-
sipation in a thin precursor film. In this way, we shall
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obtain a relation between the slip velocity and the
thermodynamic potential at the contact line by considering
the motion at the point where the film thins down to the
minimal thickness h ) d. This is the advancing edge of
a wetting film or a retreating edge of a dewetting film,
dividing it from the dry solid surface. If the fluid is not
volatile, the motion at this point should be pure slip, while
standard caterpillar motion is retained at observable
macroscopic distances. In the case of an advancing wetting
film, we expect that the leading edge is followed by a thin
precursor film where surface tension is negligible and the
action of intermolecular forces driving the advancing film
is balanced by viscous dissipation. The boundary condition
at the leading edge will be then the same eq 2 with us
replaced by the edge propagation speed U and ∇w
computed at h ) d with surface tension neglected.

We shall also check (and eventually dismiss) another
way to construct a boundary condition at the leading edge,
assuming that the slip motion at the edge is driven by the
potential drop over the molecular cutoff distance d. This
yields, by analogy with eq 2, the boundary condition at
the contact line

where w(d) is the thermodynamic potential of the film of
the minimal thickness; the potential at the dry surface is
taken as zero. After w(d) is computed as in the following
section, eq 3 turns into a condition relating the curvature
at the contact line with the propagation speed. We shall
see that this condition leads in fact to nonphysical results
at small propagation velocities. At large velocities, com-
putations using the alternative boundary conditions yield
practically the same results (see section IV).

III. Basic Equations and Scaling
We shall use the lubrication approximation, which is

formally obtained by scaling the two-dimensional gradient
operator along the solid surface ∇ ∝ ε, ε , 1. Respectively,
time is scaled as ∂t ∝ ε2; the velocity in the direction parallel
to the solid support, as u ∝ ε; and transverse velocity, as
u ∝ ε2. This implies that the thermodynamic potential w
is constant across the layer. The gradient of w in the
direction parallel to the solid support serves as the forcing
term in the Stokes equation. The velocity profileu(z) across
the film verifies

where η is the dynamic viscosity. We use here the no-
stress boundary condition on the free surface z ) h but
replace the usual no-slip boundary condition on the solid
support u(0) ) 0 by the slip condition at the molecular
cutoff distance d with us given by eq 2. The solution in the
bulk layer d < z < h is

where λ ) xDη/nkT is the effective slip length.
The general balance equation for the film thickness h,

obtained from the kinematic condition on the free surface,
can be presented as a generalized Cahn-Hilliard equation,
where the two-dimensional flux j in the plane aligned
with the solid support is proportional to the two-
dimensional gradient of the potential w:

The effective mobility η-1Q(h) is obtained by integrating
eq 5 across the layer. Including also the constant slip
velocity u ) -λ2η-1 ∇w in the slip layer 0 < z < d, we have

Since both λ and d are measurable on the molecular scale
(see theestimates in theendof this section), thisexpression
does not differ in a macroscopically thick layer from the
standard shallow water mobility Q0 ) (1/3)h3, and the
correction becomes significant only in the immediate
vicinity of the contact line.

The potential w is computed at the free surface z ) h.
Taking into account surface tension, gravity, and van der
Waals force, it is expressed as

where A is the Hamaker constant, g is acceleration of
gravity, F is density, σ is surface tension, and εR is the
inclination angle of the solid surface along the x axis. The
dummy small parameter ε is the ratio of characteristic
scales across and along the layer; the relative scaling of
different terms in eq 8 is formally consistent when σ )
O(ε-2). Further on, we suppress the dependence on the
second coordinate in the plane, replacing the Laplacian
by d2/dx2.

In the following, we shall consider the film with a contact
line steadily advancing along the x axis in the negative
direction with the speed U. Then, eq 6 can be rewritten
in the comoving frame, thus replacing ht by Uhx, and
integrated once. Making use of the condition of zero flux
through the contact line to remove the integration constant
yields

This equation can be further transformed using h as the
independent variable and y(h) ) hx

2 as the dependent
variable. We rewrite the transformed equation introducing
the capillary number Ca ) |U|η/σε2, van der Waals length
a ) ε-1(|A|/6πσ)1/2, and gravity length b ) ε(σ/gF)1/2:

The boundary condition following from (2) and balancing
intermolecular forces and viscous dissipation at h ) d
takes the form

The alternative boundary condition in (3), set at h ) d,
is rewritten, using eq 8 and neglecting the gravity term,
as

Equation 10 contains three microscopic scales d, a, and
λ and a macroscopic gravity length b. The natural choice
for d is the nominal molecular diameter, identified with
the cutoff distance in the van der Waals theory. The
standard value3 is 0.165 nm. The slip length is likely to
be of the same order of magnitude. The approximate

