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Some pattern formation processes on single-crystal catalytic surfaces involve transitions between
alternative surface phases coupled with oscillatory reaction dynamics. We describe a two-tier
symmetry-breaking model of this process, based on nanoscale boundary dynamics interacting with
oscillations of adsorbate coverage on microscale. The surface phase distribution oscillates together
with adsorbate coverage, and, in addition, undergoes a slow coarsening process due to the curvature

dependence of the drift velocity of interphase

boundaries. The coarsening is studied both

statistically, assuming a circular shape of islands of the minority phase, and through detailed
Lagrangian modeling of boundary dynamics. Direct simulation of boundary dynamics allows us to
take into account processes of surface reconstruction, leading to self-induced surface roughening.
As a result, the surface becomes inhomogeneous, and the coarsening process is arrested way before
the thermodynamic limit is reached, leaving a chaotic distribution of surface phase$99®
American Institute of Physic§S1054-150(09)01101-5

Catalytic reactions are often accompanied by structural
changes of the surface. These structural changes affect, in
their turn, the reaction kinetics. This creates a feedback
mechanism leading to complicated spatio-temporal dy-
namics. In this article we propose a mechanism of pat-
tern formation rooted in interaction between chemical re-
actions and phase transitions on a catalytic surface, and
operating on two widely separated length scales. On the
microscopic (nanoscale level, the competition between
surface phases is governed by the local level of rapidly
diffusing adsorbed species. On the macroscopi@micro-
scalg level, the balance between alternative states of the
surface coverage depends on the area occupied by alter-
native surface phases. The surface phase distribution os-
cillates together with adsorbate coverage, and, in addi-
tion, undergoes a slow coarsening process due to the
curvature dependence of the drift velocity of interphase
boundaries. The coarsening is studied both statistically,
assuming circular shape of islands of the minority phase,
and through detailed modeling of boundary dynamics. A
special algorithm developed for direct simulation of
boundary dynamics allows to take into account processes
of surface reconstruction, leading to self-induced surface
roughening. As a result, the surface becomes inhomoge-
neous, and the system remains “frozen” in a state of
spatial chaos.

I. INTRODUCTION

oxidation on single crystal Pt surfack$The mechanism of
rate oscillations and pattern formation is based on adsorbate-
induced surface phase transitions that are controlled by criti-
cal adsorbate coverages, i.e., thg 1.=1X 2 transition in

the case of F110) and the X1= hex phase transition in
the case of R100).1~* The phase transition affects the reac-
tion rate mainly through the variation of the oxygen sticking
coefficient. In this way, it has been incorporated in the ki-
netic model of CO oxidation on Bt10) which includes the
fraction of the surface occupied by one of the alternate
phases as one of dynamic variables.

Although the model contains three dynamic variables, it
turned out to be qualitatively equivalent to a two-variable
model, and can be mapped on a standard FitzHugh—Nagumo
(FN) systen® In a simplified model, the oxygen coverage is
slaved to the CO coverage which plays the role of a “fast
activator.” At a fixed surface phase composition, two alter-
native stationary states may be attained; one with a high CO
coverage that blocks the oxygen access and thereby stifles
the reaction, and another with a low CO coverage and higher
reaction rate. This bistability phenomenon is common for
bimolecular reactions with Langmuir—Hinshelwood kinetics.
The domains with prevailing alternative stationary states
evolve dynamically due to a relatively slow surface phase
transition, so that the surface variable plays the role of a
“slow inhibitor.”

The surface phase transition acts in such a way that the
fraction of the 1< 1 phase increases on a surface patch with
a high CO coverage, leading to an increaseda@sorption
rate and eventually to a transition to the alternate state, and

