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Nonlinear rupture of thin liquid films on solid surfaces
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In this letter we investigate the rupture instability of thin liquid films by means of a bifurcation analysis in
the vicinity of the short-scaleinstability threshold. The rupture time estimate obtained in closed form as a
function of the relevant dimensionless groups is in striking agreement with the results of the numerical
simulations of the original nonlinear evolution equations. This suggests that the weakly nonlinear theory
adequately captures the underlying physics of the instability. When antagdatstactive/repulsivemolecu-
lar forces are considered, nonlinear saturation of the instability becomes possible. We show that the stability
boundaries are determined by the van der Waals potential alone.
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It is well known that a liquid film on a planar solid surface estimates increases asdrt as criticality e—0. The ap-
may become unstable due to long-range molecular forcegroach has never been given enough attention perhaps be-
The forces originating from van der Waals attractigd$ cause the analysis involves rather tedious algebra and can
accelerate thinning in regions of film depression leading tanly be done “by hand” for some simple cases. It has been
film rupture and subsequent dewettifg]. On the other demonstrated in Ref9] that the derivation of the amplitude
hand, electrical double layers on the solid surface may givgquation can be automatized by using a previously devel-
rise to intermolecular repulsions stabilizing thin films againstoped symbolic algorithm for bifurcation analydis5]. Al-
rupture[3]. _ _ though the closed-form nonlinear estimate of the rupture

In recent years, much effort has been put into theoreticalime of the thin film in presence of insoluble surfactant was
modeling the dewetting phenomend-12. A nonlinear  gerjved in Ref[9], the lack of parametric study of the prob-
theory of the film evo!utlon baseq on the Iong-wave nature ofgm by simulations did not allow a proper comparison of the
the response was first posed in RB4]. This approach, 1o approaches. Recently, an extensive numerical study of
which has already been considered for different situationgne thin film rupture driven by van der Waals attractive
[5] yields nonlinear partial differential equations that de-forces in the presence of insoluble surfactant and hydrody-
scribes the evolution of the interface shape, surfactant coramic slip was reported in Ref10]. We have developed a
centration, and others. Linear stability analysis is routinelygeneralized theory of thin-film rupture for an arbitrary inter-
applied to predict the onset of the instability and the characmglecular potential; further, we compare the rupture time
teristic wavelength, but the rupture time estimate obtainegstimate from our theory with the results of simulations by
from the linear theory turns out to be rather poor: It under-pet [10] for the purely attractive potential and come up with
estimates the rupture time due to the highly npnllnear naturgsme predictions for the competitittractive/repulsiviepo-
of the response. The most common and straightforward apantial.
proach is to solve the evolution equations numerically e consider a model describing the evolution of a thin
[6,7,10-14. The obvious disadvantage of the numericaljiqid film a solid substrate subject to a van der Waals force
simulation is that for a complex problem that involves manyin the presence of a slip and insoluble surfactant. The dimen-

parameters, full parametric study of the rupture is quitesjgniess film thicknesh and surfactant concentratidh are

elaborate. _ _ o governed by a system of coupled evolution equations derived
A bifurcation te_chnlque was first applied in R@] t_o in the long-wave approximatiofL0],

arrive at the nonlinear estimate for the rupture time in the

vicinity of a steady bifurcation point. It was demonstrated h ,(h

that nonlinear terms owing to van der Waals attractions con- hy=| MI'vh 2 +B| - Fh 3 B (1)

tribute to rapid acceleration of the rupture beyond the linear X

regime. Analysis of the nonlinear evolution of small distur-

bances leads to a dynamic Landau equation for the perturba- T, = D + [MFFX(B’f h) - foh<b + ﬂ)} , 2)

tion amplitude. The closed-form solution of the amplitude P 2

equation provides a time for “blowup” of the initial small-

amplitude disturbance that was proposed to be a good esiiuith

mate of the nonlinear rupture time. In particular, it was dem-

onstrated that the ratio of the linear and the nonlinear

and whereM is a Marangoni numbef? is a Peclet number,
B is a Navier slip coefficient{ is a surface tension param-
*Electronic address: lisha@tx.technion.ac.il eter, andp=(JAG/¢oh) is the van der Waals potentigall

X

F(x,1) = = @(h) + Chyy
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dimensionless For nonslipping filmg=0) Egs.(1) and(2)
are equivalent to those in Réf7].

The linear stability analysis of the uniform stationary state

ug={hg,I'o} results in a critical value of the wave number
corresponding to a stationary bifurcation poiri;

=[—-¢'(hy)/C]*2. Following a standard procedure, we choose

C as a bifurcation parameter. In a bounded domain,x0
< L, the basic solutioni, changes stabilitfybecomes spin-
odally unstablg with k=k. and when (C<(C.=
—¢'(hg) £/ 472, whereC, correspond to a steady bifurcation
point.

