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Ripening of surface phases coupled with oscillatory dynamics
and self-induced spatial chaos through surface roughening

L. M. Pismen and B. Y. Rubinstein
Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex Systems,
Technion-Israel Institute of Technology, Technion, Technion City, 32000 Haifa, Israel

~Received 6 August 1998; accepted for publication 3 December 1998!

Some pattern formation processes on single-crystal catalytic surfaces involve transitions between
alternative surface phases coupled with oscillatory reaction dynamics. We describe a two-tier
symmetry-breaking model of this process, based on nanoscale boundary dynamics interacting with
oscillations of adsorbate coverage on microscale. The surface phase distribution oscillates together
with adsorbate coverage, and, in addition, undergoes a slow coarsening process due to the curvature
dependence of the drift velocity of interphase boundaries. The coarsening is studied both
statistically, assuming a circular shape of islands of the minority phase, and through detailed
Lagrangian modeling of boundary dynamics. Direct simulation of boundary dynamics allows us to
take into account processes of surface reconstruction, leading to self-induced surface roughening.
As a result, the surface becomes inhomogeneous, and the coarsening process is arrested way before
the thermodynamic limit is reached, leaving a chaotic distribution of surface phases. ©1999
American Institute of Physics.@S1054-1500~99!01101-5#
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Catalytic reactions are often accompanied by structural
changes of the surface. These structural changes affect, i
their turn, the reaction kinetics. This creates a feedback
mechanism leading to complicated spatio-temporal dy-
namics. In this article we propose a mechanism of pat-
tern formation rooted in interaction between chemical re-
actions and phase transitions on a catalytic surface, and
operating on two widely separated length scales. On the
microscopic „nanoscale… level, the competition between
surface phases is governed by the local level of rapidly
diffusing adsorbed species. On the macroscopic„micro-
scale… level, the balance between alternative states of the
surface coverage depends on the area occupied by alte
native surface phases. The surface phase distribution os
cillates together with adsorbate coverage, and, in addi-
tion, undergoes a slow coarsening process due to th
curvature dependence of the drift velocity of interphase
boundaries. The coarsening is studied both statistically,
assuming circular shape of islands of the minority phase,
and through detailed modeling of boundary dynamics. A
special algorithm developed for direct simulation of
boundary dynamics allows to take into account processe
of surface reconstruction, leading to self-induced surface
roughening. As a result, the surface becomes inhomoge
neous, and the system remains ‘‘frozen’’ in a state of
spatial chaos.

I. INTRODUCTION

Catalytic reactions are often accompanied by deep
structuring of the active surface. This may produce an au
catalytic effect due to enhanced activity of a surface ph
formed under reactive conditions. A substantial evidence
this effect has been accumulated in studies of catalytic
551054-1500/99/9(1)/55/7/$15.00
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oxidation on single crystal Pt surfaces.1,2 The mechanism of
rate oscillations and pattern formation is based on adsorb
induced surface phase transitions that are controlled by c
cal adsorbate coverages, i.e., the 131
132 transition in
the case of Pt~110! and the 131
 hex phase transition in
the case of Pt~100!.1–4 The phase transition affects the rea
tion rate mainly through the variation of the oxygen sticki
coefficient. In this way, it has been incorporated in the
netic model of CO oxidation on Pt~110! which includes the
fraction of the surface occupied by one of the altern
phases as one of dynamic variables.5

Although the model contains three dynamic variables
turned out to be qualitatively equivalent to a two-variab
model, and can be mapped on a standard FitzHugh–Nag
~FN! system.6 In a simplified model, the oxygen coverage
slaved to the CO coverage which plays the role of a ‘‘fa
activator.’’ At a fixed surface phase composition, two alte
native stationary states may be attained; one with a high
coverage that blocks the oxygen access and thereby s
the reaction, and another with a low CO coverage and hig
reaction rate. This bistability phenomenon is common
bimolecular reactions with Langmuir–Hinshelwood kinetic
The domains with prevailing alternative stationary sta
evolve dynamically due to a relatively slow surface pha
transition, so that the surface variable plays the role o
‘‘slow inhibitor.’’

