Hippo Reprograms the Transcriptional Response to Ras Signaling

Highlights
- Hippo pathway determines Ras signaling output of differentiation or proliferation
- Ras signaling mediates cell fate decisions as well as proliferation during development
- Scalloped controls expression of Ras effectors Pointed and Capicua
- Hippo signaling and Capicua repress a gene subset required for excessive proliferation

Authors
Justine Pascual, Jelle Jacobs, Leticia Sansores-Garcia, ..., Stein Aerts, Georg Halder, Fisun Hamaratoglu

Correspondence
stein.aerts@kuleuven.be (S.A.), georg.halder@vib.be (G.H.), fisun.hamaratoglu@unil.ch (F.H.)

In Brief
How is the cellular response to Ras activation—differentiation versus proliferation—determined? Pascual et al. show that the Hippo pathway helps decide by controlling expression of Ras effector genes, including the repressor Capicua. Capicua acts with Hippo signaling to repress and restrict the expression of a gene subset to prevent hyperproliferation.

Pascual et al., 2017, Developmental Cell 42, 667–680
September 25, 2017 © 2017 Elsevier Inc.
http://dx.doi.org/10.1016/j.devcel.2017.08.013
Hippo Reprograms the Transcriptional Response to Ras Signaling

Justine Pascual,1,7 Jelle Jacobs,2,3,7 Leticia Sansores-Garcia,2 Malini Natarajan,4,6 Julia Zeitlinger,4,6 Stein Aerts,3,* Georg Halder,2,* and Fisun Hamaratoglu1,8,*

1Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
2VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, 3000 Leuven, Belgium
3Laboratory of Computational Biology, Center for Human Genetics, and VIB-KU Leuven Center for Brain & Disease Research, University of Leuven, 3000 Leuven, Belgium
4Stowers Institute for Medical Research, Kansas City, MO 64110, USA
5Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
6Present address: Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
7These authors contributed equally
8Lead Contact
*Correspondence: stein.aerts@kuleuven.be (S.A.), georg.halder@vib.be (G.H.), fisun.hamaratoglu@unil.ch (F.H.)
http://dx.doi.org/10.1016/j.devcel.2017.08.013

SUMMARY

Hyperactivating mutations in Ras signaling are hallmarks of carcinomas. Ras signaling mediates cell fate decisions as well as proliferation during development. It is not known what dictates whether Ras signaling drives differentiation versus proliferation. Here we show that the Hippo pathway is critical for this decision. Loss of Hippo switches Ras activation from promoting cellular differentiation to aggressive cellular proliferation. Transcriptome analysis combined with genetic tests show that this excessive proliferation depends on the synergistic induction of Ras target genes. Using ChiP-nexus, we find that Hippo signaling keeps Ras targets in check by directly regulating the expression of two key downstream transcription factors of Ras signaling: the ETS-domain transcription factor Pointed and the repressor Capicua. Our results highlight how independent signaling pathways can impinge on each other at the level of transcription factors, thereby providing a safety mechanism to keep proliferation in check under normal developmental conditions.

INTRODUCTION

The development of cancer usually requires the accumulation of multiple genetic aberrations, with most tumors having two to six driver mutations (Kandoth et al., 2013; Tomasetti et al., 2015). Some of the most frequent driver mutations occur in components of the epidermal growth factor receptor (EGFR)-Ras-Raf-MAPK pathway, hereafter referred to as the Ras pathway. EGFR is mutated or amplified in nearly one-fifth of all cancers tested, and mutations in the downstream effectors KRAS and BRAF are found in 22.4% and 18.7% of all cancer samples tested, respectively, as tabulated in the COSMIC (Catalog of Somatic Mutations in Cancer) database (Forbes et al., 2015). These cancer-associated mutations cause hyperactivation of the Ras pathway and provide a major contribution to transformation of a normal cell into a cancer cell (Lemmon and Schlessinger, 2010; Burgess, 2008; Vakiani and Solit, 2011). However, hyperactivation of Ras signaling by itself is not sufficient to cause cellular transformation. Thus, activating mutations in the Ras pathway cause only a mild excess in proliferation in different animal models, but can lead to aggressive and metastatic tumors in combination with mutations in other genes such as p53, the cell polarity proteins Scribbled and Discs-large, or components of the JNK and Hedgehog (Hh) signaling pathways (Xia and Land, 2007; Pagliarini and Xu, 2003; Wu et al., 2010; Schnidar et al., 2009; Pearson et al., 2011; Brumby and Richardson, 2003; Chabu et al., 2017; Ulirova and Bohmann, 2006). However, the underlying mechanisms leading to excessive proliferation in response to these combinatorial mutations remain largely unknown. Here, we show that mutations in Hippo signaling strongly synergize with activated Ras signaling and dissect out the underlying mechanism of this synergistic interaction using genomics, genetics, and computational approaches. We find that the transcriptional output of Ras signaling is under the tight control of the Hippo pathway. Given that p53, Hh, Scribbled, and Discs-large all modulate Hippo signaling (Colombani et al., 2006; Richardson and Portela, 2017; Kagey et al., 2012), our findings also provide a model for how these molecules synergize with Ras during tumorigenesis.

The Hippo pathway is known for its key role in controlling organ growth and progenitor cell proliferation (Hariharan, 2015; Halder and Johnson, 2011; Pan, 2010; Barry and Camargo, 2013). Named after its founding kinase Hippo (Hpo), the pathway coordinately regulates cell proliferation and cell death. Cells that lack Hippo signaling proliferate faster and are resistant to apoptotic stimuli, a combination that leads to dramatic tissue overgrowths in flies and mice. Notably, loss of Hippo signaling in the mouse liver leads to tumor formation (Zhou et al., 2009; Song et al., 2010; Lee et al., 2010; Lu et al., 2010) and YAP, the transcriptional effector of Hippo signaling, is an established oncogene in the ovary, lung, liver, and breast (Harvey et al., 2013; Zanconato et al., 2016).
The components and mechanisms of Hippo signaling are highly conserved in animals. At the core of the Hippo pathway is a kinase cascade where in Drosophila the Hpo kinase (Mst1/2 in mammals) phosphorylates and activates the Warts kinase (Wts; Lats1/2 in mammals). The main substrate of activated Wts/Lats is the transcriptional co-activator Yorkie (Yki; YAP/TAZ in mammals), which is retained in the cytoplasm upon phosphorylation. In the absence of Hippo pathway activity, Yki translocates into the nucleus and binds to the TEAD family transcription factor Scalloped (Sd; TEAD1–4 in mammals) and other transcription factors. By default Sd is a repressor, but the binding of Yki converts Sd into an activator and together they then drive the expression of pro-survival and proliferation genes, such as cyclin E, diap-1, and bantam microRNA (Koontz et al., 2013; Harirhan, 2015). Multiple upstream regulators including the FERM domain proteins Merlin (Mer) and Expanded (Ex), the atypical cadherins Fat and Dachsous, cell polarity, and mechanical forces have been shown to activate the Hpo kinase (Grusche et al., 2010; Piccolo et al., 2014; Legoff et al., 2013; Mao et al., 2013; Karaman and Halder, 2017).