To investigate the nonlinear problem in the vicinity of the
bifurcation point, we expand the bifurcation parametetas
=C.+€C,+..., Where € is a small criticality, introduce a
slow time scale suggested by the linear theoryg’t, and
seek the solution in power series efas u=ug+eu,+....
Substitution of this expansion into the systéim and(2) to
the first order ine yields u;=[A(ne&**+c.c]U, where U
={1,0} is a solution of the linearized zero-eigenvalue prob-
lem. The complex amplituda satisfies the dynamic Landau
equation which is determined tO©(e) of the perturbation
theory:

A aA+ k|APPA, (3)
aTr
where the linear coefficienk and the Landau coefficient
are given by

o
a’:—ékéCZ, K:E(QDHZ-'- 3(P/(Pm), (4)
C

respectively, and

_ h¥[4(hy+ 3B) + hy(hy + 4B) 0]
B 121 +(ho + ) 6]

The closed-form solution of the amplitude E§) can be
easily obtained given the initial value of the amplitudg
=A(0). The blowup time, corresponding to the infinite
growth of the amplitudeA and providing a nonlinear esti-
mate of the rupture timéin the original time scalg in the
vicinity of the bifurcation point, a€,—0 is determined
solely by the cubic coefficient

tryp = (ZASK)_l’ (5)
whereA, is now O(e). An important observation is that de-

0= MPIL,.

spite the complicated nature of the original evolution equa-

tions, the structure of the cubic coefficientin Eq. (4) is
very simple: Terms in brackets contain only derivatives of
the intermolecular potential, and a factors/C. incorporates
the dependence on the rest of parameters. She8, it is
readily seen from Eq4) that for purely attractive potential,

k is always positive and the rupture is inevitable. For the

most commonly encountered attractive potentiad. A/h,
with c=3,4 (unretarded and retarded case, respectjyearg
calculate the rupture time from E¢) and compare to the
results of numerical simulations of the original evolution
Egs.(1) and (2) reported in Ref[10]. A=A./6mp1?hS 2 is
the scaled Hamaker constant with being the mean film
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FIG. 1. Variation of rupture time v@ with Ag=0.106,hy=1,
C=1, M=1,P=100,I'y=0.5,c=3, andA=1 (—), A=2 (---). The
inset shows analogous results of the numerical simulatjd6$
(Aunre corresponds to the unretarded potential vath3).

thickness (here and thereafter dimensional quantities are
marked with «). Typical evolution of the film thickness in
numerical simulations shows an accelerated thinning of the
film in the depressed region due to the initial disturbance at
some unstable wavelengih> 27/k. with a subsequent film
rupture[5,7]. This scenario suggests that the acceleration of
the film rupture could be adequately described by the cubic
nonlinearity in the amplitude E¢3), leading to a blowup in

a finite time[Eq. (5)].

Figure 1 shows the dependence tgf, on B estimated
from Eg. (5) and that from the simulation resulf40] (the
insed for two distinct values ofA. It is readily seen that
there is a very close agreement between the two. Since the
numerical simulations refer to the fastest growing mode, the
amplitude of the initial perturbation chosen hefé,
=0.1006 is different than that used in Reff10] (Ag=0.01).
Nevertheless, a very close agreement between our theory
(with the fixed value ofA;) and the numerical simulations
upon varying other paramete(Bigs. 2 and B validates un-
equivocally that the near-critical theory can be adequately
applied to model rupture far from the instability threshold
[17]. An obvious advantage of the present analysis over the
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FIG. 2. Variation of rupture time with3 for Ag=0.106, 4=1,
and the same values of other parameters as in Fig. 1 except we vary

M: M=1(—), M=100(---). The inset shows analogous results of
the numerical simulationfsl6].
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FIG. 3. Variation of rupture time wittg for Ag=0.106, A=1, exponential/algebraic potenti@ly;=0) in plane of parametery,

- ~hol _
and the same values of other parameters as in Fig. 1 except now we Sp/_l p)hge Ol.p./A andH_hO/l".‘ The dashed curve corresp_onds to
varyC: C=1 (—); C=0.1 (). The inset shows analogous results of marginal stability boundary witlt=3. The regions of stationary
the numerical si’mulationBLG] nonruptured states are shown in gray. Colored curves show the de-

pendencey, vs H for varying hydrophobicity of the substrate from

] ] o ] hydrophilic (blue curve to hydrophobic(red curve using param-
numerical simulation is that the simple closed-form expresxziers from[12].

sion for the nonlinear rupture time is available for a general

van der Waals potential. _ o qualitative change is due to approach to the nonlinear stabil-
When the antagonistic attractive/repulsive intermoleculaity boundary ash. approaches the thickness of 2 nm.