The surface phase transition acts in such a way that
fraction of the 131 phase increases on a surface patch w
a high CO coverage, leading to an increased O2 adsorption
rate and eventually to a transition to the alternate state,
vice versa. In a lumped system, this leads to relaxation
cillations, and in a spatially extended system, to propaga
of surface activity waves, forming either spiral waves,
target patterns, or isolated mobile wave fragments.1,5,6

The model by Krischeret al.yields a realistic~at least in
© 1999 American Institute of Physics
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a qualitative sense! picture of kinetic oscillations and patter
formation on the Pt~110! surface. Its disadvantage, howeve
is in a purely phenomenological description of the dynam
of surface reconstruction, using a piecewisely defined fu
tion of the CO coverage that insures correct behavior fitt
the experimental data. The model also fails to take into
count slow changes in catalytic activity which may be cau
by surface roughening and faceting.7–9 These two aspects ar
in fact related, since surface roughening is likely to occur
a result of repeated transitions between the two surf
phases, which, due to their different density of surface ato
involve a mass transport of Pt atoms.10 Roughening or face-
ting might be incorporated into the kinetic model in a natu
way if the phase transition could be described more real
cally by means of a microscopic model.

A more mechanistic model of this type is the FN-bas
two-tier symmetry-breaking model11 that treats the surfac
phase transition explicitly by replacing the phenomenolo
cal equation of the surface variable by a microscale mo
describing dynamics of domains corresponding to the
surface phases. The essence of the model~Sec. II! is the
assumption that the surface phase transition is a slow l
process that leads to the formation of a nanoscale patter
surface phases, and manifests itself in slow motion of in
phase boundaries with the speed being dependent on th
cal value of CO coverage. In turn, the visible~microscale!
coverage pattern is determined by average abundance o
face phases within the diffusional range of the adsorbed
cies.

In this communication, we further elaborate the two-t
model by studying the detailed dynamics of interpha
boundaries. This is done on several level of detail. First,
describe the dynamics of distribution of islands of a minor
phase taking into account the size dependence of t
growth or shrinkage rates. The latter leads to a nonequ
rium analog of Ostwald ripening where the oscillations of t
long-range variable act to preserve the abundance of alte
tive phases averaged over the oscillation period, and the
imitate a conservation law that commonly keeps the fract
of different phases constant in equilibrium phase transitio
This may lead to growth of average island size up to
characteristic diffusional range of the long-scale variab
thus invalidating the assumptions of both phenomenologi5

and two-tier11 models.
On the next level~Sec. IV!, we carry out detailed mod

eling of the ripening process with the help of a Lagrang
algorithm based on the local equation of boundary moti
This allows us to describe relaxation of islands to circu
shape as well as evolution of size distribution, but leads
qualitatively similar results. The advantage of the detai
model of boundary dynamics justifying a much greater
vestment of computer resources, is felt, however, when lo
processes modeling the roughening and faceting of the
face, are incorporated. We further show~Sec. VI! how the
local surface modification may be directly correlated in t
model with the motion of interphase boundaries. This is do
by assuming that surface properties are modified whenev
certain location is passed by the phase transition front. A
result, the ripening process can be arrested by dynamic
Downloaded 28 Nov 2000  to 199.74.98.241.  Redistribution subject to 
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developing surface inhomogeneities, thus leading to a s
of self-induced spatial chaos, and perpetuating the distr
tion of alternative surface phases intermixed on a fine sc

II. COARSE-GRAINED TWO-TIER MODEL

A skeleton model capable to give a qualitatively faithf
dynamic description of a pattern forming system may op
ate with the simplest possible nonlinear elements. Ra
than considering realistic kinetic equations for the adsorb
coverages, we shall use a single equation for concentratio
a fast activatorv that can relax to any of two alternate state
We shall also neglect such realistic details as anisotro
diffusion. The simplest suitable evolution equation ofv is

v t5¹2v1~12v2!v2h. ~1!

As in the standard FN model, the two states are biased by
level of the inhibiting variableh, which is defined here in
such a way that the levelh50 corresponds to the Maxwe
construction of the two alternate macrostates. We interpr
here as a surface state variable that models the inhibi
action of the 132 reconstruction. In view of the long diffu
sional range of CO adsorbate~modeled by the activator con
centrationv), the variableh should becoarse grained. It can
be interpreted as thelocal averagefraction of one of the
surface phases computed by spatial averaging over a su
area within the diffusional range ofv. The activator acts as a
pattern-forming agent on a large scale corresponding to
diffusional range of a mobile adsorbed species~CO!. This is
the visible pattern observed experimentally on a 1024– 1022

cm scale. The surface variableh, which is slow and nondif-
fusive, plays the same role of a refractory variable as in
model by Krischeret al.5