Catalytic reactions are often accompanied by deep revice versa. In a lumped system, this leads to relaxation os-
structuring of the active surface. This may produce an autceillations, and in a spatially extended system, to propagation
catalytic effect due to enhanced activity of a surface phasef surface activity waves, forming either spiral waves, or
formed under reactive conditions. A substantial evidence fotarget patterns, or isolated mobile wave fragmént¥.
this effect has been accumulated in studies of catalytic CO The model by Krischeet al. yields a realistidat least in
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a qualitative sengepicture of kinetic oscillations and pattern developing surface inhomogeneities, thus leading to a state
formation on the R10) surface. Its disadvantage, however, of self-induced spatial chaos, and perpetuating the distribu-
is in a purely phenomenological description of the dynamicgion of alternative surface phases intermixed on a fine scale.
of surface reconstruction, using a piecewisely defined func-

tion of the CO coverage that insures correct behavior fitting

the experimental data. The model also fails to take into acH. COARSE-GRAINED TWO-TIER MODEL

count slow changes in catalytic activity which may be caused . o ]

by surface roughening and facetifig. These two aspects are A Skeleton model capable to give a qualitatively faithful
in fact related, since surface roughening is likely to occur aglynamic description of a pattern forming system may oper-
a result of repeated transitions between the two surfacate Wwith the simplest possible nonlinear elements. Rather

phases, which, due to their different density of surface atomé!“a” considering realistic kinetic equations for the adsorbate
involve a mass transport of Pt atoffsRoughening or face- COVerages, we shall use a single equation for concentration of

ting might be incorporated into the kinetic model in a natural® fast activatoo that can relax to any of two alternate states.

way if the phase transition could be described more realisti¥/e shall also neglect such realistic details as anisotropic

cally by means of a microscopic model. diffusion. The simplest suitable evolution equationvois
A more mechanistic model of this type is the FN-based  y,=V2%+(1—v?)v— 7. (1)

two-tier symmetry-breaking mod@élthat treats the surface . .

phase transition explicitly by replacing the phenomenologi-io‘S 'T tr;et;ta'n?]gkr)qt.FN modt;ll, the tvr\1/9 statej ?re zlfed L?y the
cal equation of the surface variable by a microscale modeSFJ/Ceh Zwae Itrr]]alt 'lr:ggle\i/ana— OeZE)rvr\gslcor:Zs teo"tﬁe Mz:(?/vgll
describing dynamics of domains corresponding to the twag ay &= P . .
surface phases. The essence of the méget. 1) is the construction of the two alternate macrostates. We interpret it

) L r]ere as a surface state variable that models the inhibiting
assumption that the surface phase transition is a slow loca

. tion of the X2 reconstruction. In view of the long diffu-

process that leads to the formation of a nanoscale pattern 0 .
. ) . : . _Slonal range of CO adsorbateodeled by the activator con-
surface phases, and manifests itself in slow motion of inter=

phase boundaries with the speed being dependent on the I(é(_en.tratlorv), the variabley should becoqrse grainedit can
e e interpreted as thiocal averagefraction of one of the
cal value of CO coverage. In turn, the visiklmicroscalg

) . surface phases computed by spatial averaging over a surface
coverage pattern is determined by average abundance of sur- e e ;

o e area within the diffusional range of The activator acts as a
face phases within the diffusional range of the adsorbed spe- . .
cies pattern-forming agent on a large scale corresponding to the

In this communication, we further elaborate the two-tierdmcUSIOnaI range of a mobile adsorbed spedie®). This is

) . : ; the visible pattern observed experimentally on a 4010 2
model b_y stud'ymg the detailed dynamics of '|nte'rphasecm scale. The surface variablg which is slow and nondif-
boundaries. This is done on several level of detail. First, w

Susive, plays the same role of a refractory variable as in the
describe the dynamics of distribution of islands of a minoritymodel’ l:?y lzrischeret al’ y

phase taking. into account the size dependence of t.h'elr The distinctive feature of the present model lies in de-
growth or shrinkage rates. The latter leads 02 .nonequ'“b'signing the evolution equation of the surface variable. On a
rium analog of Ostwald ripening where the oscillations of theSmaller length scalén a 10" —10°® cm range, we conjec-

long-range variable act to preserve the abundance of alternﬁ]re a dynamic pattern of surface phases, ,consisting of is-

tive phases averaged over the oscillation period, and there ¥nds of a minority phase immersed in a continuous majority
imitate a conservation law that commonly keeps the fractiorbhase Unlike the phenomenological motiele describe the

of Qifferent phases constant in equilibri_um pha;e transitionssuncace state using a “microvariablai'that can relax to two
This may lead to growth of average island size up 10 th&onate states standing for the surface phases. The dynam-

cr?aracterll_ztlc_ dlffﬁsmnal range of ftge rl]onr?—scale V?(r)'{;‘plelics of the microvariable is described by a nonlinear diffusion
thus invalidating the assumptions of both phenomenolodicaloq ation with a cubic nonlinearity.

