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In this letter we investigate the rupture instability of thin liquid films by means of a bifurcation analysis in
the vicinity of theshort-scaleinstability threshold. The rupture time estimate obtained in closed form as a
function of the relevant dimensionless groups is in striking agreement with the results of the numerical
simulations of the original nonlinear evolution equations. This suggests that the weakly nonlinear theory
adequately captures the underlying physics of the instability. When antagonisticsattractive/repulsived molecu-
lar forces are considered, nonlinear saturation of the instability becomes possible. We show that the stability
boundaries are determined by the van der Waals potential alone.
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It is well known that a liquid film on a planar solid surface
may become unstable due to long-range molecular forces.
The forces originating from van der Waals attractionsf1g
accelerate thinning in regions of film depression leading to
film rupture and subsequent dewettingf2g. On the other
hand, electrical double layers on the solid surface may give
rise to intermolecular repulsions stabilizing thin films against
rupturef3g.

In recent years, much effort has been put into theoretical
modeling the dewetting phenomenaf4–12g. A nonlinear
theory of the film evolution based on the long-wave nature of
the response was first posed in Ref.f4g. This approach,
which has already been considered for different situations
f5g, yields nonlinear partial differential equations that de-
scribes the evolution of the interface shape, surfactant con-
centration, and others. Linear stability analysis is routinely
applied to predict the onset of the instability and the charac-
teristic wavelength, but the rupture time estimate obtained
from the linear theory turns out to be rather poor: It under-
estimates the rupture time due to the highly nonlinear nature
of the response. The most common and straightforward ap-
proach is to solve the evolution equations numerically
f6,7,10–14g. The obvious disadvantage of the numerical
simulation is that for a complex problem that involves many
parameters, full parametric study of the rupture is quite
elaborate.

A bifurcation technique was first applied in Ref.f8g to
arrive at the nonlinear estimate for the rupture time in the
vicinity of a steady bifurcation point. It was demonstrated
that nonlinear terms owing to van der Waals attractions con-
tribute to rapid acceleration of the rupture beyond the linear
regime. Analysis of the nonlinear evolution of small distur-
bances leads to a dynamic Landau equation for the perturba-
tion amplitude. The closed-form solution of the amplitude
equation provides a time for “blowup” of the initial small-
amplitude disturbance that was proposed to be a good esti-
mate of the nonlinear rupture time. In particular, it was dem-
onstrated that the ratio of the linear and the nonlinear

estimates increases as lne−1 as criticality e→0. The ap-
proach has never been given enough attention perhaps be-
cause the analysis involves rather tedious algebra and can
only be done “by hand” for some simple cases. It has been
demonstrated in Ref.f9g that the derivation of the amplitude
equation can be automatized by using a previously devel-
oped symbolic algorithm for bifurcation analysisf15g. Al-
though the closed-form nonlinear estimate of the rupture
time of the thin film in presence of insoluble surfactant was
derived in Ref.f9g, the lack of parametric study of the prob-
lem by simulations did not allow a proper comparison of the
two approaches. Recently, an extensive numerical study of
the thin film rupture driven by van der Waals attractive
forces in the presence of insoluble surfactant and hydrody-
namic slip was reported in Ref.f10g. We have developed a
generalized theory of thin-film rupture for an arbitrary inter-
molecular potential; further, we compare the rupture time
estimate from our theory with the results of simulations by
Ref. f10g for the purely attractive potential and come up with
some predictions for the competingsattractive/repulsived po-
tential.

We consider a model describing the evolution of a thin
liquid film a solid substrate subject to a van der Waals force
in the presence of a slip and insoluble surfactant. The dimen-
sionless film thicknessh and surfactant concentrationG are
governed by a system of coupled evolution equations derived
in the long-wave approximationf10g,
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Fsx,td = − wshd + Chxx

and whereM is a Marangoni number,P is a Peclet number,
b is a Navier slip coefficient,C is a surface tension param-
eter, andw=s]DG/]hd is the van der Waals potentialsall*Electronic address: lisha@tx.technion.ac.il
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dimensionlessd. For nonslipping filmssb=0d Eqs.s1d ands2d
are equivalent to those in Ref.f7g.

The linear stability analysis of the uniform stationary state
u0=hh0,G0j results in a critical value of the wave number
corresponding to a stationary bifurcation pointkc
=f−w8sh0d /Cg1/2. Following a standard procedure, we choose
C as a bifurcation parameter. In a bounded domain, 0,x
,L, the basic solutionu0 changes stabilitysbecomes spin-
odally unstabled with k=kc and when C,Cc=
−w8sh0dL2/4p2, whereCc correspond to a steady bifurcation
point.