U ) - D
nkT

w(d)
d

(3)

∇w ) ηuzz uz(h) ) 0 u(d) ) us (4)
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2

(z2 - d2)] ∇w (5)

ht + ∇‚j ) 0 j ) -η-1Q(h) ∇w (6)

Q(h) ) [λ2h + 1
3

(h - d)3] (7)

w ) -σε
2∇2h + gF(h - Rx) - A

6πh3
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-ηUh + Q(h) w′(x) ) 0 (9)

hCa
xy Q(h)

+ 1
2

y′′(h) - 3a2

h4
- 1

b2(1 - R
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1
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Kinetic Slip Condition and Dynamic Contact Angle Langmuir, Vol. 17, No. 17, 2001 5267



relation between viscosity η and self-diffusivity Dm in a
liquid28 yields Dmη ≈ 102kT/3πd. The surface diffusivity
should be somewhat lower than the diffusivity in the bulk
liquid, and with D/Dm ≈ 0.1 we have λ ≈ d.

The van der Waals length a depends on the relative
strength of liquid-liquid and liquid-solid interactions.
The Hamaker constant for the pair fluid-solid is defined3

as

where Cs and Cf are constants in the long-range attraction
potential C/r6 for the pairs of fluid-solid and fluid-fluid
atoms, respectively, removed at the distance r; ns is the
solid number density. The effective interaction parameter
C̃ is defined by the above identity. We shall assume A >
0, which corresponds to the case of complete wetting. The
estimate for surface tension3 is σ ≈ (1/24)πCf(n/d)-2. This
gives a ≈ 2ε-1(C̃/Cf)1/2, so that a ) O(d) when C̃/Cf ) O(ε2).

IV. Intermediate Asymptotics
In the intermediate region, where h far exceeds the

microscopic scales d, a, and λ but is still far less than the
capillary length b, the film profile is determined by the
balance between viscous stress and surface tension. The
asymptotics of the truncated eq 10 (with d, a, λ, and b-1

set to zero) at h f ∞ is

where h0 is an indefinite constant. The first term of this
asymptotic expression has been obtained by Hervet and
de Gennes,29 who have also reported the value of h0. This
constant can be obtained by integrating eq 10 (with gravity
neglected) starting from the boundary condition in (11) or
(12) and adjusting another necessary boundary value to
avoid runaway to (∞. There is a unique heteroclinic
trajectory approaching the asymptotics (14). It is very
sensitive to the initial conditions as well as to the
molecular-scale factors operating close to the contact line.
The growth of the inclination angle is never saturated, as
long as macroscopic factors (gravity or volume constraint)
are not taken into account.

Equation 10 can be integrated using the shooting
method: either starting from the boundary condition in
(11) and adjusting y′(d) or starting from the boundary
condition in (12) and adjustingy(d) to arrive at the required
asymptotics at h f ∞. Further on, we will measure all
lengths in the molecular units and set d to unity. The
solution in the intermediate region depends on the physical
parameters a and λ as well as on the capillary number Ca
that includes the propagation speed U. The latter’s impact
is most interesting for our purpose. Examples of the
computed dependence of the inclination angle θ ) xy(h)
on the local film thickness h using the boundary condition
in (11) at different values of Ca are given in Figure 1a.

The curves in Figure 1b using the boundary condition
in (12) show peculiar (apparently nonphysical) reversal
of the dependence of the inclination angle on Ca, resulting
in an increase of the true contact angle θ(d) with decreasing
velocity. Indeed, at U f 0 this condition yields a spurious
balance between intermolecular forces and surface tension
leading to an unstable stationary state, similar to the
erroneous inference of a wetting film with the right contact
angle in ref 30 discussed in our earlier paper.31 The
anomaly, however, quickly disappears at observable
distances.

The curve segments at h . 1 can be fit to the asymptotic
formula in (14) to obtain the integration constant h0. The
asymptotic formula in (14) can be used only when h is
logarithmically large, and the convergence, as estimated
by the second term, is slow; therefore, h0 can be only
obtained approximately from the computed profiles. The
dependence of h0 on Ca based in Figure 1a is shown in
Figure 2. We see here a rather strong variation of the
integration constant, unlike a single “universal” value
reported in ref 29.

V. Drawdown of a Meniscus
The simplest stationary arrangement including gravity

is realized when an inclined plane, dry at x f -∞, slides
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Figure 1. Dependence of the local surface inclination tan θ on
the local film thickness at different values of the capillary
number Ca computed using the boundary condition in (11) (a)
and (12) (b). The numbers at the curves show the values of Ca.
Other parameters used in all computations are λ ) 1 and a )
1/x3.

Figure 2. Dependence of h0 on Ca computed using the data
from Figure 1a.