interactions are present, nonlinear saturation of the rupture \wnhen the interplay between algebraic and exponential po-

instability is possible asc may change sigrisupercritical tentials is consideretly,=0), the nonlinear stability diagram

bifurcation. Let us consider the general representation of than be defined in terms oh andH as in Fig. 4. The dashed

antagonistic van der Waals potentjall,12] lines correspond to the boundary of linear stability, while the
A B regions of nonlinear stability corresponding <0 are
o(h) = — = — — (Sl yexp(= hil ), (6) shown in gray(iii and iv). Note that, if the long-range attrac-
h® h tion is combined with the shorter-range repulsiofn >0,

$,>0), the spinodally unstable region is under the dashed
curve(region ii in Fig. 4, and nonlinear saturation occurs for
H=4.5 and small values of, (region V). In the opposite
case (A<0, S,<0), the spinodally unstable region lies
above the dashed cur¢egion i) and stabilization occurs for
thinner films,H =<4, and moderate values % (region iii).

where A is defined as before, 5=B./pr*h%?
=S,,h/pr?, and I,=I, /h.. It follows from Eq. (4) that
the stationary nonruptured solution with amplitude
=(-al k)2 s stable if

dy+Hy,<c, X 2 any<o, (7)

ij; i+j=2

where the first inequality is imposed by the linear theory, 6
1=BhSA, y,=(S/Iphie™ A, H=hy/l, and a; are
some polynomial functions o, d, andH only.

When the interplay between algebraic potentials is con-
sidered(y,=0), the nonlinear stability region is defined by
v, alone. For exponenig,d)=(3,4) (repulsive retarded van
der Waals forcgthe film is stable if 0.5% y;<0.73. For the
exponents(3, 9) (short-range Born repulsiorthe stability
window is shifted to lower values of; and the film is stable
whenever 0.066 y; <0.30. For instance, using the values of -2
the Hamaker constants measured for a polystyrene film on
oxidized Si wafers with.A.=2.2x102°J and B.=5.04
>.< 10_75.‘] P [13] the nonlinear analysis predlcts a stable FIG. 5. (Color onling Stability diagram for a general van der
film thickness ,Of ho~2 nm (7,=0.069 g ,Wh'le th? linear Waals potential6). The regions right to the dashed curves are spin-
theory results in 1.56 nm and the equilibrium thickness deqgajly unstable and the regions between the solid curves correspond
termined from the minimum oAG is only 1.3 nm[13]. For ¢ stationary nonruptured state. Black curves correspond.to
thicker films, y; is rapidly decreasing a$;,’ e.g. y1  =3.0x1020J, B.=5.04x 10753 nf, and I, =0.6 nm (nonlinear
~0.00125 forhy=3.9 nm. Although, a qualitative difference stability regions are shown in grayrhe color curves correspond to
in the morphology of dewetting in Ref13] was observed the same values of the parameters extgpt0.4 nm(blue curvey
for thicker films (3.9 nm vs 4.9 ni) we speculate that the andA=1.4x10"2°J (red curves

2 3 4 5 6
film thickness, h, (nm)
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For instance, for aqueous films on Si substrates w3, when§, =1.1 mJ/n, with parameters corresponding to the
A.=-1.41X10"%°], andl, =0.6 nm[12], we ploty, vsH  red curve in Fig. 5, nonlinear theory predicts that the film is
in Fig. 4 (color curves for different values ofS,, varying  stable below a thickness of4 nm, whereas linear stability
from —0.61 mJ/r (blug) to 8.5 mJ/M (red due to in-  provides a value of2.2 nm.

creasing hydrophobicity of the substrdte2]. It is evident In conclusion, we have developed a nonlinear theory for
from Fig. 4 that the emergence of nonruptured ultrathin filmsy, o rupture of a thin liquid film subject to a general van der

is possible on nonhydrophilic substrates as the color curv : ; o
cross regiorii), while on hydrophilic substrateghe blue SNaals potential. The comparison between the prediction of

curve the film of any thickness is stable, in accord with Ref. the We‘?""y qonlinegr analysis and the results of numerical
[12]. S|mglat|ons is proylded; the close agreement betwee_n. the
Even more interesting is the behavior for competinghonlinear rupture time estimate found from the near-critical
short-range algebraic and exponential potentials. In this cas#eory and the simulation was found. When an antagonistic
71,7 #0 and as they both vary with, we chose to depict potential is considered, the saturation of the small-amplitude-
the stability diagram in terms of dimensional quantiti§g, initial perturbations beyond the instability threshold is pos-
andh. as in Fig. 5. It is evident that stabilization is possible sible, while the stability boundary is determined solely by
for a wide range of film thicknessds,. When the magnitude the intermolecular potential.
of the exponential repulsion is small, the steady nonruptured
state is only possible for ultrathin films; for moderate values e thank Professor A. A. Nepomnyashchy and Dr. A. A.
of S, the band of stable solutions widens. For instance Golovin for helpful discussions.
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