The distinctive feature of the present model lies in d
signing the evolution equation of the surface variable. O
smaller length scale~in a 1027– 1026 cm range!, we conjec-
ture a dynamic pattern of surface phases, consisting o
lands of a minority phase immersed in a continuous majo
phase. Unlike the phenomenological model,5 we describe the
surface state using a ‘‘microvariable’’u that can relax to two
alternate states standing for the surface phases. The dy
ics of the microvariable is described by a nonlinear diffusi
equation with a cubic nonlinearity,

g21ut5d2¹2u1~12u2!u2av, ~2!

whered!1 is the ratio of the microscopic and macroscop
scales, which is proportional in the physical model to t
square root of the ratio of the surface diffusivities of so
~e.g., Pt! atoms and adsorbate. Since the solid diffusivity
small, the borders between the surface phases can be
sumed to be almost atomically sharp.

The local value of long-range variablev introduces a
bias in favor of one of the surface states. If the coupli
parametera is positive, the lower state advances when t
macrovariablev ~modeling CO coverage! is positive. The
two phases coexist atauvu,b52/A27. The speed of the
motion ~neglecting the curvature effect! is

c5A6 dg sin@ 1
3 arcsin~ 1

2A27av !#[dgc~av !. ~3!
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 1. ~a! A typical oscillation cycle
at g!1; dynamics ofv and h are
shown by solid and dashed curves, r
spectively.~b! Short-scale dynamics of
the global variablev, the coverage
fraction h, and the mean radius (q
52.43, K50.24,a50.2).
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The dynamics of the surface phases described by
model can be made similar to the dynamics of the surf
variable in the phenomenological model of Krischeret al.5

The two values of the CO coverage where the definition
the phenomenological function is changed should corresp
to the limits v56b/a of the range ofv where the two
surface states coexist.

The macrovariablev is affected in turn by the relative
abundance of surface phases, described by the coarse-gr
variableh. A general relation betweenh and u can be de-
fined as

h~x!5b̂S E g~x,x8!u~x8! dx82 ŝD , ~4!

whereg(x,x8) is a coarse-graining kernel with a characte
istic range ofO(1) in the chosen dimensionless units andb̂,
ŝ are constants. Assuming sharp interphase borders,h can be
directly related to the surface-averaged area covered by
lower surface stateu,0,

h~x!5bS E g~x,x8!H~x8! dx82sD , ~5!

whereH(x) is 1 if the pointx is within a domain occupied
by the lower state, and 0 otherwise, andb, s are modified
constants.

III. OSCILLATIONS AND WAVES

The simplest solution of the coarse-grained equation
obtained by assuming that the diffusional range of the m
rovariable v encompasses the entire surface. Under th
conditions,v plays the role of a global variable, and obe
Eq. ~1! integrated over the entire surface,

v t5~12v2!v2h. ~6!

Then the integrals in Eqs.~4! and ~5! can be evaluated ove
the entire surface as well, and the coarse-graining ke
g(x,x8) set to unity. If we assume that the lower surfa
state is a minority phase, and exists in the form of circu
islands~sufficiently widely separated, so that their intera
tion can be neglected!, Eq. ~5! can be rewritten as

h5bS E f ~r !r 2 dr2sD5b~n^r 2&2s!, ~7!

where f (r ) is the instantaneous number density of islan
with the radiusr , and n is the total number density of is
lands. The parameters can be interpreted as the surface fra
Downloaded 28 Nov 2000  to 199.74.98.241.  Redistribution subject to 
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tion corresponding to the Maxwell construction of the tw
macrostates. This value serves in our model as a bias pa
eter. Assumingb.0, negative values ofv prevail at h
.0. The multistability range isuhu,b52/A27.

For the moment, we neglect the dependence of
boundary speed on the curvature~presuming that the island
are much larger than the diffusional range of the microva
able!. Then the change of radii is governed by Eq.~3! which
can be transformed by averaging to the evolution equatio
h,

dh

dt
52bndg c~av !^r &~h!. ~8!

