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Abstract

The convective Cahn–Hilliard (CCH) equation,ut + (uxx + u− u3)xx − (D/2)(u2)x = 0, has been suggested recently for the
description of several physical phenomena, including spinodal decomposition of (driven) phase separating systems in an external
field, instability of steps moving on a crystal surface, and faceting of growing, thermodynamically unstable surfaces. In this paper
the dynamics of domain walls (kinks) governed by the convective Cahn–Hilliard equation is studied by means of asymptotic and
numerical methods. A special attention is paid to the dynamics of kink pairs and triplets that play crucial role in the coarsening
(Ostwald ripening) process. For the driving parameterD < D0 = √

2/3 and large distance between the kinks,L � 1, analytical
formulas are found that describe the motion of the kink pairs and triplets. The analytical formulas are in excellent agreement
with the results of direct numerical simulations of CCH equation. They explain the logarithmically slow coarsening observed for
the kink dynamics governed by CCH equation when the distances between the kinks become large, unlike the fast coarsening
for moderate distances between the kinks at intermediate stages.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of domain walls (named also kinks) between different broken-symmetry phases plays the crucial
role in the transition from a disordered phase to an ordered phase[1] and in the development of the spatial chaos[2].
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In potential systems, characterized by a monotonically decreasing Lyapunov (free energy) functional, the evo-
lution leads to an equilibrium state with the minimum number of domain walls, since they have some excess free
energy. The dynamics of domain walls is rather different in systems without and with a conservation law[3]. In
systems without a conservation law, the typical dynamics is governed by the Allen–Cahn equation[1]. The domain
walls move towards each other and annihilate, so that the characteristic length of the domains grow with time
(coarsening). In systems with a conservation law, the evolution is typically described by the Cahn–Hilliard equation
[1]. In this case, the mutual motion of domain walls is complicated by the conservation law, and the coarsening
takes place through a collective motion of kink aggregates rather than individual kinks[3]. In the case of a (1D)
Cahn–Hilliard equation, the interaction of kinks exponentially decays with the distance between them so that the
coarsening rate is logarithmically slow[4].

If a system is not potential, the evolution does not generally lead to the state characterized by the minimum
value of the free energy. Under some conditions the final state contains a finite number of defects, i.e. some
ordered or disordered patterns are formed. The latter phenomenon takes place when the domain walls have
oscillating tails[2]. In strongly non-potential systems, e.g. like those governed by the Kuramoto–Sivashinsky
equation[5], the spatio-temporal chaos characterized by a spontaneous creation and annihilation of defects, is
developed.

Recently, a non-potential modification of the Cahn–Hilliard equation, theconvective(or driven) Cahn–Hilliard
equation(CCH),

ut + (uxx + u− u3)xx − D

2
(u2)x = 0, (1)

was suggested for the description of several physical phenomena, namely spinodal decomposition of phase sepa-
rating systems in an external field[6–8], step instability on a crystal surface[9], as well as faceting of growing,
thermodynamically unstable surfaces under non-equilibrium conditions[10–15]. A similar equation describes also
dewetting of a thin liquid film flowing down a slightly inclined plane[16,17]. The regular Cahn–Hilliard equation
corresponds to the caseD = 0, while the Kuramoto–Sivashinsky equation is obtained in the limitD → ∞ by
the transformationu → u/D [13]. It was found in[13] that the coarsening dynamics described by the convective
Cahn–Hilliard equation is strongly influenced by the asymptotic behavior of kink tails. IfD > D0 = √

2/3, the
kinks have oscillating tails, that leads to the development of ordered or disordered, spatially non-uniform struc-
tures, in accordance with the arguments given in[2] (see also[9]). ForD < D0 = √

2/3, the tails are monotonic,
and the solutions of Eq.(1) exhibit coarsening governed by the interaction between the kinks and their collective
motion.

When the characteristic distance between the kinks,L, is large, the kink dynamics can be studied analytically.
Emmott and Bray[8] considered the limitDL 	 1 and suggested some model equations for the motion of kinks.
They found that a pair of kinks (kink–antikink pair) performs a collective motion with a velocity determined byD
andL, that leads tofastcoarsening such thatL ∼ t1/2. However, direct numerical solution of Eq.(1) performed
in [13] showed that the fast coarsening regime exhibits the crossover to a logarithmically slow coarsening for
sufficiently largeL, which is typical of the standard Cahn–Hilliard equation. Watson et al.[14] explained this
crossover for the case whenD 	 1 and the productDL is arbitrary, and derived the equations of motion for
kinks by means of the asymptotic analysis. The analysis presented in[14] revealed the important role ofkink
triplets where a negative kink (“antikink”) situated in the middle of the triplet attracts two positive kinks on
its both sides, eventually leading to simultaneous annihilation of the triplet and the formation of a new positive
kink.

