Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression [published online ahead of print, 2020 Feb 4].
Krishnan J, Persons JL, Peuß R, et al.  J Exp Zool B Mol Dev Evol. 2020;10.1002/jez.b.22933. doi:10.1002/jez.b.22933
Gamete Collection and In Vitro Fertilization of Astyanax mexicanus.
Peuß R, Zakibe Z, Krishnan J, Merryman MS, Baumann DP, Rohner N.  J Vis Exp. 2019;(147):10.3791/59334. Published 2019 May 25. doi:10.3791/59334
An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish.
Loomis C, Peuß R, Jaggard JB, et al. Front Neuroanat. 2019;13:88. Published 2019 Oct 4. doi:10.3389/fnana.2019.00088
Sweet fish: Fish models for the study of hyperglycemia and diabetes.
Krishnan J, Rohner N. J Diabetes. 2019;11(3):193–203. doi:10.1111/1753-0407.12860
Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system.
Stahl BA, Peuß R, McDole B, et al. Dev Dyn. 2019;248(8):679–687. doi:10.1002/dvdy.32
Insulin resistance in cavefish as an adaptation to a nutrient-limited environment.
Riddle MR, Aspiras AC, Gaudenz K, et al. Nature. 2018;555(7698):647–651. doi:10.1038/nature26136
Cavefish as an evolutionary mutant model system for human disease.
Rohner N. Dev Biol. 2018;441(2):355–357. doi:10.1016/j.ydbio.2018.04.013
Seeing a bright future for a blind fish.
Gore AV, Rohner N, Rétaux S, Jeffery WR. Dev Biol. 2018;441(2):207–208. doi:10.1016/j.ydbio.2018.08.004
Evolution: A Dark Past.
Rohner N. Curr Biol. 2018;28(20):R1190–R1192. doi:10.1016/j.cub.2018.08.045
Cavefish and the basis for eye loss.
Krishnan J, Rohner N. Philos Trans R Soc Lond B Biol Sci. 2017;372(1713):20150487. doi:10.1098/rstb.2015.0487
Temperature preference of cave and surface populations of Astyanax mexicanus.
Tabin JA, Aspiras A, Martineau B, et al. Dev Biol. 2018;441(2):338–344. doi:10.1016/j.ydbio.2018.04.017
CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus.
Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. Dev Biol. 2018;441(2):313–318. doi:10.1016/j.ydbio.2018.03.014
Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus.
Xiong S, Krishnan J, Peuß R, Rohner N. Dev Biol. 2018;441(2):297–304. doi:10.1016/j.ydbio.2018.06.003
The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus.
Herman A, Brandvain Y, Weagley J, et al. Mol Ecol. 2018;27(22):4397–4416. doi:10.1111/mec.14877
Parallelism and Epistasis in Skeletal Evolution Identified through Use of Phylogenomic Mapping Strategies.
Daane JM, Rohner N, Konstantinidis P, Djuranovic S, Harris MP. Mol Biol Evol. 2016;33(1):162–173. doi:10.1093/molbev/msv208
Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions.
Aspiras AC, Rohner N, Martineau B, Borowsky RL, Tabin CJ. Proc Natl Acad Sci U S A. 2015;112(31):9668–9673. doi:10.1073/pnas.1510802112
The cavefish genome reveals candidate genes for eye loss.
McGaugh SE, Gross JB, Aken B, et al. Nat Commun. 2014;5:5307. Published 2014 Oct 20. doi:10.1038/ncomms6307
Development: facial makeup enhancing our looks.
Rohner N, Tschopp P, Tabin C. Curr Biol. 2014;24(1):R36–R38. doi:10.1016/j.cub.2013.11.026
Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms.
Kowalko JE, Rohner N, Rompani SB, et al. Curr Biol. 2013;23(19):1874–1883. doi:10.1016/j.cub.2013.07.056
The African coelacanth genome provides insights into tetrapod evolution.
Amemiya CT, Alföldi J, Lee AP, et al. Nature. 2013;496(7445):311–316. doi:10.1038/nature12027
Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish.
Rohner N, Jarosz DF, Kowalko JE, et al. Science. 2013;342(6164):1372–1375. doi:10.1126/science.1240276
Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution.
Smith JJ, Kuraku S, Holt C, et al. Nat Genet. 2013;45(4):415–421e4212. doi:10.1038/ng.2568
Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus.
Kowalko JE, Rohner N, Linden TA, et al. Proc Natl Acad Sci U S A. 2013;110(42):16933–16938. doi:10.1073/pnas.1317192110
Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome.
Norton WH, Stumpenhorst K, Faus-Kessler T, et al. J Neurosci. 2011;31(39):13796–13807. doi:10.1523/JNEUROSCI.2892-11.2011
Enhancing the efficiency of N-ethyl-N-nitrosourea-induced mutagenesis in the zebrafish.
Rohner N, Perathoner S, Frohnhöfer HG, Harris MP. Zebrafish. 2011;8(3):119–123. doi:10.1089/zeb.2011.0703
Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication.
Rohner N, Bercsényi M, Orbán L, et al. Curr Biol. 2009;19(19):1642–1647. doi:10.1016/j.cub.2009.07.065
Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates.
Harris MP, Rohner N, Schwarz H, Perathoner S, Konstantinidis P, Nüsslein-Volhard C. PLoS Genet. 2008;4(10):e1000206. Published 2008 Oct 3. doi:10.1371/journal.pgen.1000206