Here, we studied the effects of combining mutations in the Ras and Hippo pathways. Notably, reducing Hippo signaling in cells harboring activating mutations in the Ras pathway caused strongly synergistic overgrowth in Drosophila imaginal discs. We find that in such discs, the differentiation program is shut down. We investigated the molecular basis of this synergy using genomics and show that the Hippo pathway acts as a gate-keeper for Ras signaling output by restricting the expression levels of its transcriptional targets. This is achieved via direct transcriptional control of the transcription factors of the Ras pathway. In Drosophila, MAPK regulates gene expression by modulating the protein stability of three transcription factors: the repressor Capicua (Cic) and the ETS-domain proteins Pointed (Pnt) and Yan (Shilo, 2014; Jiménez et al., 2012). We show that Cic and Pnt are direct Yki/Sd targets. Thus, in healthy cells, Hippo signaling acts as a brake that restrains the tumorigenic potential of activating mutations in the Ras pathway. Inactivating mutations in the Hippo pathway, however, unmask this potential and synergistically promote hyperproliferation and tumor development.

RESULTS

Simultaneous Deregulation of Ras and Hippo Signaling Induces Synergistic Overgrowth

To study the effects of combinatorial mutations in the Ras and Hippo pathways, we simultaneously activated Ras signaling and repressed the Hippo pathway in Drosophila imaginal discs, simple epithelial structures that are widely used to investigate mechanisms of growth control and tissue patterning. To activate Ras signaling, we expressed constitutively active oncogenic versions of EGFR (EGFRtop), Ras (RasV12), or Raf (RafGOF) (Queenan et al., 2006). Loss of ex does not fully abolish Hippo pathway activity, and ex mutant wing discs showed mild overgrowth characteristic for hypomorphic Hippo loss-of-function phenotypes (Figures 1A and 1B). Similarly, overexpression of activated EGFR in a central stripe in wing discs using the dpp-Gal4 driver only caused...
a widening of the expression domain marked by GFP co-expression (Figure 1C). Strikingly, however, expressing activated EGFR in ex mutants caused massive overgrowth of mutant wing discs (Figures 1D and 1D^0). Double-mutant larvae pupated up to 2 days later than controls when discs continued to grow, and eventually folded onto themselves. Such cooperative overproliferation in response to EGFR/Ras activation was formerly described in cells that harbor mutations in the Hippo pathway components fat (Garoia et al., 2005) and wts (Pagliarini and Xu, 2003). Notably, expression of activated Ras or Raf in ex mutants caused the same dramatic overgrowth phenotypes (Figure S1A). Further deletion of cic rescues the proliferation but not the differentiation defects of ras^DC408 mutat cells, (D) wts^149 mutat cells overproliferate, and (E) cic^Q474X wts^149 double-mutat cells induce overgrowth and many folds in the tissue. The eye field is very small. All discs are from day-5 larvae and are shown at the same magnification. See Figure S5B for older discs. Scale bar in (A), 100 μm (all images are shown on the same scale).

Figure 2. The Synergy between the Two Pathways Is at the Level of Transcriptional Regulation
(A–E) Third-instar eye-antennal imaginal discs (top row) and male fly heads (bottom row) carrying eyflp (expressed only in the head) induced clones of indicated genotypes. Mutant clones are marked by the absence of GFP (green in top row, gray in middle row) or lack of mini-w^+ expression (red in bottom row). (A) cic^Q474X mutant cells occupy roughly half the tissue and have no effect on photoreceptor differentiation marked by ELAV (red), (B) ras^DC408 mutant clones are small in the larval eye and do not contribute to the adult tissue, (C) further deletion of cic rescues the proliferation but not the differentiation defects of ras^DC408 mutant cells, (D) wts^149 mutant cells overproliferate, and (E) cic^Q474X wts^149 double-mutant cells induce overgrowth and many folds in the tissue. The eye field is very small. All discs are from day-5 larvae and are shown at the same magnification. See Figure S5B for older discs. Scale bar in (A), 100 μm (all images are shown on the same scale).

Genotypes: (A): y w eyflp y; FRT82B ubiGFP^+/-FRT82B cic^Q474X; (B): y w eyflp y; FRT82B ubiGFP^+/-FRT82B ras^DC408; (C): y w eyflp y; FRT82B ubiGFP^+/-FRT82B cic^Q474X; (D): y w eyflp y; FRT82B ubiGFP^+/-FRT82B wts^149; (E): y w eyflp y; FRT82B ubiGFP^+/-FRT82B cic^Q474X wts^149.

The Synergy between Ras and Hippo Signaling Occurs via the Downstream Effectors Cic and Yki
We next investigated at which level of the signal transduction cascade the synergy operates. First, we overexpressed EGFR^top together with Yki, the downstream transcriptional co-activator of the Hippo pathway. Again this caused highly synergistic overgrowth phenotypes (Figure S1A), indicating that the synergy operates at the level of the downstream transcription effector of the Hippo pathway.

To determine the level of interaction in the Ras pathway, we next tested mutations in the Cic transcription factor. Cic is an HMG-domain transcriptional repressor that mediates the effect of Ras on cell proliferation during eye imaginal disc development (Tseng et al., 2007). Cic is a suppressor of cell proliferation in imaginal discs and activated MAPK phosphorylates Cic, causing its degradation. Ras signaling is required for cell proliferation and cell type specification. Thus, cells with a complete loss of Ras signaling, due to mutations in egfr, ras, or raf, do not proliferate and fail to differentiate (Figures 2A and 2B) (Yang and Baker, 2001; 2003). The failure of ras mutant cells to proliferate is due to ectopic Cic activity because ras, cic double-mutant cells proliferate normally (Figure 2C) (Tseng et al., 2007). Despite the strong rescue in cell proliferation, removal of Cic does not rescue the photoreceptor specification defects of ras mutant cells. Double-mutant cells contribute to the adult eye, but cannot differentiate into photoreceptor cells (Figure 2C). Therefore, Cic is a major effector of Ras signaling in proliferation control (Tseng et al., 2007).

We then analyzed the interaction between loss of Cic and loss of Hippo signaling. While deletion of cic alone increased cell proliferation in eye discs only slightly, if at all (Figure 2A), simultaneous deletion of cic together with wts enhanced the wts mutant phenotype and triggered massive overgrowth
beyond the wts phenotype (Figures 2D and 2E). As previously observed, wts mutant cells occupied the majority of the tissue and led to overgrown organs (Justice et al., 1995; Xu et al., 1995), and a few animals achieved adulthood (Figure 2D). However, no adults with cic wts clones were recovered (Figure 2E).

We then induced clones with the pan-eye and wing disc drivers ey-FLP and ubx-FLP in combination with the Minute technique to produce imaginal discs that were nearly entirely mutant (Morata and Ripoll, 1975). Eye and wing discs with cic wts double-mutant clones had dramatic overgrowth phenotypes that caused the discs to fold onto themselves (Figures 3A–3D). Time-course analysis and quantifications showed that animals with cic wts double-mutant wing discs had larval periods extended by about 4 days, similar to animals with wts mutant discs. Mutant cells continued to proliferate during this extra time, and cic wts double-mutant discs were consistently larger than wts discs, reaching up to 10-times the normal disc size (Figures 3E and 3F).

Importantly, ectopic Yki also synergized with Cic knockdown in causing tissue expansion (Figures S1 Ba and S1 C). Hence, deregulating the Ras and Hippo pathways at the level of their downstream transcription factors produced the same highly synergistic overgrowths. Altogether, these data show that the synergy between the Hippo and Ras pathways is at the level of transcription.