In the present paper, we investigate the dynamics of kinks governed by the CCH equation forarbitrary 0< D <

D0 in the case when the distances between the kinks are large,L � 1. The results of the asymptotic analysis are
justified by numerical simulations. In Section2, we discuss the individual kinks and show that the stable antikink
is unique and motionless, while the moving kinks form a two-parameter family of solutions. Sections3 and 4are
devoted to the consideration of pairs and triplets of kinks, respectively.
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2. Constant solutions and kinks

We shall start the investigation of the kink dynamics governed by Eq.(1) with the consideration of its simplest
solutions. Without loss of generality, we assumeD > 0.

First, let us note that any constantu = U0 is a solution of Eq.(1). In order to study the linear stability of this
solution, linearize Eq.(1),

u = U0 + ũ(x) eσ0t ,

and find the eigenfunctions and the eigenvalues:

ũ(x) = eikx, σ0(k) = (1 − 3U2
0)k2 − k4 − ikDU0. (2)

Obviously, the constant solutions are linearly stable if

|U0| > 1√
3
. (3)

Let us consider now traveling wave solutions,

u = U(X), X = x− vt, v = const. (4)

Substituting(4) into (1) and integrating once with respect toX, one obtains the following ordinary differential
equation:

UXXX + (U − U3)X − vU − D

2
U2 = −J, −∞ < X < ∞, (5)

whereJ is the integration constant. Eq.(5) has different kinds of solutions, e.g. periodic or quasiperiodic ones. Here
we considerheteroclinicsolutions (“domain walls” or “kinks”) that connect two critical points of the dynamical
system(5):

U = U± = − v

D
±
√( v

D

)2 + 2J

D
, (6)

J > −v2/2D. Note that in the casev = 0, U− = −U+. Depending on the boundary conditions, the heteroclinic
solutions can be of two types:
positive kinks, with

U(±∞) = U±, (7)

andnegative kinks, or antikinks, with

U(±∞) = U∓. (8)

Later on, we shall consider only the case with|U±| > 1/
√

3, i.e. when both constant solutionsU = U± are stable.
In order to investigate the asymptotics of the heteroclinic solutions atx → ±∞, linearize Eq.(5) around the

constant solutions,U = U±,

U(X) = U± + Ũ eκX, (9)

to obtain the following equation for the eigenvaluesκ:

κ3 − (3U2
± − 1)κ − (v+DU±) = 0. (10)
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Fig. 1. A diagram of the stable and unstable manifolds of stationary points of Eq.(5) and heteroclinic solutions corresponding to positive and
negative kinks.

Depending on the sign ofQ = −[(3U2± − 1)/3]3 + [(v+DU±)/2]2, two cases are possible: (i) forQ ≤ 0 all roots
of Eq.(10), κj, j = 1,2,3, are real; (ii) forQ > 0 one root is real and two other roots are complex conjugate. In the
case (ii), the kinks have oscillatory tails, and one can expect the development of ordered or disordered structures
rather than a system of kinks[2,13]. In the present paper we consider the case (i), when the system evolution is
determined by the motion of kinks.

Sinceκ1 + κ2 + κ3 = 0, the rootsκj cannot have the same sign. Taking into account that

κ1κ2κ3 = v+DU± = ±
√
v2 + 2DJ

is positive forU = U+ and negative forU = U−, one concludes that in the former case two eigenvalues are negative
and one eigenvalue is positive, while in the latter case two eigenvalues are positive and one eigenvalue is negative. In
other words, for the critical pointU = U+ (U = U−) the unstable manifoldWu(U+) (the stable manifoldWs(U−))
is one-dimensional, while the stable manifoldWs(U+) (the unstable manifoldWu(U−)) is two-dimensional.