As long as the dependence of the boundary dynamics
curvature can be neglected, the distribution is shifted rigi
during the oscillation cycle, so thatf (r ;t)5 f (r 1c(h)t),
and, as a consequence, the dispersion^r 2&2^r &2 remains
invariant. This allows to express the mean radius^r & through
the mean squared radius^r 2&, which is related toh through
Eq. ~7!. If all islands are of the same size,

^r &5An21~s1h/b!5As/n~11h/q!, ~9!

whereq5bs.b. The final form of Eq.~8! is

dh

dt
5Kc~av !A11h/q, ~10!

whereK52bdgAsn.
A typical picture of relaxation oscillations is obtained

g!1. Then the system evolves as follows. If, say, initia
v.0, the lower state advances andh increases. The macro
variablev continuously adjusts to a changing level ofh; it
decreases but remains on the upper branch untilh reaches
the limiting valueh5b. After this, v drops on a fastO(g)
time scale to the lower branch. The islands start to shr
andv grows whileh decreases up to the lower critical valu
h52b, after whichv jumps back to the upper branch@Fig.
1~a!#; both branches of the oscillation cycle are symmetri

The above picture is modified if the changing levels ofv
remove the system from the multistability region of the m
crovariable or if islands shrink and disappear altoget
while the system evolves along the branchv,0. To pre-
clude the first possibility, one has to require that the ma
mum possible value ofv occurring during the above cycle
uvmaxu52/A3 remain within the multistability range. This re
stricts the value of the parametera, 1

3. If all islands are of
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 2. ~a! Snapshots of distributions
evolving from an initial Gaussian dis-
tribution. The center of the distribution
moves to the right and the profile be
comes wider as time grows. The tim
step between successive profiles isDt
595. ~b! Long-scale dynamics of the
number of islandsn, mean radiuŝr &,
dispersions2, and skewnessg1 of the
island size distribution (q52.43, K
50.24,a50.2).
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the same size, the minimum radius corresponding toh
52b in Eq. ~7! is r min5An21(s2b/b), which restricts the
parameterb.b/s.

In an extended system (L@1), Eq. ~8! can still be re-
tained as a dynamic equation ofh, with local averaging
understood as in Eq.~5!. This typically leads, after a long
evolution starting from random initial conditions, to the fin
state of a disordered spiral pattern.11

IV. RIPENING OF SURFACE PHASE DISTRIBUTION

The size distribution of islands of the minority pha
evolves at long times due to a weak dependence of the
locity on curvature,

c5dg@c~av !2kd#. ~11!

For circular islands,k5r 21, and the dynamic equation fo
radii is

dr

dt
[c~v,r !5dgFc~av !2

d

r G . ~12!

The radii distribution necessary for evaluation of the surfa
area occupied by the minority phase in Eq.~7! obeys the
first-order partial differential equation~PDE!

] f

]t
1

]~c~v,r ! f !

]r
50, ~13!

which has to be solved together with Eq.~6! where h is
defined by Eq.~7!. Since the velocityc(v,r ) changes sign
during the oscillation cycle, Eq.~13! is ill-suited to a com-
mon finite-difference scheme of numerical integration bu
readily solved by the method of characteristics. The cha
teristics are defined by Eq.~12!; sincec(v,r ) is a monotonic
function of r , shocks are never formed, and the distributi
is well behaved. Due to the variability of the velocity, th
distribution function changes along the characteristic,

d f

dt
1 f

]c

]r
50. ~14!

The ripening process should generally lead to sl
elimination of smaller islands and growth of the average
land size. This is accounted for in the computation by elim
nating the islands when their radius falls below some criti
value r 0, i.e., imposing a distribution cutoff.

Figure 1~b! shows the dynamics of the global variablev,
the coverage fractionh, and the mean radius over the leng
of several periods. The form and period of oscillatio
Downloaded 28 Nov 2000  to 199.74.98.241.  Redistribution subject to 
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changes slowly, in parallel with slow evolution of the islan
size distribution. Snapshots of distributions evolving from
initial Gaussian distribution and the long-time dynamics
statistical characteristics are shown in Fig. 2. To elimin
short-scale dynamics, all values are computed here at
lowest point of each oscillation cycle. Dispersion gradua
increases, while the skewness becomes negative. Elimina
of smaller islands becomes substantial after the lower tai
the distribution has reached the lower cutoff radius. Follo
ing this, the island number density decreases, the growt
the mean radius accelerates, and the trend of the evolutio
the skewness reverses, reflecting preferential growth
larger islands. The total area occupied by the islands at
lowest point of each oscillation cycle~as at any other com
parable phase of the cycle! remains constant to a high degre
of accuracy. We expect therefore that the long-time distri
tion would follow the same Lifshitz–Slyozov formula12 as in
the classical equilibrium ripening process. These times
however, irrelevant for our model since the islands s
would reach at late stages of ripening the characteristic
fusion scale of the long-range variable, and the main po
late of the two-tier model would be violated.

V. BOUNDARY DYNAMICS

The presumption of a circular shape is well justified on
when the interaction between islands is negligible. At high
densities of the minority phase, or, moreover, under con
tions when the phases are interspersed and neither form
connected continuum, the boundary dynamics is gover
locally by Eq. ~11! but the radius distribution is not wel
defined.