Loss of Wts and Cic Synergistically Activates Ras Target Genes

Because the synergy between the Ras and Hippo pathways is at the level of the downstream transcription factors, the two pathways may converge on a set of synergistically regulated target genes that are activated only when both pathways are deregulated. We therefore performed genome-wide expression analyses (RNA sequencing [RNA-seq]) in control, cic, and wts
single mutant, as well as *cic* *wts* double-mutant wing discs, to identify synergistically regulated target genes.

Mutations in *wts* cause developmental delay, and we thus produced gene expression profiles by RNA-seq at day 5 in all genotypes and at day 9 in *wts* single-mutant and *cic wts* double-mutant wing discs generated using ubx-FLP and a Minute chromosome (as shown in Figure 3E). We focused on genes with a minimum average expression of 50 counts across all samples, and significant upregulation was defined as a minimum 1.4-fold increase, with less than 1% false discovery rate (log fold change [logFC] > 0.5 and adjusted p -value < 0.01). We found that the expression of 350 genes was significantly upregulated in day-5 *cic wts* double-mutant wing discs compared with discs with wild-type control clones. Importantly, this cluster contained only 12 genes, which were upregulated in *cic* (*wts* (Figure 4C). The genes in this cluster were mostly uncharacterized and in day-9 *cic wts* double-mutant discs, but not affected in *cic* mutants (Figure 4D). These genes are potentially shared target genes of Yki and Wts.

The discovery of this synergistically deregulated gene set then prompted two questions. First, what are the transcription factors that regulate the synergistically regulated genes? Second, how does the deregulation of the Hippo pathway induce their expression?

iRegulon Identifies Three Key Transcription Factors that Mediate the Synergy

To understand the mechanisms that regulate the transcription of the synergistic genes and to elucidate how Ras target genes were hyperinduced in double-mutant cells, we searched for transcription factor binding sites that were enriched near the genes of the four gene clusters using iRegulon, a sequence-based motif discovery tool (Janky et al., 2014). iRegulon reverse engineers a gene regulatory network from the expression data by identifying enriched motifs for transcription factors in a given set of genes (Janky et al., 2014). We focused our search on the introns and 5-kb upstream region of each gene. Reassuringly, one of the top motifs (normalized enrichment score [NES] of 4.3, see STAR Methods) in the Wts cluster belonged to the Sd transcription factor, and high-confidence Sd binding sites were detected in 123 of 295 genes in this cluster and in all known direct Sd target genes (Atkins et al., 2016). The very top motif, however, belonged to the AP-1 transcription factors (NES = 4.76), found enriched near 154 genes, indicating the involvement of JNK signaling. Notably, the AP-1 transcription factors, Atf3 and Pdp1, are themselves part of the Wts cluster, suggesting that JNK activation is a downstream effect of Yki activity consistent with the recent literature (Ma et al., 2015). The genes with predicted AP-1 binding sites are induced at similar levels in *wts* and *cic wts* mutant discs (Figure S2A).

Surprisingly, the Cic cluster was not enriched for Cic binding sites, as only one gene, CG32354, had a Cic motif. However, iRegulon analysis on the synergistically induced genes (Figure S2B) identified the Cic binding motif as the top hit with very high confidence (NES = 6.3), followed by Stat92E (NES = 4.3) and Pnt (NES = 3.4) motifs (Figure S4A). Indeed, the previously identified Cic target genes *pnt* and *aos* (Roch et al., 2002; Jin et al., 2015) were in this synergistic cluster. Therefore, we...
Figure 4. RNA Sequencing Reveals Synergistically Regulated Genes

(A–F) SOTA found four clusters among the 350 upregulated genes in day-5 cic wts discs compared with the control discs. Row normalized heatmaps of (A) Wts cluster, (B) known Yki target genes from the Wts cluster. Dilp8 is shown separately as it is most upregulated (28-fold in wts discs) and disrupts the visualization of the data when grouped with the other genes. (C) Cic cluster, (D) additive cluster, (E) synergistic cluster, and (F) 28 genes from the Wts cluster that are further upregulated in cic wts discs (1.3-fold or more). Green bars represent average expression levels.
embarked to determine whether other synergistically regulated genes are also direct Cic targets.

Cic Directly Regulates Synergistically Induced Genes

We defined Cic target genes genome-wide using ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode, and single ligation), a robust ChIP-exo protocol that allows high-resolution mapping of binding sites (He et al., 2015). We used the Cic signal in cic wts mutant discs as background. Combining the ChIP-nexus signal with motif enrichment to determine high-confidence Cic peaks, we identified over 100 regions bound by Cic. We then further selected those peaks that were near genes that are induced in cic wts discs compared with wild-type. These strict criteria gave us a list of 19 high-confidence Cic target genes (Figure S2C). Strikingly, this set contained many regulators of the Ras pathway: the Spitz (Spi) ligand, and the negative feedback regulators Aos, Sty, Nf1, and Sulfated (Sulf1) (Butchar et al., 2012). Hence, Cic is a key factor for feedback regulation of Ras signaling.

Next, we asked which factors might regulate the expression of these 19 Cic target genes using iRegulon. As expected, iRegulon predicts that three factors, Cic, Pnt, and Stat92E, regulate the synergistically induced genes. The heatmaps of these 46 synergistic genes are shown in Figure S2B. Eight genes whose expression did not stay elevated at day-9 cic wts discs were removed from the group as they are unlikely to drive the synergistic phenotype.

Figure 5. Pnt and STAT Are Predicted Key Regulators of the Synergistic Genes and Are Required for the Synergistic Overgrowth

(A) iRegulon predicts that three factors, Cic, Pnt, and Stat92E, regulate the synergistically induced genes. The heatmaps of these 46 synergistic genes are shown in Figure S2B. Eight genes whose expression did not stay elevated at day-9 cic wts discs were removed from the group as they are unlikely to drive the synergistic phenotype.

(B) iRegulon analysis on Cic target genes returns the same network as shown in (A). The heatmaps of these 19 direct Cic target genes are shown in Figure S2C.

(C) Heatmap showing the expression levels of JAK-STAT ligands Upds and the transcription factors of Ras signaling, Pnt and Cic, in different genotypes and time points.

(D–J) Seven-day-old wing (top) and eye-antennal (bottom) imaginal discs of indicated genotypes. UAS-driven GFP (green) marks the expression domain of the dpp-Gal4 driver. Nuclei are shown in red marked by DAPI (D–G) or ex-lacZ expression (I and J). (H) Quantification of the wing disc areas with our synergistic combination (activated EGFR expression in ex mutant background [dark gray]) and upon additional knockdown of pnt (light gray) at different time points. We measured at least six discs per genotype. For dpp > EGFRtop in ex: day 5, n = 11; day 6, n = 10; day 7, n = 9. For dpp > EGFRtop + pnt-RNAi in ex: day 5, n = 6; day 6, n = 10; day 7, n = 9. The error bars represent SD. Scale bar in (F), 100 μm (all images are shown on the same scale). Genotypes: (D) and (E): yw; FRT40A exAP50/FRT40A exe1; UAS-EGFRtop/Gal4, UAS-GFP; (F) and (G); y w; FRT40A exAP50/UAS-SOCS-36e/FRT40A exe1; UAS-EGFRtop/dpp-Gal4, UAS-GFP; (I) and (J): y w; FRT40A exAP50/FRT40A exe1; UAS-EGFRtop/dpp-Gal4, UAS-GFP, UAS-pnt-RNAi (UAS-pnt-RNAi is BL31936). See also Figure S2.
The finding that synergistically regulated genes are highly enriched for Cic target genes is striking, as it shows that the repressor function of Cic on its target genes is dependent on the level of Yki activity. Thus, while Cic represses the expression of Ras target genes, loss of this brake needs to be combined with activation of Yki-Sd to strongly induce their expression. This then prompted the question of whether the Yki-Sd complex directly regulates Cic target genes.