According to its definition, the kink corresponds to a trajectory onM+ = Wu(U−) ∩Ws(U+), while the antikink
is situated onM− = Wu(U+) ∩Ws(U−), seeFig. 1. In the former case,M+ is an intersection of two two-dimensional
manifolds in a three-dimensional space, which is generic and exists in a certain region in the parameter space (v, J).
A particular kink solution can be written explicitly,

U(X) = C tanh
C√
2

(X−X0), C =
√

1 + D√
2
, X0 = const,

for v = 0, J = DC2/2, but a two-parameter family of kinks exists for certain intervals ofv andJ values. For fixed
values ofU− andU+, the velocity of the kink is calculated to be

v = −D

2
(U− + U+).

An antikink can exist only if the trajectoryWu(U+) reaches the vicinity of the pointU− exactly along the trajectory
Ws(U−) (seeFig. 1). Such event has a codimension 2 in the parameter space. Therefore, one can expect that the
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antikink exists for isolated values of (v, J). Indeed, there exists a solution1

U = −A tanh
A√
2

(X−X0), A =
√

1 − D√
2
, X0 = const, (11)

for v = 0, J = DA2/2.
Note that forv = 0,U± = ±A the roots of the cubic equation(10)are described by simple formulas,

κ1 = ∓A+ B√
2

, κ2 = ∓A− B√
2

, κ3 = ±A
√

2, (12)

whereA is defined by Eq.(11), and

B =
√

1 − 3D√
2
. (13)

All three roots are real ifD < D0 = √
2/3.

3. Antikink–kink pairs

Let us consider now the interaction of distant kinks. Since this interaction is expected to decrease exponentially
with the distance between the kinks[14], the dynamics is typically determined by the pair of the closest kinks, while
the motion of other kinks is negligible compared with the motion of this pair. In the present section, we consider
a kink pair described by ahomoclinic solution,2 U = Uh(X) (X = x− vt, v = const), of the dynamic system(5),
that satisfies the boundary condition

U(−∞) = U(+∞) = U+. (14)

Note that ifU = Uh(X) is a solution of Eq.(5), thenU = −Uh(−X) is also a solution. Therefore, it is suffi-
cient to consider the caseU+ > 0 (i.e. the case when the antikink is located to the left from the kink). Numerical
solution of Eq.(1) in the form of such antikink–kink pair at a particular moment of time is shown inFig. 2a.
The solution has been performed by means of a pseudospectral code, with time integration in Fourier space
using the Crank–Nicolson scheme for the linear operator and Adams–Bashford scheme for the nonlinear oper-
ator, with periodic boundary conditions and the initial conditions close to the antikink–kink pair. Note that the
antikink–kink pair presented inFig. 2a is moving slowly to the left with a constant speed, as shown inFig. 2b (see
below).

The homoclinic trajectoryUh(X) corresponds to the trajectoryWu(U+) that has to return to the pointU+ along
its two-dimensional stable manifold (seeFig. 1). This is a codimension 1 event, therefore in the two-dimensional
parameter space (v, J) the homoclinic trajectories should exist on a curve (or on a set of curves). Thus, antikink–kink
pairs form aone-parameterfamily, and the velocity of a pairv may be viewed a function ofJ.

We shall use a more physically meaningful parametrization of kink–antikink pairs, taking as the basic parameters
thedistance Lbetween the kink centers, i.e. between the points whereU(X) = 0. In this case, both parametersv
andJ have to be calculated as functions ofL.

1 The numerical investigation of Eq.(5) reveals the existence of other isolated heteroclinic (U+ → U−) solutions withv = 0, J < DA2/2,
which correspond to non-monotonic functionsU(X). These solutions have never been observed in the simulations of the original problem(1),
and they are apparently unstable.

2 Actually, the dynamic system(5) has many homoclinic solutions. Here we discuss a specific family of homoclinic solutions that correspond
to antikink–kink pairs.
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Fig. 2. (a) Numerical solution of Eq.(1) in the form of an antikink–kink pair (1, antikink; 2, kink), very slowly moving to the left with a
constant speed;D = 0.4. (b) Space-time diagram showing numerical solution of Eq.(1) in the form of a uniformly moving antikink–kink pair
(the distance between the kinks is less than that shown in (a)).
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In order to find these functions in the limit of largeL, we shall use the approach similar to that applied in[18]
for the analysis of the interaction between solitons and in[3] for the analysis of the interaction between kinks
governed by the Allen–Cahn equation and by standard Cahn–Hilliard equation. We shall construct the solution of
thenonlinearequation(5) as alinear superpositionof two kink solutions with a certain correction, which is caused
by the nonlinearity and has to be calculated. The solvability conditions for that correction determine the parameters
v andJ (see below).