To investigate the nonlinear problem in the vicinity of the
bifurcation point, we expand the bifurcation parameter asC
=Cc+e2C2+. . ., where e is a small criticality, introduce a
slow time scale suggested by the linear theory,t=e2t, and
seek the solution in power series ofe as u=u0+eu1+. . ..
Substitution of this expansion into the systems1d and s2d to
the first order ine yields u1=fAstdeikcx+c.c.gU, where U
=h1,0j is a solution of the linearized zero-eigenvalue prob-
lem. The complex amplitudeA satisfies the dynamic Landau
equation which is determined toOse3d of the perturbation
theory:

]A

]t
= aA + kuAu2A, s3d

where the linear coefficienta and the Landau coefficientk
are given by

a = − dkc
4C2, k =

d

6Cc
sw92 + 3w8w-d, s4d

respectively, and

d =
h0

2f4sh0 + 3bd + h0sh0 + 4bdug
12f1 + sh0 + bdug

, u = MPG0.

The closed-form solution of the amplitude Eq.s3d can be
easily obtained given the initial value of the amplitudeA0
=As0d. The blowup time, corresponding to the infinite
growth of the amplitudeA and providing a nonlinear esti-
mate of the rupture timesin the original time scaled, in the
vicinity of the bifurcation point, asC2→0 is determined
solely by the cubic coefficient

trup < s2A0
2kd−1, s5d

whereA0 is now Osed. An important observation is that de-
spite the complicated nature of the original evolution equa-
tions, the structure of the cubic coefficientk in Eq. s4d is
very simple: Terms in brackets contain only derivatives of
the intermolecular potentialw, and a factord /Cc incorporates
the dependence on the rest of parameters. Sinced.0, it is
readily seen from Eq.s4d that for purely attractive potential,
k is always positive and the rupture is inevitable. For the
most commonly encountered attractive potentialw=A /hc,
with c=3,4 sunretarded and retarded case, respectivelyd, we
calculate the rupture time from Eq.s5d and compare to the
results of numerical simulations of the original evolution
Eqs. s1d and s2d reported in Ref.f10g. A=A* /6prn2h*

c−2 is
the scaled Hamaker constant withh* being the mean film

thickness shere and thereafter dimensional quantities are
marked with *d. Typical evolution of the film thickness in
numerical simulations shows an accelerated thinning of the
film in the depressed region due to the initial disturbance at
some unstable wavelengthl.2p /kc with a subsequent film
rupturef5,7g. This scenario suggests that the acceleration of
the film rupture could be adequately described by the cubic
nonlinearity in the amplitude Eq.s3d, leading to a blowup in
a finite timefEq. s5dg.

Figure 1 shows the dependence oftrup on b estimated
from Eq. s5d and that from the simulation resultsf10g sthe
insetd for two distinct values ofA. It is readily seen that
there is a very close agreement between the two. Since the
numerical simulations refer to the fastest growing mode, the
amplitude of the initial perturbation chosen heresA0

=0.106d is different than that used in Ref.f10g sA0=0.01d.
Nevertheless, a very close agreement between our theory
swith the fixed value ofA0d and the numerical simulations
upon varying other parameterssFigs. 2 and 3d validates un-
equivocally that the near-critical theory can be adequately
applied to model rupture far from the instability threshold
f17g. An obvious advantage of the present analysis over the

FIG. 1. Variation of rupture time vsb with A0=0.106,h0=1,
C=1, M=1, P=100,G0=0.5,c=3, andA=1 s—d, A=2 s---d. The
inset shows analogous results of the numerical simulationsf16g
sAunre corresponds to the unretarded potential withc=3d.

FIG. 2. Variation of rupture time withb for A0=0.106,A=1,
and the same values of other parameters as in Fig. 1 except we vary
M: M=1 s—d, M=100s---d. The inset shows analogous results of
the numerical simulationsf16g.
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numerical simulation is that the simple closed-form expres-
sion for the nonlinear rupture time is available for a general
van der Waals potential.