Sd and Cic Do Not Compete for DNA Binding

Intriguingly, the consensus DNA binding sequences of Sd (CATTCC) and Cic (CATT(C/G)A) are very similar and differ only at one position. Hence, Sd may directly compete with Cic for binding to regulatory sequences. We tested this hypothesis using the ChIP-nexus data for Cic and also performed ChIP-nexus for Sd. Combining ChIP-nexus signal with motif enrichment identified 800 regions bound by Sd in the genome of wing disc cells. Strikingly, we did not find binding sites that were bound by both Sd and Cic in wild-type wing discs. We then compared Sd binding between wts and cic wts mutant discs to ask whether Sd now occupies more sites. However, we did not detect new Sd peaks where Cic normally binds. Therefore, Sd does not regulate Cic target genes by competing with Cic for binding the DNA.

We also tested whether Cic can regulate Sd target genes by searching for Sd peaks in their regulatory regions. We did not find any Cic binding in the prominent Yki-Sd target genes DIAP1, ex, wts, ft, ds, fj, or ilp8. On the other hand, these regulatory regions were enriched for Sd motifs and had Sd binding as expected. In agreement with these findings, the expression of Yki-Sd target genes were induced at comparable levels in wts and cic wts mutant discs (Figure 4B), supporting the conclusion that Cic does not regulate the expression of Yki target genes. Therefore, we conclude that Sd and Cic do not affect each other’s ability to bind to target DNA in vivo, and their binding motifs, despite only a single nucleotide difference, are clearly distinct.

JAK-STAT Signaling and Pnt Contribute to the Synergistic Overgrowth

iRegulon found no enrichment for Sd binding sites within our synergistic gene set. However, in addition to the Cic motif, this gene set was enriched for Pnt and Stat92E binding sites. Stat92E is the transcription factor of the JAK-STAT pathway, another important pathway in tumorigenesis (Amoyel et al., 2014; Zoranovic et al., 2013). Twenty-one of our 46 synergistic genes, including Pnt itself, are predicted to be regulated by Pnt, Cic, and Stat92E together (Figure 5A). More than half of our synergistic genes (27/46) had binding sites for at least two out of these three factors (Figure 5A). Therefore, we tested the importance of Pnt and Stat92E for the synergistic overgrowth.

First, we found that the ligands of the JAK-STAT pathway, the Unpaired cytokines Upd1 (also known as os), Upd2, and Upd3 are highly upregulated (2.1-, 2.6-, and 2.4-fold, respectively) in day-5 wts mutant discs (Figure 5C). Upd levels stayed high in day-9 wts discs and were further upregulated in cic wts double-mutant discs (3-, 6.18-, and 4.5-fold, respectively) (Figure 5C). Hence, having upregulated Upd ligand expression, JAK-STAT signaling is likely more active in wts and cic wts mutant cells. JAK-STAT signaling is frequently implicated in human cancer and is commonly induced in *Drosophila* tumor models (Atkins et al., 2016; Davie et al., 2015; Wu et al., 2010). We then tested whether JAK-STAT activation is important for the synergistic overgrowth of cic wts mutants by expressing an inhibitor of the pathway, Socs36E (Stec et al., 2013), in our synergistic background (activated EGFR expression in ex). Co-expression of Socs36E efficiently suppressed the overgrowth phenotype in both wing and eye discs (Figures 5F and 5G versus 5D and 5E). Notably, the expression of the Upd genes is regulated by the Yki-Sd complex (Bunker et al., 2015), and we found ChIP-nexus peaks and corresponding motifs for both Sd and Cic near the upd genes (Figure S2D). Altogether, these results show that the transcriptional regulation of the Upd genes and the activation of JAK-STAT signaling is an important contributor to the synergy between the Hippo and Ras pathways.

We then used the same assay to test the contribution of Pnt upregulation to the synergistic phenotype. We constructed a stock where *UAS-pnt-RNAi* is under the control of the *dpp-Gal4* driver. These flies are viable, fertile, and only have mild venation defects on their wings (not shown), suggesting that Pnt function is only slightly reduced but largely intact in this background. However, this mild downregulation of Pnt activity was sufficient to prevent the development of fully fledged synergistic overgrowth. Discs that expressed *pnt-RNAi* in addition to activated EGFR in an ex mutant background did not display the full-grown synergistic overgrowth phenotype (Figures 5H–5J). Therefore, high Pnt levels are important for the synergistic overgrowth obtained when both Ras and the Hippo pathways are manipulated.

Yki-Sd Controls the Expression of the Ras Pathway

Transcription Factors Pointed and Capicu

Having established that the network predicted by iRegulon is indeed driving the synergistic growth, and that Yki-Sd can influence this network via induction of Upd transcription, we asked whether Yki-Sd could also regulate the other nodes of the network, Pnt and Cic.

We first had a closer look at the regulation of Pnt. The PntP2 isoform is known to be activated by MAPK phosphorylation and drives the expression of PntP1 in eye discs (Schwartz et al., 2013). In addition, Cic negatively regulates Pnt expression in intestinal stem cells (Jin et al., 2015). To characterize its potential regulation by Hippo signaling, we generated antibodies against Pnt, which detected a pattern identical to dpeRK and complementary to Cic in the wing and eye discs (Figures 6A, 6B, S3A, and S3B). Removal of Cic was sufficient to derepress Pnt expression in wild-type and ex mutant cells (Figures 6C, 6C’, S3F, and S3F’). Since cic wts mutant clones occupy large areas, Pnt was expressed widely and lost all pattern in cic wts discs (Figures S3G and S3G’). These data confirm a tight regulation of Pnt expression by Ras signaling and establish Cic as an important regulator of *pnt* expression in imaginal discs. Direct regulation of Pnt by Cic is also strongly supported by our ChIP data. Of the 100 top Cic peaks in the genome of wing disc cells, seven were in the pnt region and corresponded to Cic motifs (Figure 6D, Cic ChIP signal is shown in red; Sd ChIP signal is shown in blue). Furthermore, the RNA-seq data show that transcription of *pnt* is induced when the repressor Cic is removed (Figure 5C). Notably, RNA levels of *pnt* are further increased in cic wts double-mutant
Finally, we investigated whether Cic is a Sd target gene. We found multiple Sd ChIP-nexus peaks with corresponding Sd binding motifs in the cic gene region (Figure 6F). However, cic RNA levels, as well as Cic protein levels, were only slightly higher in wts mutant wing discs (Figure 5C, 1.1-fold in day-5 discs and 1.23-fold in day-9 discs). On the other hand, Cic accumulation was obvious in wts clones, in eye disc posterior to the morphogenetic furrow and in between the clusters of differentiating photoreceptor cells (Figures 5E and 6E), where Cic is normally present at low levels (Figure S3B). Cic is expressed at high levels and uniformly in the wing discs, except for the cells where MAPK leads to its degradation (Figure 6A). We thus hypothesized that Yki-Sd are required for the high uniform Cic expression. Indeed, knockdown of Yki in the posterior half of wing discs reduced Cic levels (Figures 6G–6H'). Hence, induction of Cic transcription by Yki-Sd increases the threshold of Ras activity that is required to induce its target genes.