We expect that at largeL the velocity of a kink pair is small, and for the slowly moving pair containing an

antikink,U(−∞) = U+ will be close toA =
√

1 −D/
√

2 that corresponds to a sole motionless antikink(11). In
order to match the conditionU(+∞) = U+, one has to take a kink with the parameterU+ close toA as well. Thus,
one can construct a solution as[3,18],

U(X) = U1(X) + U2(X) + A+ ũ(X), (15)

whereU1(X) is the negative kink described by(11)withX0 = 0, andU2(X) is a representative of the family of kinks
corresponding tov = 0, J = DA2/2, with the center located in the pointX = L, andũ(X) is a small correction
that includes the difference betweenU+ for a kink pair andA selected by the motionless negative kink. Unlike the
antikink, the kink cannot be presented in an analytical form. Note that the asymptotics of the kink solution for large
negativeX− L is determined by the eigenvalues(12) calculated near the critical pointU = −A. The left “tail” of
the kink is characterized by the smallest positive eigenvalue,κ2 = (A− B)/

√
2, and can be written as

U2(X) + A = u2(X) ∼ a(D) exp[κ2(X− L)], (16)

where the constanta(D) can be calculated analytically only in the limit of smallD. Using the matched asymptotic
expansions, one finds that forD 	 1

a(D) ∼ −D
√

2/2, (17)

(see[14]). In the general case, the constanta(D) is found numerically to be negative (see also[8]). The numerically
computed functiona(D) is shown inFig. 3.

It is convenient to rewrite Eq.(5) in the form

UXXX + (U − U3)X − D

2
(U2 − A2) = q+ vU, −∞ < X < ∞, (18)

whereq = −J +DA2/2, which is zero for individual kinks, is expected to be small for a kink pair.

Fig. 3. The functiona(D) found from numerical data.
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Substitute(15) into Eq.(18) and linearize the latter with respect to ˜u. According to the approach of[3,18], we
separately consider the regions around the centers of the left and the right kinks.

Near the left kink (X = O(1)) the contribution of the right kink,U2(X), is exponentially small. We can replace
the functionU2(X) + A by its asymptotic limitu2(X) and linearize Eq.(19) also with respect tou2. Taking into
account thatu2(X) satisfies the equation:

u2XXX + (1 − 3A2)u2X −DAu2 = 0,

we obtain the following equation for ˜u(X) valid in the regionX = O(1):

ũXXX + [(1 − 3U2
1)ũ]X −DU1ũ = q+ vU1 + [3(U2

1 − A2)u2]X +D(U1 + A)u2. (19)

Recall that the functionsU1(X) andU2(X) are determined by the formulas(11)withX0 = 0, and(16), respectively.
The solution of Eq.(19) is bounded if its right-hand side is orthogonal to two bounded solutions of the adjoint

problem,

ucXXX + (1 − 3U2
1)ucX +DU1u

c = 0, (20)

that can be found analytically:

uc−(X) = sinh(BX/
√

2)

cosh(AX/
√

2)
(21)

is an odd function, and

uc+(X) = cosh(BX/
√

2)

cosh(AX/
√

2)
(22)

is an even function.3 Taking into account thatU1(X) is an odd function, we obtain two equations that determinev

andq as functions ofL andD:

v

∫ +∞

−∞
dXuc−U1 + 3

∫ +∞

−∞
dXuc−[(U2

1 − A2)u2]X +D

∫ +∞

−∞
dXuc−(U1 + A)u2 = 0, (23)

q

∫ +∞

−∞
dXuc+ + 3

∫ +∞

−∞
dXuc+[(U2

1 − A2)u2]X +D

∫ +∞

−∞
dXuc+(U1 + A)u2 = 0. (24)

The integrals in(23) and (24)can be calculated analytically. Fro example, the explicit formula for the velocity
of an antikink–kink pair,v ≡ v2(D,L), can be written as

v2(D,L) = a(D)C2(D) e−κ2L, (25)

where

C2(D) = cos(βπ/2)[D
√

2 + A2(3β − 1)]√
2βπ

, (26)

and

β = B

A
=
√√

2 − 3D√
2 −D

. (27)

3 The third linearly independent solution of Eq.(20), uc0(X) = 1 +D/3(
√

2 −D) cosh2(AX/
√

2), is unbounded and not relevant.
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Fig. 4. Dependences of the coefficientsC2 andC3 onD (see formulas(25) and (39)).