A ) π2n(Csns - Cfn) t π2n2C̃ (13)

y ≈ (3Ca ln h
h0

)2/3
- 2(Ca

9 )2/3
ln ln h

h0
(ln h

h0
)-1/3

+ ...

(14)
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in the direction of a wetting layer. Solving eq 10 with the
same boundary condition in (12) as before brings now to
the asymptotics y ) xR at h f ∞ that corresponds to a
horizontal layer.

The curves y(h) seen in Figure 3a,c all depart from the
intermediate asymptotic curve obtained for infinite b as
in the preceding section. However, due to extreme
sensitivity of the shooting method to the choice of the
missing initial value, one has to integrate from the outset
the full equation rather than trying to start integration
from some point on the intermediate asymptotic curve.
One can see that the maximum inclination angle (which
may be identified with the visible contact angle) grows as
b decreases. This increase is, however, not pronounced
when the initial incline (identified with the true contact
angle) is high. One can distinguish therefore between two
possibilities: first, when the main dissipation is due to
kinetic resistance in the first monomolecular layer that
raises y(d) and, second, when the viscous dissipation

prevails and the inclination angle keeps growing in the
region of bulk flow. Take note that even in the latter case
the region where the inclination and curvature are high
is close to the contact line when measured on a macroscopic
scale.

Figure 4 shows the dependence of the visible contact
angle θm, defined as the maximum inclination angle and
observed in the range where the gravity-dependent curves
depart from the intermediate asymptotics, on the capillary
number Ca. The lower curve is a fit θ ∝ Ca1/3 to the data
of Figure 3b. The points of the upper curve are computed
in a similar way using the boundary condition in (12). The
first result appears to be more physically reasonable, since
the angle drops close to zero at small flow velocities, while
in the alternative computation it remains finite (see also
the discussion in the preceding section). The proportion-
ality of the inclination angle to Ca1/3 (which leads to the
well-known Tanners law of spreading4) is a property of
the intermediate asymptotics in (14) that can be deduced
from scaling,31 although the universality is slightly
impaired by the dependence of the integration constant
h0 on velocity seen in Figure 2. The one-third law is
inherited by the dependence θm(Ca), since the inclination
angle reaches its maximum while the gravity-dependent
profile is still close to the intermediate asymptotic curve.

Figure 5 shows the actual shape of the meniscus
obtained by integrating the equation h′(x) ) xy(h), h(0)
) d. The dependence of the drawdown length ∆ (computed
as the difference between the actual position of the contact
line and the point where the continuation of the asymptotic
planar interfacehits thesolidsurface) on thegravity length
is shown in Figure 6.

VI. Conclusion

It comes, of course, as no surprise that introducing a
molecular cutoff and applying a kinetic slip condition to
the first molecular layer resolves the notorious singu-
larities of hydrodynamic description. The hydrodynamic
singularities are eliminated, however, only at molecular
distances and are still felt in sharp interface curvatures

Figure 3. Dependence of the local surface inclination angle θ
on the film thickness (a) at Ca ) 1, R ) 1, and different values
of the gravity length b; (b) at b ) 104 and different values of
the capillary number Ca; (c) at Ca ) 1, b ) 104, and different
values of the asymptotic inclination angle R. The numbers at
the curves show the values of (a) 2 log b, (b) Ca, and (c) R. Other
parameters used in all computations are λ ) 1 and a ) 1/x3.

Figure 4. Dependence of the visible contact angle θm on Ca.

Figure 5. The shape of the meniscus for different values of b.
The numbers at the curves show the values of 2 log b.
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at microscopic distances identified here as the intermedi-
ate asymptotic region. The computations are eased
considerably when nonphysical divergence of both viscous
stress and attractive Lennard-Jones potential beyond the
cutoff limit are eliminated. As a result, the stationary
equations can be solved by the shooting method with
reasonable accuracy in a very wide range extending from

molecular to macroscopic scales, and the true contact angle
at the cutoff distance can be defined unequivocally.

The true angle (unobservable by available techniques)
depends on the slip length as well as on the edge
propagation speed but not on gravity or asymptotic
inclination angle. These macroscopic factors influence,
however, the visible contact angle observed in the interval
where the actual film profile departs from the intermediate
asymptotic curve. Since the latter’s location, though not
shape, depends on the molecular-scale factors as well as
on the cutoff distance, the visible angle depends on both
molecular and macroscopic factors. Thus, the lack of simple
recipes for predicting the value of dynamic contact angle
is deeply rooted in the mesoscopic character of the contact
line.
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Figure 6. The dependence of the drawdown length ∆ on
log b.

5270 Langmuir, Vol. 17, No. 17, 2001 Pismen and Rubinstein