DISCUSSION

The main conclusion from our study is that Hippo activity determines the outcome of Ras signaling. In our model, combined action of Hippo signaling and the repressor Cic prevents excessive proliferation and allows differentiation by keeping off a set of key target genes (Figure 7). Cic suppresses many of these genes directly, and Hippo signaling prevents their full activation, at least partially, by keeping both JAK/STAT activity and Pnt levels low. This model is based on three key observations. First, we found that activated Ras signaling has different outcomes in wild-type discs versus ex mutant discs. While hyperactivation of Ras signaling in a wild-type disc promotes cellular differentiation, Ras activation combined with loss of ex drives aggressive hyperproliferation. Second, we defined a set of synergistic genes that were strongly induced only when the repressor Cic was removed and Yki was simultaneously activated. These genes were predicted to be regulated by Cic, Pnt, and Stat92E. Indeed, we confirmed that high Pnt levels and JAK/STAT activity contributed to the synergistic overgrowth phenotype. Lastly, we found that the Hippo pathway transcription factor Sd directly regulates the expression of the JAK/STAT ligands and the Ras signaling transcription factors Cic and Pnt. When Hippo signaling and Cic are simultaneously inhibited, the synergistic genes and the Yki targets are expressed at high levels, paving the way to cellular transformation.

We defined a small set of direct Cic target genes in wing discs. Identification of many feedback regulators of Ras signaling among direct Cic targets emphasizes the central role of this protein in controlling Ras output despite the weak phenotypic

Figure 7. Model of the Transcriptional Interaction between the Hippo and Ras Pathways

The Hippo pathway effectors Yki-Sd regulate the expression of the Pnt and Cic transcription factors of the Ras pathway. The induction of Pnt regulates the sensitivity of a cell to Ras signaling, while the induction of Cic increases the threshold required for productive output. As a result, Cic target genes and synergy are only fully activated when Cic is removed and Yki is simultaneously activated. Thus, the activity of the Hippo pathway together with the repressor Cic provide parallel brakes that limit Ras signaling output and prevent hyperproliferation and cellular transformation. Blue highlights the interactions revealed in this study. See also Figure S5.

discs, although there is no increase in wts single mutants (Figure 5C). In fact, pnt is expressed at lower levels in wts and ex mutant discs (Figures 5C and S3E), probably due to higher Cic levels. Therefore there must be another, positive input into pnt expression that depends on Yki-Sd (Figure 5A). Indeed, our ChIP-nexus detected a strong Sd peak containing an Sd motif (blue) in the pnt gene, which is also enriched for Pnt (green) and Stat92E (purple) binding sites (Figure 6D). We conclude that Cic, Yki-Sd, Stat92E, and Pnt itself control pnt transcription, and that repression by Cic is dominant over the activating inputs.
consequences of its removal. Notably, Cic expression is complementary to that of the other two transcription factors of Ras signaling, Pnt and Yan (Figures S3A–S3C). Indeed, Cic controls Pnt transcription in multiple tissues, but our RNA-seq and ChIP-nexus data on wing discs suggest that Cic does not regulate Yan.

Our data reveal a fundamental interaction between the Ras and Hippo pathways occurring at the level of their downstream transcription factors. Other points of crosstalk have been reported in the literature. Most prominently, MAPK was suggested to phosphorylate and activate the LIM-domain protein Ajuba, a negative regulator of the Wts kinase (Reddy and Irvine, 2013). Similarly, oncogenic Ras can induce Yap activation (Reddy and Irvine, 2013; Hong et al., 2014). We confirmed that overexpression of constitutively active EGFR or Ras induced the expression of the Yki-regulated reporter gene ex-lacZ (Figures S4A and S4B). Surprisingly however, this was not a general effect and was dependent on the position of the clone. Thus the effect of Ras hyperactivation on the Hippo pathway depends on the fate of a cell. Likewise, only a fraction of patients with activating mutations in Ras have elevated Yap levels paralleling the context dependency that we observed in discs (Lin et al., 2015). Unlike activation of Ras, loss of cic did not induce Yki activity. Notably, this was true in a wild-type background and in ex and wts mutant backgrounds where loss of cic caused synergistic overgrowth (Figures S4C–S4F). Two conclusions follow from these results. First, Ras signaling crosses over to the Hippo pathway only upstream of Cic, consistent with the model whereby MAPK regulates the activity of Ajuba (Reddy and Irvine, 2013). Second, the synergy between Ras and Hippo signaling cannot depend on the regulation of Hippo pathway activity by Ras signaling, because loss of cic synergized with loss of wts in growth control even though Cic does not affect Yki activity. Thus, the synergy between the Hippo and Ras pathways is not due to a general activation of Yki in response to loss of Cic. Rather, we show that the synergy is due to hyperactivation of the Ras signaling output, which is under direct Yki-Sd control. Therefore, there are at least two points of crosstalk between the two pathways: one upstream of Cic via Ajuba and another at the level of transcription factors as described here.

Strikingly, in the cic wts double-mutant discs, the activities of the other major developmental pathways are reduced: Dpp, Hh, N, and Wg signaling activity readouts are expressed at low levels, suggesting a block in the differentiation program (Figure S5A). Activation of two key Cic target genes, Sul1 and Brk, are likely to account for this observation. Sul1 encodes an extracellular protein from the endosulfatase family that regulates the amount and pattern of sulfate groups on heparan sulfate proteoglycans (HSPGs). HSPGs in turn play major roles in morphogen distribution and patterning (Yan and Lin, 2009). Accordingly, Sul1 was linked to dampening the activity of Wg and Hh signaling pathways (Kleinschmit et al., 2013; You et al., 2011; Wojcinski et al., 2011). Brk, the default repressor of Dpp signaling (Affolter and Basler, 2007), is also a direct Cic target and is highly induced in cic wts cells. As a result of the action of Sul1, Brk, and potentially others, we see a block in differentiation signature in cic wts double-mutant cells (Figure S5A). In these cells the readout for Ras signaling is highly upregulated, and simultaneously Dpp, N, Wg, and Hh pathways are downregulated. Consequently, cic wts cells lose their differentiation potential and proliferate aggressively (Figure S5B). Therefore, combined mutations in Hippo and Ras pathways are especially dangerous as both brakes that dampen the transformation potential of a cell are removed (Figure 7). We show that Cic and its targets are central to Ras-driven tumorigenesis and the choice between differentiation and proliferation. Activation of Yki/YAP along with Cic degradation switches the response of a cell from differentiation to proliferation by allowing full activation of Cic targets.