The coefficientC2(D) is positive for any values ofD (seeFig. 4). In the limitD → 0,C2(D) ∼ D/2 + O(D2).
Using the relation(17)and taking into account thatκ2 ∼ D/2, one finds that in the limitD 	 1,DL � 1,

v2(D,L) ∼ −
(
D2

√
2

4

)
exp

(
−DL

2

)
,

that coincides with the result of Watson et al.[14]. In the limit D → D0 = √
2/3, C2(D) ∼ √

2/π − (D0 −
D)1/22−1/4π + O(D0 −D). As mentioned above, the constanta(D) in Eq. (28) cannot generally be found an-
alytically for an arbitraryD and has to be found numerically. We have found thata(D) < 0 for anyD < D0, and
thereforev < 0, i.e. the antikink–kink pair moves to the left (i.e. the antikink is leading). Similarly, using the trans-
formationU → −U,X → −X, one can show that the kink–antikink pair moves with the same velocity to the right
(hence again the antikink is leading).

We have verified Eq.(25) by comparing it with the results of numerical computations: (i) computation of a
heteroclinic solution of the ODE(18); and (ii) direct numerical simulation of the motion of an antikink–kink pair
by solving the original PDE(1) by means of the pseudospectral code described above. In both cases, we obtained
identical results.Fig. 5 shows the comparison between analytical (solid lines) and numerical (stars) values of the
pair velocity calculated for various values ofD. A space-time diagram showing a moving antikink–kink pair is
presented inFig. 2b.

Near the center of the right (positive) kink, one obtains the following equation:

ũXXX + [(1 − 3U2
2)ũ]X −DU2ũ = q+ vU2 + [3(U2

2 − A2)u1]X +D(U2 + A)u1, (28)

whereU2(X) is the full solution corresponding to the kink, whileu1(X) is the exponential tail of the solutionU1(X)
at largeX. It is interesting that Eq.(28) provides no additional solvability conditions. The corresponding adjoint
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Fig. 5. Comparison between the velocity of an antikink–kink pair computed by Eq.(25) (solid lines) and the velocity obtained from numerical
solution of Eq.(1) (squares, stars and crosses) for various values ofD.

problem,

ucXXX + (1 − 3U2
2)ucX +DU2u

c = 0, (29)

has no bounded solutions. Indeed, in the limitX− L → +∞ the solution can be written as

uc(X) = a1 ek1X + a2 ek2X + a3 ek3X,

wherek1,2,3 are the roots of the following characteristic equation:

k3 + (1 − 3A2)k +DA = 0. (30)

Eq. (30) has two positive roots,k1 andk2, and one negative root,k3. Thus, the bounded solution has to satisfy
two conditions,a1 = 0 anda2 = 0. However, ifuc(X) is even with respect toX− L, i.e., generally,uc(L) �= 0,
ucXX(L) �= 0, whileucX(L) = 0, one has only one fitting parameter,ucXX(L)/uc(L) (note that Eq.(29)is linear) which
is not sufficient to satisfy the two conditions. Ifuc is odd thenuc(L) = ucXX(L) = 0, ucX �= 0, and the solution is
unique up to a constant factor; therefore, one has no fitting parameters at all. Thus, generally, Eq.(29) has no
bounded solutions.

The above-mentioned asymmetry between positive and negative kinks, caused by the differences in the manifold
dimensions at infinity, and by the different dimensions of the solutions families, is rather unusual for problems of
the interaction of spatially localized objects. We are not aware of any other similar examples.

