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Dynamics of Thin Liquid Films with Nonsoluble
Surfactants: Weakly Nonlinear Analysis
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Amplitude equations for Turing instabilities for two models describing dynamics of thin liquid films with
nonsoluble surfactants are derived. Analytical expressions for the film rupture time were obtained, and
the comparison with the results of previous numerical simulations was performed. It was shown that the
Marangoni effect due to insoluble surfactants cannot prevent the film rupture.

1. Introduction

It is now well known that the thin liquid films exhibit
hydrodynamic instability due to the long range molecular
forces. These forces result from van der Waals attractions,
and the instability leads to the film rupture. Two different
generic geometries are usually considered: liquid film on
a solid substrate and a liquid layer bounded by two free
surfaces separating the liquid from a passive gas or
another liquid. The former case is important in surface
wetting and evaporation while the latter case is involved
in coalescence of drops and emulsions and in cell mem-
branes.

The presence of surfactants can drastically change the
dynamics of the film motion. The nonuniform surfactant
distribution in the film will cause the surface tension
gradients, which result in tangential velocity along the
interface (Marangoni effect). The Marangoni effect can
either destabilize or stabilize the liquid film, depending
on the particular situation. The combined effect of
surfactants and van der Waals forces is an interesting
issue, since Marangoni forces can compete with the van
der Waals attractions and lead to the suppression of the
film rupture. Probably, the most significant is the
importance of the subject toward the fluid particle and
emulsion coalescence.

Recently developed nonlinear stability theory, based
on the long-wave nature of the response, provide nonlinear
evolution equations, which can be solved numerically or
by means of bifurcation analysis. Such evolution equations
have already been considered for different situations. The
detailed review of an application of this theory to different
thin film problems can be found in the review by Oron et
al.! The van der Waals attraction potential, which is given
in general by some nonlocal operator, can be simplified in
the long scale limit.?

It has been shown that a pair of coupled equations is
required in the case of the free film subjected to the van
der Waals attractions without surfactants® due to the
presence of two stress-free boundaries (one equation for
h and the other one for the tangential velocity of the liquid
in film, u). Also a pair of equations are required if
surfactants are present in a thin liquid film on a solid
substrate (one for h and the other one for the concentration
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I' of surfactants.*® De Wit et al.5 showed that a system of
three coupled nonlinear evolution equations describing
h,T’,and uis needed to describe the evolution of a squeezing
mode (SQ) of the free film subjected to the van der Waals
attractions with insoluble surfactants (SQ mode involves
symmetric thickness fluctuations and most directly leads
to the film rupture). They provided the linear stability
analysis and a numerical study of their model in both
geometries.

Sharma and Ruckenstein® developed a nonstandard
approach to the problem of thin film rupture. They consider
the finite amplitude disturbance by perturbing the
spatially inhomogeneous stationary solution of the non-
linear evolution equation. Thisapproach resultsinalinear
differential equation with inhomogeneous coefficients
which they reduced to a problem with constant coefficients.
The linear stability analysis of the latter problem gives
an estimate of rupture time as a function of various system
parameters and the amplitude of the initial perturbation
of the base state from the spatially homogeneous solution.

In this paper we investigate two problems considered
in ref 5 by means of weakly nonlinear analysis in the
vicinity of a steady bifurcation point. The coefficients of
the resulting nonlinear amplitude equations are obtained
analytically with the help of a symbolic program”written
in Mathematica. We think that development and usage
of symbolic software for bifurcation analysis of nonlinear
problems in hydrodynamics look very promising. Further
analysis of the amplitude equation provides an analytic
estimate of the nonlinear rupture time as a function of
different parameters of the model. These rupture times
are compared with the numerical results obtained in ref
5. The presented results give a deeper insight into the
role of surfactants on the dynamics of the thin film rupture
in the weakly nonlinear region of parameters.

2. Problem Formulation

We consider, first, the model describing the evolution
of free film subjected to van der Waals attractions with
insoluble surfactants for the thickness h of the film, the
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concentration T' of the surfactants, and the tangential
velocity u of the fluid in the film®

ht = _(Uh)x
I,=T,/Sc— (Tu),
(u; +uu, — Th, + W)h = (—MI" + 4huy), (1)

where M is a dimensionless Marangoni number, T is a
dimensionless surface tension, Sc is a Schmidt number,
and W is an attractive van der Waals potential, W =
A(2h)~2, while A is a dimensionless Hamaker constant.
Taking I' = 0 identically the above model reduces to a
system of two coupled equations derived previously by
Erneux and Davis.® Second, we consider the model
describing the evolution of the thin film with insoluble
surfactants on a solid substrate®

h, = (MI,h%2 — ¢,h%3),
I, =T,/Sc+ (MI,I'h — Tph?/2), @)
with

P(x,t) = —A/h*> + Th,, ©)

3. Linear Analysis

Inthis section we briefly repeat results of linear analysis
for two models performed in ref 5. Consider model 1, its
basic stationary uniform solution is

W, = {hy = 1/2, G, = 1, u, = 0}

Expanding a phase variables vector w = { h, T', u} around
the point wy

w = w, + A exp(ikx + iwt)

and retaining only linear terms we find the bifurcation
condition (for w = 0) in the form

KY(TK* —6A)=0

which leads to the critical value of wavenumber k' =
(6A/IT)Y2,

Similar calculations show that model 2 also permits
the monotonic short-scale instability with critical wave-
number k"' = (BA/T)Y2. Oscillatory instability is not
detected in this case.