and two-tiet! models. ) o ,
On the next leve[Sec. V), we carry out detailed mod- Y U=6°Vu+(1-u9u—av, 2

eling of the ripening process with the help of a Lagrangianyhere 5<1 is the ratio of the microscopic and macroscopic
algorithm based on the local equation of boundary motiongcajes which is proportional in the physical model to the
This allows us to describe relaxation of islands to circularSquare root of the ratio of the surface diffusivities of solid
shape as well as evolution of size distribution, but leads th.g., Pt atoms and adsorbate. Since the solid diffusivity is
qualitatively similar results. The advantage of the detaileds a1 the borders between the surface phases can be as-
model of boundary dynamics justifying a much greater in-g,med to be almost atomically sharp.

vestment of computer resources, is felt, however, when local  The |ocal value of long-range variabte introduces a
processes modeling the roughening and faceting of the SUjas in favor of one of the surface states. If the coupling
face, are incorporated. We further shé@ec. V) how the  harameter is positive, the lower state advances when the
local surface modification may be directly correlated in this;,,crovariabley (modeling CO coverageis positive. The

model with the motion of interphase boundaries. This is donqWO phases coexist at|u|<b=2/\/2—7. The speed of the
by assuming that surface properties are modified whenever g.iion (neglecting the curvature efféds

certain location is passed by the phase transition front. As a
result, the ripening process can be arrested by dynamically c= \/55)/ sir{%arcsir(%\/z—mu)]z5y¢(au). 3)
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The dynamics of the surface phases described by thison corresponding to the Maxwell construction of the two
model can be made similar to the dynamics of the surfacenacrostates. This value serves in our model as a bias param-
variable in the phenomenological model of Krisctetral®  eter. AssumingB>0, negative values of prevail at 7
The two values of the CO coverage where the definition of>0. The multistability range i$z|<b=2/\/27.
the phenomenological function is changed should correspond For the moment, we neglect the dependence of the
to the limitsv=*b/a of the range ofv where the two boundary speed on the curvatymesuming that the islands
surface states coexist. are much larger than the diffusional range of the microvari-

The macrovariable is affected in turn by the relative able. Then the change of radii is governed by E8). which
abundance of surface phases, described by the coarse-grairezth be transformed by averaging to the evolution equation of
variable . A general relation between andu can be de- 7,
fined as

dy

n(x)zBUg(x,x’)u(x’)dx’—% , 7 gt = 2Bndy ylav)(r)(n). ®
whereg(x,x') is a coarse-graining kernel with a character-  AS long as the dependence of the boundary dynamics on
istic range 0f0(1) in the chosen dimensionless units aid curvature can be neglected, the distribution is shifted rigidly

~ . . during the oscillation cycle, so thdt(r;t)=f(r+c(n)t),
s are constants. Assuming sharp interphase boraecan be g y ;) =1 (7)t)

_ and, as a consequence, the dispersiof)—(r)? remains
directly related to the surface-averaged area covered by tnﬁvariant. This allows to express the mean radiysthrough
lower surface state<<O0,

the mean squared radi¢s?), which is related top through
Eq. (7). If all islands are of the same size,

o o _ _ (ry="n"*(s+7/B)=\sIn(1+nlq), C)
whereH(x) is 1 if the pointx is within a domain occupied
by the lower state, and O otherwise, afid s are modified whereq=g8s>b. The final form of Eq.(8) is