Our analysis of the mechanism by which Hippo and Ras synergize to produce massive tissue overproliferation in flies is likely to be relevant to tumor formation in vertebrates. Recent work indicates that if activation of Ras or Raf is coupled with amplification of the YAP region, the resulting carcinomas are more aggressive and resistant to MEK and Raf inhibitors (Lin et al., 2015). It has also been shown that mutations in Nf2, an upstream regulator of Hippo, cooperate with activating Ras mutations in a mouse model of thyroid cancer and that co-expression of Ras and YAP lead to brain tumor formation in zebrafish (Garcia-Rendueles et al., 2015; Mayrhofer et al., 2017). Lastly, the regulation of Cic transcription by Yki/Sd may be conserved as Cic is induced in the mouse liver upon YAP overexpression (Yimlamai et al., 2014). These findings bring forth the conservation of tumor-suppressor pathway structures and underline the need for a mechanistic understanding such as the one exposed here. Our results argue that the transcriptional output of Ras signaling is under Hippo control and that Cic targets can only be fully activated when Yki/YAP is active (Figure 7). Requiring Yki activation and simultaneous removal of Cic for full induction, such “synergy genes” may represent attractive drug targets.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- CONTACT FOR REAGENT AND RESOURCE SHARING
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
- METHOD DETAILS
 - Immunohistochemistry
 - Antibody Production
 - RNA-seq Sample Preparation and Sequencing
 - Isolation of Chromatin from Imaginal Discs
 - ChIP-nexus
- QUANTIFICATION AND STATISTICAL ANALYSIS
 - iRegulon Normalized Enrichment Scores (NES)
 - RNA-seq Analysis
 - ChIP-nexus Analysis
- DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and can be found with this article online at http://dx.doi.org/10.1016/j.devcel.2017.08.013.

AUTHOR CONTRIBUTIONS

F.H. and G.H. designed the study; S.A. and J.Z. contributed methodology; J.P., L.S.-G., M.N., and F.H. performed the experiments; J.J. analyzed the data; and F.H. and G.H. wrote the paper.

ACKNOWLEDGMENTS

Library preparation and RNA-seq were done by Lausanne Genome Technologies Facility. Confocal imaging was done at the Cellular Imaging Facility of University of Lausanne. We thank Mardelle Atkinson for advice on RNA-seq sample preparation and Cynthia Stabler for antibody design. We are grateful to Jeffrey Johnston for initial processing of the raw ChIP data and Wanqing Shao for help with GEO submission of the ChIP-nexus data. We thank Vincent Dion, Richard Benton, and members of the F.H. laboratory for suggestions on the manuscript. We thank Martin Muller (Affolter lab, Biozentrum), Iwar Harinaran (UC Berkeley), Graeme Mardon (Baylor College of Medicine), Benny Shilo (Weizmann Institute), Jordi Casanova (IRB Barcelona), Bruno Lemaire (EPLF), and Robert Holmgren (Northwestern University) for fly stocks and antibodies. The anti-Elav (7E8A10) and anti-Yan (8B12H9) antibodies developed by Gerald Rubin were obtained from the Developmental Studies Hybridoma Bank (DSHB), created by the NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242. Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) and Vienna Drosophila Resource Center (VDRC, www.vdrc.at) were used in this study. This work is funded by a Swiss National Science Foundation professorship to F.H. (PP003P_150682), an Odysseus Type I grant from the Flemish Agency for Innovation by Science and Technology. PhD Fellowship from the Flemish Agency for Innovation by Science and Technology (724226_cis-CONTROL) to S.A., the Stowers Institute for Medical Research, and G.0306.16) and S.A. (G.0640.13, G.0791.14, and G.0C04.17), Special Research Foundation (FWO) to G.H., FWO project grants to G.H. (G.0954.16 and G.0306.16) and S.A. (G.0640.13, G.0791.14, and G.0C04.17), Special Research Fund (BOF) KU Leuven grants to S.A. (PF/10/016 and OT/13/103), a Foundation Against Cancer grant to S.A. (2012-2F), an ERC CoG (724226 cis-CONTROL) to S.A., the Stowers Institute for Medical Research, and an NIH New Innovator Award to J.Z. (DP2 OD004561-01). J.Z. has a Ph.D Fellowship from the Flemish Agency for Innovation by Science and Technology.

Received: April 13, 2017
Revised: July 4, 2017
Accepted: August 17, 2017
Published: September 25, 2017

REFERENCES

Oncotarget 7, 24063–24075.

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-β-gal</td>
<td>Promega</td>
<td>Z3781; RRID: AB_430877</td>
</tr>
<tr>
<td>r-ELAV</td>
<td>Developmental Studies Hybridoma Bank (DSHB)</td>
<td>7E8A10; RRID: AB_528218</td>
</tr>
<tr>
<td>m-Ptc</td>
<td>DSHB</td>
<td>Apa-1; RRID: AB_528441</td>
</tr>
<tr>
<td>m-Yan</td>
<td>DSHB</td>
<td>8B12H9; RRID: AB_531807</td>
</tr>
<tr>
<td>r-Ci</td>
<td>Robert A. Holmgren, Northwestern University</td>
<td>DSBH Cat# 2A1; RRID: AB_2109711</td>
</tr>
<tr>
<td>rb-Pnt</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>rb-Cic</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>gp-Cic</td>
<td>Tseng et al., 2007</td>
<td>RRID: AB_2569908</td>
</tr>
<tr>
<td>rb-Ex</td>
<td>Allen Laughon, University of Wisconsin-Madison</td>
<td>N/A</td>
</tr>
<tr>
<td>rb-Sd</td>
<td>Ikmi et al., 2014</td>
<td>RRID: AB_2568089</td>
</tr>
</tbody>
</table>

Deposited Data

RNA-seq in wing imaginal discs. Triplicates of wt_d5, cic_d5, wts_d5, wts_d9, cic wts_d5, and cic wts_d9.	This paper	GEO: GSE96868
ChIP-Nexus-seq in wing imaginal discs - against Scalloped: 2 wt, 2 wts, 3 cic wts samples - against Capicua: 2 wt, 2 wts, 2 cic wts samples	This paper	GEO: GSE96868
Capicua expression in mouse livers	Yimlamai et al., 2014	GEO: GSE55560

Experimental Models: Organisms/Strains

w; FRT40A ex^{170}/CyO,GFP; dpp-Gal4; UAS-GFP^{tts}/TM6B	This paper	N/A
y w; FRT40A ex^{170}/CyO,GFP; UAS-RasV12{1}/TM6B	This paper	N/A
y w; FRT40A ex^{170}/CyO,GFP; UAS-RafGOF / TM6B	This paper	N/A
y w; FRT40A ex^{170}/CyO,GFP; UAS-EGFR^{tts} / TM6B	This paper	N/A
y w; FRT40A ex^{170}/CyO,GFP; dpp-Gal4; UAS-pnt-RNAi / TM6B	This paper	UAS-pnt-RNAi is BL31936
y w; UAS-cic-RNAi / CyO,YFP,Dfd; UAS-Yki	This paper	N/A

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for resources and reagents should be directed and will be fulfilled by the Lead Contact, Fisun Hamaratoglu (fisun.hamaratoglu@unil.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster were grown on standard fly medium and kept in 26°C incubators. The imaginal discs were dissected from larvae of both sexes.

METHOD DETAILS

Immunohistochemistry

The crosses were transferred to fresh tubes every day (for more precise staging practices see (Hamaratoglu et al., 2011)). For immunohistochemistry, dissected larval complexes, free of fat body and salivary glands, were fixed in 4% pfa in PBS for 25 minutes. After extensive washes, the discs were blocked in PBTN (PBS+0.03% TritonX+2% Normal Donkey Serum, Fisher Scientific, NC9624464) for 1h. Primary antibody incubation was O/N in the cold room; secondary antibody incubation was for 2h. All incubation and wash steps were done in ice-cold solutions on a rotator at RT with the exception of the primary antibody incubation. After final washes, all excess liquid was removed and 2 drops of Vectashield (Vector Labs, H-1200) were added; the discs were mounted on slides in Vectashield the next day. Antibodies used were: m-b-gal (1:2000, Promega), r-ELAV (1:1500, DSHB-7E8A10), m-Yan (1:10, DSHB-8B12H9), r-Ci (1:150, Robert A. Holmgren), rb-Pnt (1:2000), gp-Cic (1:300, Iswar Hariharan).