We have carried out detailed modeling of the ripeni
process with the help of a Lagrangian algorithm based on
local equation of boundary motion. Each island is rep
sented by its boundary which, in turn, is approximated b
polygon, i.e., a directed array of points in the plane, wh
propagates according to Eq.~11! with the velocity dependen
on the instantaneous value ofv and the local curvature ap
proximated by finite differences. The long-scale variablev is
treated also in these computations as a global variable,
its dynamics is governed by Eq.~6!, whereh is expressed
through the total instantaneous area of the islands. The c
putation algorithm includes updating the boundary, check
for intersections, computing the area, and updating the va
of the global variablev.
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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The most difficult part of the Lagrangian numerical a
gorithm is related to a possible merger of islands, as wel
a change of their topology. The latter occurs, for examp
when two elongated arms of a horseshoe-shaped is
merge creating a ring-like island which is not simply co
nected. In order to record such events, it is necessary to
intersections of island boundaries at each calculation s
For a large number of islands, the testing procedure may
very time-consuming. The following algorithm was applie
therefore to reduce number of operations. At the first sta
we create rectangular bounding boxes for each island,
check whether they intersect, which is a necessary~but not
sufficient! condition of intersection of the corresponding pa
of islands. This selects ‘‘suspicious’’ pairs of islands. At t
next stage, intersections of elementary segments compr
the polygonal boundaries are tested for the selected pai
islands only. In addition, each island is checked for se
intersections.

After all intersections are detected, a new set of bou
aries is produced by reconnection. To avoid uncertaintie
redrawing the boundaries, the time step is always adju
dynamically in such a way that no more than two inters
tions occur simultaneously. Boundary smoothing is carr
out following reconnection to eliminate spurious short loo
Such loops are also likely to emerge when an island shr
in the course of the ripening process. This is prevented
setting a minimal size below which the island is eliminat
from the computational process.

The ripening process on a smooth surface leads to el
nation of smaller islands, while the surviving islands a
proach the circular shape. The average radius^r &52S/P
~whereP is the total perimeter of the interphase bounda
and S is the area occupied by the minority phase! exhibits
steady growth on the background of short-scale oscillatio

A representative simulation run has been carried
starting from the initial picture shown in Fig. 3~a!. The rip-
ening process on the smooth surface leads to a fast dec
of the islands number, as seen in Fig. 4~a!. The right part of
the same figure shows the evolution of the mean radi
individual islands defined through the area to perimeter ra
The values at the lowest point of each oscillation cycle
plotted here to eliminate short-scale oscillations. In a typi
ripening picture, the radii of individual mid-size islands fir
grow and then start to decrease after smaller islands
eliminated, and the former ‘‘middle class’’ is swept in th
lower decals of the distribution. The islands interact h
only through the level of the long-range variablev; since
short-scale interactions distorting the islands shape are
sent, the islands evolve to a circular shape, and their me
is highly improbable.

VI. SURFACE ROUGHENING

The ripening can be suppressed on a rough surface. S
induced roughening may be caused by surface modifica
taking place at locations traversed by the transition front
tween the alternate surface states. The surface modifica
may also compensate the ripening process by gradually
ering the upper limit of island growth during an oscillatio
Downloaded 28 Nov 2000  to 199.74.98.241.  Redistribution subject to 
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cycle. It is reasonable to assume that surface roughening
duces the velocity of the boundary drift due to the change
the surface geometry.

We assume that the degree of surface roughening
quasilocal property of the system and therefore can be m
eled by its values at points of a two-dimensional grid w
the grid step several times larger than the characteristic
tance between polygon vertices approximating the interph
boundaries. When a boundary crosses a given grid point
variabler describing the surface roughness at this poin
increased by a certain prescribed valueDr. On the other
hand, geometric inhomogeneities of the surface slowly
tenuate with time due to thermal effects at the microsco
level. This process is described in our model by allowing
a continuous relaxation of the surface roughness followin
linear equationdr/dt52Gr. The characteristic relaxation
time G21 must be much larger than a typical oscillation p
riod of the macrovariablev.

Starting from an initially smooth surface, the swingin
motion of island boundaries leads to a local increase of
surface roughness in the belts traversed in either direct
The increased roughness causes local deceleration of
boundary drift, which effectively freezes the ripening pr
cess. Slow relaxation of the roughness leads to a dynam
balance between the boundary motion and roughness dyn
ics. As a result, the system is left in a disordered st
strongly dependent on initial conditions.