constants. d
d—?ZKl,/f(av)\/l-i- 24, (10

n(X)=ﬁUg(x,X’)H(X’)dX’—s \ 5

Ill. OSCILLATIONS AND WAVES

The simplest solution of the coarse-grained equations iwhereK=2835y+/sn.
obtained by assuming that the diffusional range of the mac- A typical picture of relaxation oscillations is obtained at
rovariablev encompasses the entire surface. Under thesg<<1. Then the system evolves as follows. If, say, initially
conditions,v plays the role of a global variable, and obeysv >0, the lower state advances apdncreases. The macro-
Eqg. (1) integrated over the entire surface, variablev continuously adjusts to a changing level of it
5 decreases but remains on the upper branch untibaches
ve=(1=vIHv=7. ©  the limiting value=b. After this,v drops on a fasO(y)
Then the integrals in Eq$4) and(5) can be evaluated over time scale to the lower branch. The islands start to shrink,
the entire surface as well, and the coarse-graining kernelndv grows whilen decreases up to the lower critical value
g(x,x") set to unity. If we assume that the lower surface = —b, after whichv jumps back to the upper branghig.
state is a minority phase, and exists in the form of circularl(a)]; both branches of the oscillation cycle are symmetric.
islands (sufficiently widely separated, so that their interac-  The above picture is modified if the changing levels of
tion can be neglectedEg. (5) can be rewritten as remove the system from the multistability region of the mi-
crovariable or if islands shrink and disappear altogether
ﬂzﬁ(f f(ryr2dr—s|=p(n{r%—s), (7)  while the system evolves along the branck0. To pre-
clude the first possibility, one has to require that the maxi-
where f(r) is the instantaneous number density of islandsmum possible value af occurring during the above cycle,
with the radiusr, andn is the total number density of is- |vma4=2/\/§ remain within the multistability range. This re-
lands. The parametercan be interpreted as the surface frac-stricts the value of the parameter< 3. If all islands are of
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FIG. 2. (a) Snapshots of distributions
2.5 evolving from an initial Gaussian dis-
tribution. The center of the distribution
moves to the right and the profile be-
1.5 comes wider as time grows. The time
step between successive profilesAis
=095. (b) Long-scale dynamics of the
number of island®, mean radiugr),
dispersiono?, and skewnesy; of the
Y1 island size distribution =2.43, K
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the same size, the minimum radius correspondingnto changes slowly, in parallel with slow evolution of the island
=—b in Eq. (7) is r,=+/n"Y(s—b/B), which restricts the size distribution. Snapshots of distributions evolving from an
paramete3>b/s. initial Gaussian distribution and the long-time dynamics of
In an extended systenlL&1), Eq.(8) can still be re- statistical characteristics are shown in Fig. 2. To eliminate
tained as a dynamic equation af, with local averaging short-scale dynamics, all values are computed here at the
understood as in Eq5). This typically leads, after a long lowest point of each oscillation cycle. Dispersion gradually
evolution starting from random initial conditions, to the final increases, while the skewness becomes negative. Elimination

state of a disordered spiral pattéfn. of smaller islands becomes substantial after the lower tail of
the distribution has reached the lower cutoff radius. Follow-
IV. RIPENING OF SURFACE PHASE DISTRIBUTION ing this, the island number density decreases, the growth of

) o ) o the mean radius accelerates, and the trend of the evolution of
The size distribution of islands of the minority phasehe skewness reverses, reflecting preferential growth of
evolves at long times due to a weak dependence of the V§xrger islands. The total area occupied by the islands at the
locity on curvature, lowest point of each oscillation cyclas at any other com-
c=8y[¢(av)— k3] (11)  parable phase of the cygleemains constant to a high degree
of accuracy. We expect therefore that the long-time distribu-

1
tion would follow the same Lifshitz—Slyozov formdfaas in

For circular islandsx=r~*, and the dynamic equation for

radii is the classical equilibrium ripening process. These times are,
dr S however, irrelevant for our model since the islands size
qi=Cw.1) =9y ¢lav)— . (120 would reach at late stages of ripening the characteristic dif-

o _ fusion scale of the long-range variable, and the main postu-
The radii distribution necessary for evaluation of the surfacgate of the two-tier model would be violated.

area occupied by the minority phase in E@) obeys the
first-order partial differential equatiofPDE)

of  a(c(v,r)f) V. BOUNDARY DYNAMICS
E'f’ T =0, (13)

The presumption of a circular shape is well justified only
which has to be solved together with E@) where » is  when the interaction between islands is negligible. At higher
defined by Eq(7). Since the velocityc(v,r) changes sign densities of the minority phase, or, moreover, under condi-
during the oscillation cycle, Eq13) is ill-suited to a com-  tions when the phases are interspersed and neither forms a
mon finite-difference scheme of numerical integration but isconnected continuum, the boundary dynamics is governed

readily solved by the method of characteristics. The charadocally by Eq.(11) but the radius distribution is not well
teristics are defined by E¢l12); sincec(v,r) is a monotonic  defined.