Antibody Production

Antibodies against Pnt and Cic were produced by GenScript. They were antigen affinity purified and resuspended in PBS pH 7.4 / 0.02% sodium azide at the following concentrations: anti-rabbit-Pnt = 2.622 mg/ml, anti-rabbit-Cic = 1.715 mg/ml. Pnt C-term half (last 298 aas), that is common to all isoforms, was used as an epitope and the antibody recognizes overexpressed Pnt-P1 and Pnt-P2. For Cic, a C-term small peptide (NDSDMDDTPFDYRK) was used to generate a peptide antibody.

RNA-seq Sample Preparation and Sequencing

Wing discs were collected from 12-35 larvae under sterile conditions and immediately lysed. Genotypes used were: wt, day 5 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B), c(, day 5 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B cic^{4745}), wts, day 5 and day 9 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B wts^{149}), cic wts, day 5 and day 9 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B cic^{4745} wts^{149}). RNA extraction was done using Ambion RNAqueous Micro kit. 500ng total RNA and Illumina TruSeq mRNA Library Prep reagents were used according to the protocol recommended by the manufacturer for library preparation and the sequencing was done using Illumina HiSeq2500.

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for resources and reagents should be directed and will be fulfilled by the Lead Contact, Fisun Hamaratoglu (fisun.hamaratoglu@unil.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster were grown on standard fly medium and kept in 26°C incubators. The imaginal discs were dissected from larvae of both sexes.

METHOD DETAILS

Immunohistochemistry

The crosses were transferred to fresh tubes every day (for more precise staging practices see (Hamaratoglu et al., 2011)). For immunohistochemistry, dissected larval complexes, free of fat body and salivary glands, were fixed in 4% pfa in PBS for 25 minutes. After extensive washes, the discs were blocked in PBTN (PBS+0.03% TritonX+2% Normal Donkey Serum, Fisher Scientific, NC9624464) for 1h. Primary antibody incubation was O/N in the cold room; secondary antibody incubation was for 2h. All incubation and wash steps were done in ice-cold solutions on a rotator at RT with the exception of the primary antibody incubation. After final washes, all excess liquid was removed and 2 drops of Vectashield (Vector Labs, H-1200) were added; the discs were mounted on slides in Vectashield the next day. Antibodies used were: m-b-gal (1:2000, Promega), r-ELAV (1:1500, DSHB-7E8A10), m-Yan (1:10, DSHB-8B12H9), r-Ci (1:150, Robert A. Holmgren), rb-Pnt (1:2000), gp-Cic (1:300, Iswar Hariharan).

Antibody Production

Antibodies against Pnt and Cic were produced by GenScript. They were antigen affinity purified and resuspended in PBS pH 7.4 / 0.02% sodium azide at the following concentrations: anti-rabbit-Pnt = 2.622 mg/ml, anti-rabbit-Cic = 1.715 mg/ml. Pnt C-term half (last 298 aas), that is common to all isoforms, was used as an epitope and the antibody recognizes overexpressed Pnt-P1 and Pnt-P2. For Cic, a C-term small peptide (NDSDMDDTPFDYRK) was used to generate a peptide antibody.

RNA-seq Sample Preparation and Sequencing

Wing discs were collected from 12-35 larvae under sterile conditions and immediately lysed. Genotypes used were: wt, day 5 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B), c(, day 5 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B cic^{4745}), wts, day 5 and day 9 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B wts^{149}), cic wts, day 5 and day 9 (y w ubxflp/ y w; FRT82B M(3) ubiGFP/ FRT 82B cic^{4745} wts^{149}). RNA extraction was done using Ambion RNAqueous Micro kit. 500ng total RNA and Illumina TruSeq mRNA Library Prep reagents were used according to the protocol recommended by the manufacturer for library preparation and the sequencing was done using Illumina HiSeq2500.
Isolation of Chromatin from Imaginal Discs

We used larvae of following genotypes: wild-type control (yw ubxflp/ yw; FRT82B M(3) ubiGFP/ FRT 82B), 500 wing discs/ sample; wts mutant discs from day9 giant larvae (yw ubxflp/ yw; FRT82B M(3) ubiGFP/ FRT 82B wts149), 100 wing discs/ sample; cic wts mutant discs from day9 giant larvae (yw ubxflp/ yw; FRT82B M(3) ubiGFP/ FRT 82B cic247fX wts149), 100 wing discs/ sample.

Third instar larvae were dissected in cold PBS and imaginal disc complexes (anterior one third of the larvae after removing the fat body and salivary glands) were fixed in 1 ml fixation buffer (50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], pH 7.5; 1 mM ethylenediaminetetraacetic acid [EDTA]; 0.5 mM ethylene glycol tetraacetic acid [EGTA]; 100 mM NaCl; 2% formaldehyde) for 30 min at room temperature. Disc complexes were washed 3x fast and 2x 20 minutes with PBST (PBS, pH 7.4; 0.1% Triton X-100; 0.1% Tween-20), and were stored at 4 °C until enough discs were obtained. 100-500 wing discs were dissected away from the cuticle and resuspended in buffer A2 (15 mM HEPES, pH 7.5; 140 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 1% Triton X-100; 0.1% sodium deoxycholate; 0.1% sodium dodecyl sulfate [SDS]; 0.5% N-lauroylsarcosine; 1× Roche complete protease inhibitor cocktail, cat. no. 5056489001). Tubes were flash frozen in liquid nitrogen and stored at -80 °C. Imaginal discs were pooled to reach 500 wt discs (or 100 mutant), and sonication was performed in a Bioruptor sonicator for 5 min (30 s on/off cycle at the “high” setting) in buffer A2. Following centrifugation (16,000 x g; 10 min at 4 °C), the supernatant containing soluble chromatin was transferred to fresh tubes, and used for ChIP-nexus.