When the antagonistic attractive/repulsive intermolecular
interactions are present, nonlinear saturation of the rupture
instability is possible ask may change signssupercritical
bifurcationd. Let us consider the general representation of the
antagonistic van der Waals potentialf11,12g

wshd =
A
hc −

B
hd − sSp/lpdexps− h/lpd, s6d

where A is defined as before,B=B* /rn2h*
d−2, Sp

=Sp*
h*

2/rn2, and lp= lp*
/h* . It follows from Eq. s4d that

the stationary nonruptured solution with amplitudeA
=s−a /kd1/2 is stable if

dg1 + Hg2 , c, o
i,j ;

o
i+jø2

aijg1
ig2

j , 0, s7d

where the first inequality is imposed by the linear theory,
g1=Bh0

c−d/A, g2=sSp/ lpdh0
ce−H /A, H=h0/ lp, and aij are

some polynomial functions ofc, d, andH only.
When the interplay between algebraic potentials is con-

sideredsg2=0d, the nonlinear stability region is defined by
g1 alone. For exponentssc,dd=s3,4d srepulsive retarded van
der Waals forced the film is stable if 0.51,g1,0.73. For the
exponentss3, 9d sshort-range Born repulsiond the stability
window is shifted to lower values ofg1 and the film is stable
whenever 0.066,g1,0.30. For instance, using the values of
the Hamaker constants measured for a polystyrene film on
oxidized Si wafers withA* =2.2310−20 J and B* =5.04
310−75 J m6 f13g the nonlinear analysis predicts a stable
film thickness of h0<2 nm sg1=0.068d, while the linear
theory results in 1.56 nm and the equilibrium thickness de-
termined from the minimum ofDG is only 1.3 nmf13g. For
thicker films, g1 is rapidly decreasing ash0

−6, e.g., g1
<0.00125 forh0=3.9 nm. Although, a qualitative difference
in the morphology of dewetting in Ref.f13g was observed
for thicker films s3.9 nm vs 4.9 nmd, we speculate that the

qualitative change is due to approach to the nonlinear stabil-
ity boundary ash* approaches the thickness of 2 nm.

When the interplay between algebraic and exponential po-
tentials is consideredsg1=0d, the nonlinear stability diagram
can be defined in terms ofg2 andH as in Fig. 4. The dashed
lines correspond to the boundary of linear stability, while the
regions of nonlinear stability corresponding tok,0 are
shown in graysiii and ivd. Note that, if the long-range attrac-
tion is combined with the shorter-range repulsionsA.0,
Sp.0d, the spinodally unstable region is under the dashed
curvesregion ii in Fig. 4d, and nonlinear saturation occurs for
H*4.5 and small values ofg2 sregion ivd. In the opposite
case sA,0, Sp,0d, the spinodally unstable region lies
above the dashed curvesregion id and stabilization occurs for
thinner films,H&4, and moderate values ofg2 sregion iiid.

FIG. 5. sColor onlined Stability diagram for a general van der
Waals potentials6d. The regions right to the dashed curves are spin-
odally unstable and the regions between the solid curves correspond
to stationary nonruptured state. Black curves correspond toA*

=3.0310−20 J, B* =5.04310−75 J m6, and lp*
=0.6 nm snonlinear

stability regions are shown in grayd. The color curves correspond to
the same values of the parameters exceptlp*

=0.4 nmsblue curvesd
andA=1.4310−20 J sred curvesd.

FIG. 3. Variation of rupture time withb for A0=0.106,A=1,
and the same values of other parameters as in Fig. 1 except now we
vary C: C=1 s—d; C=0.1 s---d. The inset shows analogous results of
the numerical simulationsf16g.

FIG. 4. sColor onlined Stability diagram for an antagonistic
exponential/algebraic potentialsg1=0d in plane of parametersg2

=sSp/ lpdh0
ce−h0/lp/A andH=h0/ lp. The dashed curve corresponds to

marginal stability boundary withc=3. The regions of stationary
nonruptured states are shown in gray. Colored curves show the de-
pendenceg2 vs H for varying hydrophobicity of the substrate from
hydrophilic sblue curved to hydrophobicsred curved using param-
eters fromf12g.
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For instance, for aqueous films on Si substrates withc=3,
A* =−1.41310−20 J, andlp*

=0.6 nmf12g, we plot g2 vs H
in Fig. 4 scolor curvesd for different values ofSp*

varying
from −0.61 mJ/m2 sblued to −8.5 mJ/m2 sredd due to in-
creasing hydrophobicity of the substratef12g. It is evident
from Fig. 4 that the emergence of nonruptured ultrathin films
is possible on nonhydrophilic substrates as the color curves
cross regionsiii d, while on hydrophilic substratessthe blue
curved the film of any thickness is stable, in accord with Ref.
f12g.