4. Nonlinear Analysis

Automated derivation of amplitude equations for the
model considered consists of several steps. The program
written in Mathematica implements the method of mul-
tiple scale expansion. Input of the program specifies the
following data: the system of equations under consider-
ation F(a/ot,0/0x,w(x,t),R), which should admit trivial (zero)
basic solution; array of the phase variables w(x,t); time
t, space x variables, bifurcation parameter R, and its
critical value R; scaling for space and time variables used
in the expansion process and scaling for the phase
variables; eigenvector U of the linearized problem, and
eigenvector U' of the adjoint problem; expansion param-
eter E; critical value of wavenumber k. and (for Hopf
bifurcations) of the frequency w..

Letters

The program starts with the expansion of time and space
variables, phase variables, and the bifurcation parameter
into the series in the small parameter ¢:

t=1t,+ et + €4, + ...
X=X+ €%
W =w, + ew; + €W, + ...
R=R,+¢R, + R, + ... (4)

Here vy is a scaling of space variable x. The expansion of
x and t is effectively rewritten as expansion of the
corresponding derivatives

dlot = dlot, + alat, + “olot, + ...

alox = aldx, + € alox,

The above expansions are applied to the system of
equations, and the resulting equations in different orders
of € are produced. The linear approximation L w; = 0 is
retrieved in the first order in ¢; the program checks
whether the specified eigenvalue verifies the linear
problem at given critical values of k., w., and R.. Then it
proceeds to the second order in ¢ which has a form of
inhomogeneous linear problem

Lw, =09, ()

A solvability condition for this equation can be written in
the form g,U" = 0. It can be shown that this condition is
a linear equation for an amplitude of the perturbation,
slowly varying in time and space (at the characteristic
scales x;and t)). In most cases this equation can be reduced
to the trivial one by switching to a comoving frame that
is performed automatically. Then the program substitutes
the solution into eq 5 and solves it, trying to find a solution
orthogonal to the first-order solution (proportional to U).
This procedure is repeated until the nontrivial amplitude
equation is produces at some step.

Both models produce similar amplitude equations in
the time scale t; having the form of the dynamic Landau
equation (LE)®

dalot, = aa + flal’a (6)

In both cases we chose tension T to be a bifurcation
parameter, its critical value is denoted as T, and second-
order deviation is T,. Below are the values of the
coefficients of LE. For model 1 the following values are
found:

o' = —9G?T,/(12G + MSc)
B' = 456T ,G%(12G + MSc)

where G = A/T.. In order to check this result we set M =
0 effectively reducing model 1 to the simpler one considered
in ref 3, where the analytical expressions for the coef-
ficients o and 8 were derived. It can be easily seen that
for M = 0, formula 7 reduced to that found in ref 3.

(9) Generally, the Ginsburg—Landau equation (GLE) is produced,
but in both present models we must set the spatial modulation term,
00%aldx;2, to be zero, since ken!' corresponds to the longest possible
spatial scale of the perturbation, ke, = min Te.



Letters

For the second model (2), we find the following:
o'l = —3/4G*T,(4 + MSc)/(1 + MSc)
B" = 19T ,G*(4 + MSc)/(1 + MSg)

5. Rupture of Films

Consider dynamics of the perturbation amplitude
determined by the values of a. and . General solution of
Landau amplitude equation (6) is given by

o 1/2
o+ fa,’(1 — eza‘)) @

a(t) = aoe“t(

Film rupture corresponds to the infinite growth of the
perturbation amplitude. The rupture time is determined
as

1 a
t.==—In(1l+—— (8)
r 20 ( aozﬁ)
It can be shown that rupture is inevitable for positive

values of .

Having analytical expressions for coefficients o and j3,
one can easily make estimations of rupture times for
different values of model parameters. Here are formulas
for the rupture time:

(l—_Msc+126 [~ 3T,
' 18T,G? 152a,°T,
2(MSc + 1 3T
t"=— (2 ) In 1-———| (9
3T,G%(4 + MSc) 76a,°T,

Itis interesting to receive the above expressionsin a limit
case T, — 0, which corresponds to the negligibly small
deviation of the bifurcation parameter from its critical
value.

_ MTSc+ 12A
912a,°A°
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o T.(1 + MSc)
" 38a,°A%(4 + MSc)

The last relations enable us to analyze influence of
different parameters on the rupture time in both cases.
We assume for simplicity sake that the Schmidt number
Sc and initial amplitude ao of perturbation are fixed.
Consider model 1 with a rupture time t,'~. It can be easily
seen that film will rupture more slowly if one either adds
surfactants (M increasing) or chooses a fluid with higher
interfacial tension T or lower van der Waals attraction A.
This qualitatively corresponds to the results of numerical
simulations for this model obtained in ref 5; our estimates
(10) of rupture time give different values but the same
order of magnitude. A possible explanation of this dis-
crepancy is that numerics were made for perturbations
with the wavenumber value far from the critical one, and
therefore, these results were strongly influenced by high
nonlinearities.

For another model the influence of M on the film rupture
is weaker, and the rupture time is affected mainly by
changes of attraction coefficient or interfacial tension.
Again, the comparison of our estimates with numerical
results in ref 5 is not ideal for the above reason. For
example, for the following set of parameters

A=5, T,=30, Sc=10, M=0.1, a,=0.1

(10)

we have t/''- = 1.27, compared with t, = 1.6 in ref 5.

In conclusion, we perform derivation of amplitude
equations valid in a small vicinity of the critical points for
Turing bifurcation for two models describing dynamics of
thin liquid films with nonsoluble surfactants. Analytical
expressions for the film rupture time were obtained, and
comparison with the results of previous numerical simu-
lations shows qualitative agreement. We show that the
Marangoni effect, due to insoluble surfactants, cannot
saturate the rupture instability in a weakly nonlinear
region of parameters.
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