ChIP-nexus

20 µg antibody (rb-Sd (Ikmi et al., 2014) or rb-Cic) was incubated with Protein A and Protein G beads for 6 hours. Chromatin isolated from 500 wild-type or 100 mutant imaginal discs were added to antibody coated beads and incubated overnight at 4 °C with end to end rotation in a 1ml volume. ChIP-nexus digestion and library preparation was performed as published (He et al., 2015), with minor modifications. To repair the DNA ends, NEBNext End Repair Module (NEB#E6050) was used, and reactions were set up in a 50 µl volume at 20 °C for 1 h with gentle mixing in a thermomixer. The dA tailing reactions were set up in a 50 µl final volume, incubated for 30 min at 37 °C using the NEBNext dA-Tailing Module(NEB#E6053). The ChIP-nexus adaptors were then ligated by incubation at 25 °C for 60 min in 200 U/µl Quick T4 DNA ligase (New England BioLabs, M2200) and 60 nmol/µl Nex_adaptor in 50 µl 1× Quick Ligation Reaction Buffer (New England BioLabs, B6058S). To fill the ends of the adaptors, each sample was incubated at 37 °C for 30 min with 0.1 U/µl Klenow fragment (3′→5′ exo−) (New England BioLabs, M0212) and 0.1 mmol/µl dNTPs in 50 µl 1× NEBuffer 2. The ends were then trimmed by incubation at 12 °C for 5 min in 0.09 U/µl T4 DNA polymerase (New England BioLabs, M2003) and 0.1 mmol/µl dNTPs in 50 µl 1× NEBuffer 2. For λ-exonuclease digestion, each sample was incubated at 37 °C for 60 min with constant agitation in 0.2 µl λ-exonuclease (New England BioLabs, M2062), 5% dimethyl sulfoxide (DMSO) and 0.1% Triton X-100 in 100 µl 1× Lambda Exonuclease Reaction Buffer (New England BioLabs, B0262S). Finally, RecJf exonuclease digestion was carried out at 37 °C for 60 min with constant agitation in 0.75 U/µl RecJf exonuclease (New England BioLabs, M0264), 5% DMSO and 0.1% Triton X-100 in 100 µl 1× NEBuffer 2. After each enzymatic treatment, the chromatin was washed with the following buffers: wash buffer A (10 mM Tris-EDTA, 0.1% Triton X-100), wash buffer B (150 mM NaCl, 20 mM Tris-HCl, pH 8.0, 5 mM EDTA, 5% sucrose, 1.0% Triton X-100, 0.2% SDS), wash buffer C (250 mM NaCl, 5 mM Tris-HCl, pH 8.0, 25 mM HEPES, 0.5% Triton X-100, 0.05% sodium deoxycholate, 0.5 mM EDTA), wash buffer D (250 mM LiCl, 0.5% Igepal CA-630, 10 mM Tris-HCl, pH 8.0, 0.5% sodium deoxycholate, 10 mM EDTA) and Tris buffer (10 mM Tris, pH 7.5, 10 mM Tris, pH 8.0, or 10 mM Tris, pH 9.5, depending on the next enzymatic step). Residual buffer was drained before the next enzymatic reaction was initiated. After RecJf digestion, the Dynabeads were washed three times with RIPA buffer (50 mM HEPES, pH 7.5, 1 mM EDTA, 0.7% sodium deoxycholate, 1% Igepal CA-630, 0.5 M LiCl). The DNA was eluted, reverse crosslinked and subject to ethanol precipitation. Each sample was resuspended in 11.25 µl H2O, 1.5 µl 10× CircLigase buffer, 0.75 µl 1 mM ATP, 0.75 µl 50 mM MnCl2, 0.75 µl CircLigase (Epicentre) and incubated at 60 °C for 60 min for self-circularization. To anneal the oligonucleotide complementary to the BamH restriction site, 26 µl H2O, 5 µl FastDigest buffer (Fermentas) and 1 µl 10 µM cut oligo was added to each sample. The mixture was incubated on a thermocycler as follows: 95°C for 5 min, then ramped down to 25°C at a rate of ~3.5°C/min and held at 25°C for 30 min. For BamHI digestion, 3 µl FastDigest BamHI was added, and the sample was incubated at 37°C for 30 min. The samples were then precipitated by the addition of 150 µl TE buffer, 30 µg glycogen, 20 µl 3 M/l sodium acetate (pH 5.5) and 500 µl 100% ethanol and incubated at ~80 °C for 2.5 h. After centrifugation at 4 °C for 30 min at 16,100g, the samples were washed with 500 µl 80% ethanol, dried overnight at room temperature and resuspended in H2O. PCR amplification was performed using the NEBNext High-Fidelity 2X PCR Master Mix (NEWB0541). 1 µl each of 10 µM universal and barcoded PCR primers were used for each reaction and DNA was amplified for 18 cycles. The ChIP-nexus libraries were gel purified before submitting for sequencing and were sequenced with Illumina NextSeq 500.

QUANTIFICATION AND STATISTICAL ANALYSIS

iRegulon Normalized Enrichment Scores (NES)

For a certain gene set as input, the enrichment for each motif (9713 unique PWMs) is determined by the Area Under the Recovery Curve (AUC) of the cumulative recovery curve, along the whole-genome ranking. A Normalized Enrichment Score (NES) is computed as the AUC value of the motif minus the mean of all AUCs for all motifs and divided by the standard deviation of all AUCs. This is very
similar to a z-score, and a NES score of 3 corresponds to an FDR (false discovery rate) of 0.03 to 0.09. A high NES for a certain motif indicates that this motif is significantly overrepresented in the immediate regulatory space (5kb upstream and all introns) of the genes from the input set (Janky et al., 2014).

RNA-seq Analysis

Raw reads were cleaned for adapter sequences using fastq-mcf. Cleaned reads were mapped on *Drosophila melanogaster* FlyBase release r6.03 using TopHat2 (Kim et al., 2013) (Bowtie2/2.2.1-intel-2014a). Htseq-count (Anders et al., 2015) (HTSeq/0.6.1p1-foss-2014a-Python-2.7.6) was used to assign reads to genes using the dmel-all-r6.03.gff template. The raw counts matrix (6 conditions each with 3 biological replicates) was further processed and size factor was normalized in R. The list of 350 upregulated genes in *cic* *wts* double mutants vs wild type controls was obtained using DESeq2 (Love et al., 2014) (differential analysis with 3 replicates, cutoff; average expression > 50, logFC > 0.5 and adjusted P-value < 0.01). These 350 genes were subdivided into four groups, based on their normalized expression values (log2 transformed) in the day_5 samples, using an unsupervised clustering method (Self Organizing Tree Algorithm, standard parameters in MeV) (Saeed et al., 2003). Genes from *wts* cluster whose expression increased more than 1.3 folds from *wts* to *cic wts* were added to the synergetic cluster. The final set of 46 synergistic genes was obtained by filtering out genes whose expression dropped below wild type levels in *cic wts* day_9. Motif enrichment analysis was carried out on each gene set using iRegulon v1.4 (Janky et al., 2014), (plugin for Cytoscape) using a library of 9713 PWMs, taking the full transcript and 5kb upstream of each gene into account. Expression heat-maps were generated with the NMF package in R (Gaujoux and Seoighe, 2010), using log2 normalized counts and these options: scale="row", Rowv=F ,Colv=NA, annRow=medianexp.

ChIP-nexus Analysis

Mapped bam files and bigwig files were generated as described from the sequenced reads (He et al., 2015). Scalloped peaks were called on the (unclipped) mapped reads, using the MACS2 software suite (Feng et al., 2011) (macs2 callpeak -t sd_genotype.bam -q dm -n sd_genotype.macs2 –keep-dup all –call-summits). ChIP peaks with sufficient reads (fold change > 10) were retained for further analysis. Cic peaks were called on the (unclipped) mapped reads, using Cic-ChIP in *cic wts* mutants samples as control (macs2 callpeak -t cic_genotype.bam -q dm -n cic_genotype.macs2 –bdg –nomodel -c cic_cic.wts.bam). Using the negative controls (Cic pulldown in *cic wts* discs) removed most of the noise, allowing us to use all the called peaks for further analysis. The retained ChIP peaks were used as input sets for i-cisTarget (Imrichova et al., 2015), a tool that identifies significantly enriched motifs in a set of (ChIP) regions. Directly bound regions were defined as those regions that had their respective transcription factor DNA binding motifs significantly enriched.

DATA AND SOFTWARE AVAILABILITY

RNA-seq and ChIP-nexus datasets have been deposited to NCBI’s Gene Expression Omnibus. They are accessible through the accession number GEO: GSE96868.