Even more interesting is the behavior for competing
short-range algebraic and exponential potentials. In this case,
g1,g2Þ0 and as they both vary withh0 we chose to depict
the stability diagram in terms of dimensional quantities,Sp*
andh* as in Fig. 5. It is evident that stabilization is possible
for a wide range of film thicknesses,h* . When the magnitude
of the exponential repulsion is small, the steady nonruptured
state is only possible for ultrathin films; for moderate values
of Sp*

the band of stable solutions widens. For instance,

whenSp*
=1.1 mJ/m2, with parameters corresponding to the

red curve in Fig. 5, nonlinear theory predicts that the film is
stable below a thickness of,4 nm, whereas linear stability
provides a value of,2.2 nm.

In conclusion, we have developed a nonlinear theory for
the rupture of a thin liquid film subject to a general van der
Waals potential. The comparison between the prediction of
the weakly nonlinear analysis and the results of numerical
simulations is provided; the close agreement between the
nonlinear rupture time estimate found from the near-critical
theory and the simulation was found. When an antagonistic
potential is considered, the saturation of the small-amplitude-
initial perturbations beyond the instability threshold is pos-
sible, while the stability boundary is determined solely by
the intermolecular potential.

We thank Professor A. A. Nepomnyashchy and Dr. A. A.
Golovin for helpful discussions.

f1g B. V. Deryagin, Colloid J. USSR10, 25 s1955d; A. Sheludko,
Adv. Colloid Interface Sci.1, 391 s1967d.

f2g A. Vrij, Discuss. Faraday Soc.42, 43 s1966d; E. Ruckenstein
and R. K. Jain, J. Chem. Soc., Faraday Trans. 242, 23 s1974d.

f3g J. T. G. Overbeek, J. Chem. Phys.64, 1178s1960d.
f4g M. B. Williams and S. H. Davis, J. Colloid Interface Sci.90,

220 s1982d.
f5g A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys.69,

931 s1997d.
f6g J. P. Burelbach, S. G. Bankoff, and S. H. Davis, J. Fluid Mech.

195, 463s1988d; R. V. Craster and O. K. Matar,ibid. 425, 235
s2000d.

f7g A. De Wit, D. Gallez, and C. I. Christov, Phys. Fluids6, 3256
s1994d; O. E. Jensen and J. B. Grotberg, J. Fluid Mech.240,
259 s1992d.

f8g T. Erneux and S. H. Davis, Phys. Fluids A5, 1117s1993d.
f9g B. Y. Rubinstein and A. M. Leshansky, Langmuir16, 2049

s2000d; B. Y. Rubinstein and S. G. Bankoff,ibid. 17, 1306
s2001d.

f10g Y. L. Zhang, R. V. Craster, and O. K. Matar, J. Colloid Inter-
face Sci. 264, 160 s2003d.

f11g R. Konnur, K. Kargupta, and A. Sharma, Phys. Rev. Lett.84,

931 s2000d; A. Sharma, Eur. Phys. J. E12, 397 s2003d.
f12g K. Kargupta and A. Sharma, Phys. Rev. Lett.86, 4536s2001d.
f13g G. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R.

Merke, and R. Blossey, Nat. Mater.2, 59 s2003d.
f14g R. Seemann, S. Herminghaus, and K. Jacobs, Phys. Rev. Lett.

86, 5534s2001d.
f15g B. Y. Rubinstein and L. M. Pismen, Int. J. Bifurcation Chaos

Appl. Sci. Eng. 9, 983 s1999d.
f16g Reprinted from Y. L. Zhang, R. V. Craster, and O. K. Matar, J.

Colloid Interface Sci.264, 167 s2003d, with permission from
Elsevier.

f17g The Galerkin method can be applied for derivation of the am-
plitude equation for the “most dangerous” linear mode. The
resulting amplitude equation is the same as Eq.s3d with a
given by the linear stability andk that differs from the near-
critical expression Eq.s4d. The preliminary analysis shows that
in case with no surfactant, the nonlinear rupture time estimate
is in excellent agreement with results of numerical simulations
f10g for the same value of the initial amplitude A0. The theory
of the nonlinear rupture far from the instability threshold is a
subject of a separate paper.

A. M. LESHANSKY AND B. Y. RUBINSTEIN PHYSICAL REVIEW E71, 040601sRd s2005d

RAPID COMMUNICATIONS

040601-4