function ofr, shocks are never formed, and the distribution  \We have carried out detailed modeling of the ripening
is well behaved. Due to the variability of the velocity, the process with the help of a Lagrangian algorithm based on the

distribution function changes along the characteristic, local equation of boundary motion. Each island is repre-
df  dc sented by its boundary which, in turn, is approximated by a
a+ a—r=0. (14 polygon, i.e., a directed array of points in the plane, which

propagates according to Ed.1) with the velocity dependent

The ripening process should generally lead to slowon the instantaneous value ofand the local curvature ap-
elimination of smaller islands and growth of the average isproximated by finite differences. The long-scale variabie
land size. This is accounted for in the computation by elimi-treated also in these computations as a global variable, and
nating the islands when their radius falls below some criticaits dynamics is governed by E¢6), where 7 is expressed
valuer,, i.e., imposing a distribution cutoff. through the total instantaneous area of the islands. The com-

Figure 1b) shows the dynamics of the global variable  putation algorithm includes updating the boundary, checking
the coverage fractiory, and the mean radius over the length for intersections, computing the area, and updating the value
of several periods. The form and period of oscillationsof the global variable .

Downloaded 28 Nov 2000 to 199.74.98.241. Redistribution subject to AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.



Chaos, Vol. 9, No. 1, 1999 L. M. Pismen and B. Y. Rubinstein 59

The most difficult part of the Lagrangian numerical al-
gorithm is related to a possible merger of islands, as well as O O
Q

a change of their topology. The latter occurs, for example, O&
when two elongated arms of a horseshoe-shaped island

O
QD

merge creating a ring-like island which is not simply con- b{?
O

(a)

o S O
nected. In order to record such events, it is necessary to test O o O
intersections of island boundaries at each calculation step. & b 6 D
For a large number of islands, the testing procedure may be
very time-consuming. The following algorithm was applied 0 N N

therefore to reduce number of operations. At the first stage, O
O

@©

O o
we create rectangular bounding boxes for each island, and o O
check whether they intersect, which is a necesghny not DQ
sufficien) condition of intersection of the corresponding pair Q
of islands. This selects “suspicious” pairs of islands. At the O Q
next stage, intersections of elementary segments comprising
the polygonal boundaries are tested for the selected pairs of @
islands only. In addition, each island is checked for self- OOO ®
intersections. e @

After all intersections are detected, a new set of bound- QS

aries is produced by reconnection. To avoid uncertainties in O o OQ

redrawing the boundaries, the time step is always adjusted
) S\

dynamically in such a way that no more than two intersec-
tions occur simultaneously. Boundary smoothing is carried
EIG. 3. The initial distribution(a) of islands used for numerical simulations
of islands dynamics on flat and roughened surfaces, and snapshots of the

out following reconnection to eliminate spurious short loops.
Such loops are also likely to emerge when an island shrink
in the course of the ripening process. This is prevented b¥uccessive distributions fakp=0.7 taken at(b) t=14, (c) t=21, (d) t
setting a minimal size below which the island is eliminated=5o, (¢) t=61, and(f) t=75.
from the computational process.

The ripening process on a smooth surface leads to elimi-

nation of smaller islands, while the surviving islands ap-cycje |t is reasonable to assume that surface roughening re-
proach the circular shape. The average radiys=2S/P g ,ces the velocity of the boundary drift due to the change of

(WhereP is the total perimeter of the interphase boundary . surface geometry.

andS'is the area occupied by the minority phasahibits We assume that the degree of surface roughening is a

steady growth on _the b_ackgrc_)und of short-scale osci_llationsquasi|oca| property of the system and therefore can be mod-
A representative simulation run has been carried oukjeq py its values at points of a two-dimensional grid with
starting from the initial picture shown in Fig(&. The rip- 6 grid step several times larger than the characteristic dis-
ening process on the smooth surface leads to a fast decreaggce petween polygon vertices approximating the interphase
of the islands number, as seen in Figa)4 The right part of 1,4 ngaries. When a boundary crosses a given grid point, the
the same figure shows the evolution of the mean radii of 4rjaple , describing the surface roughness at this point is
individual islands defined through the area to perimeter ratioy, reased by a certain prescribed valip. On the other
The values at the lowest point of each oscillation cycle arg, g geometric inhomogeneities of the surface slowly at-
plotted here to eliminate short-scale oscillations. In a typicalanate with time due to thermal effects at the microscopic
ripening picture, the radii of individual mid-size islgnds first level. This process is described in our model by allowing for
grow and then start to decrease after smaller islands arg .,ninyous relaxation of the surface roughness following a
eliminated, and the former “"middle class™ is swept in the inear equationdp/dt=—Tp. The characteristic relaxation

lower decals of the distribution. The islands interact here[ime '~ must be much larger than a typical oscillation pe-
only through the level of the long-range variahle since (o4 of the macrovariable .