4. Kink triplets

In a multikink solution, the motion of a pair of neighboring kinks can be considered isolated until it approaches
the kink to the left (to the right) of the antikink–kink (kink–antikink) pair. In both cases a configuration appears such
that the antikink is located between the two kinks. Numerical solution of Eq.(1) in the form of a kink triplet at a
particular moment of time is shown inFig. 6a. The solution has been performed by the same pseudospectral code in
a large domain with periodic boundary conditions and the initial condition close to the kink triplet in the center and
an antikink near the boundary. InFig. 6a only the central part of the domain with the kink triplet is shown. Since the
domain is large, the antikink at the boundary does not affect the behavior of the kink triplet in the center. Because of
the exponentially decaying interaction law, the influence of the third kink becomes significant when the distancesL
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Fig. 6. (a) Numerical solution of Eq.(1) in the form of a symmetric kink triplet: 0.2, kinks; 1, antikink. The two kinks a moving with a small,
constant speed towards the central, motionless antikink;D = 0.4. (b) Space-time diagram showing numerical solution of Eq.(1) in the form of
a symmetric kink triplet in which the two kinks move towards the central antikink and annihilate (the distance between the kinks is less than
that shown in (a)).
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andL+�L between the adjacent kinks are relatively small,�L = O(1) 	 L. For the sake of simplicity, later on
we shall consider a symmetric system of kinks where the central antikink (kink # 1) is located near the pointx = 0
while the two adjacent kinks are located at the pointsx = ∓L(t) (kinks # 0 and # 2). We are interested in finding
the instantaneous velocity of the kink # 2,v3(L) = dL/dt. Due to the symmetry of the system, the kink # 0 moves
with the velocity−v3, and the kink # 1 does not move at all.

Similar to(15), in the vicinity of the central kink the solution is represented as an odd function

u = U1 + U0 + U2 + ũ ≈ −A tanh
A√
2
x− a(D) e−κ2(x+L) + a(D) eκ2(x−L) + ũ, (31)

where ũ(x) describes the distortion of the central kink, decaying at large|x|. Since the terms̃U(x) = U0(x) +
U2(x) + ũ(x) are small, one can linearize Eq.(1):

Ũt + [Ũxx + (1 − 3U2
1)Ũ]xx −D(U1Ũ)x = 0. (32)

Since the velocity of the kinks is assumed to be exponentially small, one can omit the term with the time derivative
in the leading order and to integrate Eq.(32):

Ũxxx + [(1 − 3U2
1)Ũ]x −DU1Ũ = q, (33)

where the constantq is to be found from the condition of solvability of Eq.(33)in the class of odd functions growing
as exp(κ2|x|) (but not faster) at infinity.

Eq. (33) with U1(x) = −A tanh(Ax/
√

2) is solved analytically. The general odd solution can be presented as
the sum of the general odd solution of the homogeneous equation,4

Ũh = C coshz[3 cosh(βz)(A2 tanh2 z− 1) tanhz+ β sinh(βz)(1 + 2A2 − 3A2 tanh2 z)], (34)

wherez = Ax/
√

2 andC is an arbitrary constant, and the partial solution of the inhomogeneous problem,

Ũih(z) = qF (z), (35)

whereF (z) = w(z)/ cosh2 z andw(z) can be found in explicit form in terms of hypergeometric and algebraic
functions of a new variable,ξ = tanhz. For arbitraryC andQ, the asymptotic expression for the solutionŨ(x) at
largex contains two exponentially growing terms,

Ũ(x) ∼ a1 exp(κ1x) + a2 exp(κ2x),

whereκ1 = (A+ B)/
√

2, κ2 = (A− B)/
√

2. For a solution representing the kink tails,a1 ∼ e−κ1L, a2 ∼ e−κ2L,
a1 	 a2, and therefore the coefficienta1 can be neglected in the leading order. This condition determines the relation
betweenC andQ and the final expression for̃U(x).

For largex, the obtained solutioñU(x) has the following asymptotics:

Ũ(x) ∼ q eκ2x

√
2π[A2(3 + β2) − 5 + β2]

A5β(3 − β)(9 − β2)(1 − β2) cos(πβ/2)
. (36)

Matching(36)with the known asymptotics of the kink tail,

Ũ(x) ∼ a(D) e−κ2L eκ2x,

4 The linearly independent even solutions of the homogeneous problem areŨ1 = cosh−2 z and Ũ2 = coshz[3 sinh(βz)(A2 tanh2 z−
1) tanhz+ β cosh(βz)(1 + 2A2 − 3A2 tanh2 z)]. Note that only one solution of the linearized problem,Ũ1, is bounded asz → ±∞, while
the adjoint problem(20)has two bounded solutions,(21) and (22).
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one finds

q = a(D) e−κ2L
A5β(3 − β)(9 − β2)(1 − β2) cos(πβ/2)√

2π[A2(3 + β2) − 5 + β2]
. (37)

The velocity of the kinks can now be found from the conservation of flux (see[14]). Indeed, Eq.(1) can be written
as

ut +Qx = 0, (38)

where

Q = uxxx + (u− u3)x − Du2

2
.