The computational algorithm allowing for surface mod
fication is far more complex than that described in the p
ceding section, as it should combine Lagrangian bound

FIG. 3. The initial distribution~a! of islands used for numerical simulation
of islands dynamics on flat and roughened surfaces, and snapshots o
successive distributions forDr50.7 taken at~b! t514, ~c! t521, ~d! t
550, ~e! t561, and~f! t575.
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 4. The dynamics of the island
number and their mean radii for~a!
smooth (Dr50) and roughened~b!
(Dr50.3) and~c! (Dr50.7) surfaces.
The rougheness relaxation time is 1/G
50.1. Vertical white strips mark the
island elimination events.
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dynamics with Eulerian evolution of local roughness. In a
dition to the subroutines of updating the boundaries and t
ing for boundary intersections, the combined algorithm
cludes searching for grid points crossed by the bounda
and updating the roughness value at the grid points.

Each grid pointPi j of a square grid is assigned a bina
tag taking the valueKi j 51 when the point is inside an islan
and Ki j 50 if it lies outside. The tag has to be switche
whenever a given grid point is traversed by any bound
segment at each Lagrangian propagation step. A straigh
ward algorithm testing all possible tag switch events is v
time-consuming and ineffective. A much faster algorithm
based on division of grid lines into a finite number of se
ments each containing points with the same value of the
K. For example, a grid line with a fixed indexi 5I crossing
N island boundaries may be divided intoN11 segments:j
P(1,j 1)ø( j 211,j 3)ø . . . with KI , j50 and j P( j 1

11,j 2)ø( j 311,j 4)ø . . . with KI , j51. It is sufficient then
to trace only points with the indicesj 5 j 111,j 2 , j 3

11,j 4 , . . . which bound the segments withK51. We need
to trace each boundary only once in order to determine
full set of such points. As a result, the computation time
roughly proportional to the length of the boundary, rath
than to the total number of grid points, as when the na
algorithm is applied.

Figure 3 shows the initial distribution of islands used
simulations on both smooth and rough surface, and the s
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shots of a few successive distributions in a simulation
starting from an originally smooth surface. The dynamics
islands number and of their mean radii for surfaces with t
different roughening ratesDr are shown in Figs. 4~b! and
4~c!. It is clearly seen that the tendency to evolve to a circ
lar shape, as well as elimination of smaller islands are s
pressed as the surface roughness develops. The self-ind
roughening thus freezes a state of spatial chaos initiated
the original distribution. At a larger roughening rate, t
number of eliminated islands is very small, and the me
radii of the remaining islands remain effectively unchang
after the surface roughness develops.

VII. CONCLUSION

The two-tier model described above combines featu
found in the standard FitzHugh–Nagumo model at differ
ratios of characteristic relaxation times and diffusivities
the species involved. On the macroscopic level,v is a fast
activator, whileh plays the role of a nondiffusive slow in
hibitor. At the same time, on the microscopic level,u is a
slow short-range activator whilev is a fast long-range inhibi-
tor. This combination allows to generate oscillations a
waves on the macroscopic level, and phase separation
slowly drifting interphase boundaries on the microsco
level. The two levels are related by the averaging proced
AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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defining the evolution equation ofh. The physical origin of
the averaging is in sampling of large surface areas by
diffusive macrovariable.

The distribution of surface phases ripens at long tim
due to preferential growth of larger islands. The ripeni
process may be arrested by surface inhomogeneities w
develop dynamically as a result of slow surface modificat
and roughening.

In a wider perspective, interactions between chem
reactions and phase transitions can be seen as a powerfu
still poorly explored source of spatio-temporal complexi
In this communication, we use different computational str
egies at the two widely separated length scales characte
to this system, combining Lagrangian computations of m
tion of interphase boundaries with usual Eulerian compu
tions on a fixed grid with a wider spacing. This allows us
describe multiscale dynamics on a finer level of detail, a
account for spontaneously developing inhomogeneities.

The model can be further elaborated accounting for
fects of anisotropy, both on the microscopic and on the
croscopic level. Different models of surface modification,
ternative to the simple model discussed above, may
introduced. In particular, the roughened zones which h
been often traversed by the interphase boundary, can b
signed special kinetic properties, which might model
cently observed wave pulses propagating along the bo
between alternative surface states.13 A still finer level of de-
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scription should account for fluctuations, that may be
solved by molecular simulations of surface reconstruction
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