short-scale interactions distorting the islands shape are ab- Starting from an initially smooth surface, the swinging

sent, the islands evolve to a circular shape, and their mergef,,ion of island boundaries leads to a local increase of the

is highly improbable. surface roughness in the belts traversed in either direction.
The increased roughness causes local deceleration of the
boundary drift, which effectively freezes the ripening pro-
cess. Slow relaxation of the roughness leads to a dynamical
The ripening can be suppressed on a rough surface. Selfalance between the boundary motion and roughness dynam-
induced roughening may be caused by surface modificatioits. As a result, the system is left in a disordered state
taking place at locations traversed by the transition front bestrongly dependent on initial conditions.
tween the alternate surface states. The surface modification The computational algorithm allowing for surface modi-
may also compensate the ripening process by gradually lowfication is far more complex than that described in the pre-
ering the upper limit of island growth during an oscillation ceding section, as it should combine Lagrangian boundary

e
OO
N

VI. SURFACE ROUGHENING
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dynamics with Eulerian evolution of local roughness. In ad-shots of a few successive distributions in a simulation run

dition to the subroutines of updating the boundaries and tesstarting from an originally smooth surface. The dynamics of

ing for boundary intersections, the combined algorithm in-islands number and of their mean radii for surfaces with two

cludes searching for grid points crossed by the boundarieslifferent roughening ratedp are shown in Figs. @) and

and updating the roughness value at the grid points. 4(c). It is clearly seen that the tendency to evolve to a circu-
Each grid pointP;; of a square grid is assigned a binary lar shape, as well as elimination of smaller islands are sup-

tag taking the valu&;; =1 when the point is inside an island pressed as the surface roughness develops. The self-induced

and K;;=0 if it lies outside. The tag has to be switched roughening thus freezes a state of spatial chaos initiated by

whenever a given grid point is traversed by any boundarythe original distribution. At a larger roughening rate, the

segment at each Lagrangian propagation step. A straightforumber of eliminated islands is very small, and the mean

ward algorithm testing all possible tag switch events is veryadii of the remaining islands remain effectively unchanged

time-consuming and ineffective. A much faster algorithm isafter the surface roughness develops.

based on division of grid lines into a finite number of seg-

ments each containing points with the same value of the tag

K. For example, a grid line with a fixed indeéx | crossing v/, coNCLUSION

N island boundaries may be divided intb+ 1 segments;j

e(Lj)U(2+1j3)U ... with K,;=0 and je(j; The two-tier model described above combines features

+1j)U(jst1jl)U ... withK,;=1. Itis sufficient then found in the standard FitzHugh—Nagumo model at different

to trace only points with the indice§=j;+1,5,j3 ratios of characteristic relaxation times and diffusivities of

+1,ja, ... which bound the segments with=1. We need the species involved. On the macroscopic levels a fast

to trace each boundary only once in order to determine thactivator, while plays the role of a nondiffusive slow in-

full set of such points. As a result, the computation time ishibitor. At the same time, on the microscopic leveljs a

roughly proportional to the length of the boundary, ratherslow short-range activator whiteis a fast long-range inhibi-

than to the total number of grid points, as when the naivaor. This combination allows to generate oscillations and

algorithm is applied. waves on the macroscopic level, and phase separation with
Figure 3 shows the initial distribution of islands used inslowly drifting interphase boundaries on the microscopic

simulations on both smooth and rough surface, and the snajevel. The two levels are related by the averaging procedure
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defining the evolution equation of. The physical origin of  scription should account for fluctuations, that may be re-
the averaging is in sampling of large surface areas by theolved by molecular simulations of surface reconstruction.
diffusive macrovariable.
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