For a kink moving with the velocityv, u = u(X), X = x− vt, Eq. (38) gives the conservation of the quantity
Q− vu. Consider the kink # 2. Obviously, to the left of the kink centerQ = −DA2/2 + q andvu = −vA in the
leading order. The velocity of the kink actually depends on the condition for the flux at infinity. If one assumes that
the flux at infinity isQ = −DA2/2 andvu = vA (which corresponds to matching the kink amplitude to the next
remote antikink), the conservation law gives

−DA2

2
+ q+ vA = −DA2

2
− vA,

therefore,v = −q/(2A). Using(37), one finds the following expression for the velocityv ≡ v3(D,L) of the right
kink in the triplet (the left kink has the opposite velocity):

v3(D,L) = a(D)C3(D) e−κ2L, (39)

where

C3(D) = A4β(3 − β)(9 − β2)(1 − β2) cos(πβ/2)

2π
√

2[5 − β2 − A2(3 + β2)]
, (40)

β is defined in(27) anda(D) is the same as in Eq.(25) for the velocity of an antikink–kink pair. The dependence
C3(D) is shown inFig. 4. In the limitD → 0,C3(D) ∼ D/2 + O(D2), and we reproduce the result of Watson et
al. [14]:

v3(D,L) ∼ v2(D,L) ∼ −(D2
√

2/4) exp(−DL/2),

for D 	 1, DL � 1. In the limitD → D0, C3(D) ∼ 3(D0 −D)1/22−1/4π + O(D0 −D). The sign ofv3(D,L)
is negative, that corresponds to the attraction of the positive kinks to the central negative kink. The comparison
between the analytical formula(39) and the results of the numerical solution of Eq.(1) for various values ofD is
presented inFig. 7.

The attraction of two kinks to the central antikink leads to their annihilation and to the transformation of the triplet
into a new kink. The space-time diagram showing the motion and annihilation of two kinks in a triplet, obtained by
the numerical solution of Eq.(1), is presented inFig. 6b. The annihilation stage cannot be studied by means of the
asymptotic theory.

ForD > D0, the kinks have oscillatory tails, and stable stationary patterns are formed instead of kinks (see[13]).
Thus, we do not consider the kink dynamics in this region.
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Fig. 7. Comparison between the velocity of a kink–antikink–kink triplet computed by Eqs.(39) and (40)(solid lines) and the velocity obtained
from numerical solution of Eq.(1) (stars and circles), for various values ofD.

5. Conclusions

We have studied the interaction and motion of domain walls (kinks) governed by a convective Cahn–Hilliard
equation(1) that describes phase separation in driven systems. We have considered the case when the driving
parameter,D, characterizing the external field or a driving force, can take any value below the critical one,D <

D0 = √
2/3, above which the kinks have oscillatory tails and the coarsening stops[13]. We have shown that the stable

negative kink (“antikink”) is unique while the positive kinks form a two-parameter family. With the driving parameter
below this critical value and for the case when the distance between the two adjacent kinks,L, is large,L � 1, we
have derived asymptotic formulas for the interaction between the kinks. We have shown that a kink–antikink pair
moves in the direction of the antikink with a constant velocity which is a function ofL and the driving parameter
D. We have also shown that, as a result of this motion, kink–antikink–kink triplets are formed in which the two
kinks move with the same speed towards the central antikink, finally annihilating and forming a single, larger kink.
This process is the main mechanism of coarsening in a driven phase separating system described by the convective
Cahn–Hilliard equation, not only for small driving force,D 	 1 [14], but foranyD < D0 = √

2/3. Asymptotic
formulas derived for the speed of the kink motion are in excellent agreement with the results of direct numerical
simulation of Eq.(1). We have shown that, for anyD < D0 the characteristic speed decreases exponentially with
the distance between the kinks. This explains the crossover from the fast coarsening regime to the logarithmically
slow one, that was observed in numerical simulations of the CCH equation[13] and in asymptotic analysis for the
small driving force,D 	 1 [14]. Note that the dependence of the kink speed on the distance between the kinks in
CCH equation is different from the case of the standard Cahn–Hilliard equation (Eq.(1) with D = 0) where the
characteristic kink speed decreases asL−1 exp (−const· L). Our results show that in any quasi-one-dimensional,
driven phase-separating system, with the driving force less than critical,D < D0, the rate of the domain coarsening
at sufficiently late stages, whenL � 1, will be logarithmically slow.
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