Retinoic acid is required and Fgf, Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish
Nikaido M, Acedo JN, Hatta K, Piotrowski T. Dev Biol. 2017;431:215-225.
In toto imaging of the migrating Zebrafish lateral line primordium at single-cell resolution.
Dalle Nogare D., Nikaido, M., Head, J., Somers, K., Piotrowski T. and Chitnis A. (2017). Dev Biol. 2017 Feb 1;422(1):14-23. doi: 10.1016/j.ydbio.2016.12.015. Epub 2016 Dec 11. PMID: 27965055.
Proliferation-independent regulation of organ size by Fgf/Notch signaling.
Agnė Kozlovskaja-Gumbrienė Ren Yi Richard Alexander Andy Aman Ryan Jiskra Danielle Nagelberg Holger Knaut Melainia McClain, Tatjana Piotrowski. Elife. 2017 Jan 13;6. pii: e21049. doi: 10.7554/eLife.21049
Glypican4 modulates lateral line collective cell migration non cell-autonomously.
Venero Galanternik M, Lush ME, Piotrowski T. Dev Biol. 2016.
Insights into sensory hair cell regeneration from the zebrafish lateral line.
Kniss JS, Jiang L, Piotrowski T. Curr Opin Genet Dev. 2016;40:32-40.
Localized Gene Induction By Infrared-Mediated Heat Shock.
Venero Galanternik M., Nikaido M., Yu Z., Mckinney AS. and Piotrowski T. (2016)*. Zebrafish. April 2016, ahead of print. doi:10.1089/zeb.2015.1161.
Imaging Collective Cell Migration and Hair Cell Regeneration in the Sensory Lateral Line.
Venero Galanternik M., Navajas Acedo J., Romero-Carvajal A. and Piotrowski T. (2016)*. MCB (Detrich et. al.) The Zebrafish: Cellular and Developmental Biology 4th Edition. doi:10.1016/bs.mcb.2016.01.004 *In press
Regeneration of sensory hair cells requires localized interactions between the Notch and Wnt pathways.
Romero-Carvajal A, Navajas Acedo J, Jiang L, Kozlovskaja-Gumbrienė A, Alexander R, Li H and Piotrowski T. Dev. Cell. 2015; Aug 10; 34(3): 267-82.
Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during collective cell migration.
Venero Galanternik M, Kramer KL, Piotrowski T. Cell Rep. 2015; 10:414-428.
Sensory hair cell regeneration in the zebrafish lateral line.
Lush ME, Piotrowski T. Dev Dyn. 2014;343:1187-1202.
Gene-expression analysis of hair cell regeneration in the zebrafish lateral line.
Jiang L, Romero-Carvajal A, Haug JS, Seidel CW, Piotrowski T. Pro Natl Acad Sci USA. 2014;111:E1383-1392.
Erb expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/B-catenin.
Lush ME, Piotrowski T. eLife. 2014;3:e01832.
The development of lateral line placodes: Taking a broader view.
Piotrowski T, Baker CV. Dev Bio. 2014;389-68-81.
Hypoxia disruption of vertebrate CNS pathfinding through ephrineB2 is rescued by magnesium.
Stevenson TJ, Trinh T, Kogelschatz C, Fujimoto E, Lush ME, Piotrowski T, Brimley CJ, Bonkowsky JL. PLos Genetics. 2012;8:e1002638.
Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line.
Aman A and Piotrowski T. (2011) Review. Cell Adhesion and Migration. Nov-Dec; 5(6):499-508.
Neuronal Neuregulin 1 type III directs Schwann cell migration.
Perlin JR, Lush ME, Piotrowski T, Stephens WZ, and Talbot WS. Development. 2011;138 (21):463-4648.
Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis.
Aman A, Nguyen, MN and Piotrowski T. Dev. Biol. 2010;Oct 22.
Loss of adenomatous polyposis coli (apc) results in an expanded ciliary marginal zone in the zebrafish eye.
Stephens WZ, Senecal MM, Ngyuen MN and Piotrowski T. (2010) Dev Dyn. 2010; Jul;239(7):2066-77.
Cell Migration in morphogenesis.
Aman A and Piotrowski T. (2010). Review. Special section to celebrate the 50th anniversary of the journal Developmental Biology and 75th anniversary of the Society for Developmental Biology (SDB). Dev Biol. 2010 May 1;341(1):20-33. Epub 2009 Nov 13.
Collective cell migration.
Piotrowski T. Cell Adhesion and Migration. 2009;Vol. 3. Issue 4.
Cell Signaling during Lateral Line Development in: The Handbook of Cell Signaling
Piotrowski T. (2009). Book Chapter. (eds. Ralph Bradshaw and Edward Dennis (Elsevier))
Highlighted in:
- (Nature Publishing Group) and Nature Reviews Cancer 2009. Vol.9 No. 9.
- Most downloaded research paper in Dev. Cell for the 30 days preceding March 5, 2009.
Wnt/β-Catenin and Fgf signaling control collective cell migration by regulating chemokine receptor expression.
Aman A and Piotrowski T. Dev. Cell. 2008;Nov;15(5):749-61.
Retinoic acid is required for endodermal pouch morphogenesis but not for pharyngeal endoderm specification.
Kopinke D, Sasine J, Swift J, Stephens WJ and Piotrowski T. Dev Dyn.; Special Issue: Craniofacial Development; 2006;235(10):2695-709.
Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line.
Grant K, Raible D and Piotrowski T. (2005) Neuron, 45, 69-80. reviewed in: Preview in Neuron, 45, 3-5.
Hear, hear for the zebrafish.
L. Goodrich (2005). Dispatch in Current Biology, 15, 67-70.
Precocious phenotypes and planar polarity.
T. Whitfield (2005). BioEssays, 27, 488-94.
The three sided romance of the lateral line: glia love axons love precursors love glia.
A. Ghysen (2005).
The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans.
Piotrowski T, Ahn D, Schilling TF, Nair S, Ruvinsky I, Geisler R, Rauch GJ, Haffter LP, Zon LI, Foott H, Dawid IB and Ho R. (2003). Development, 130, 5043-5052.
Featured on ‘Most viewed Top 10’ and ‘Hidden Jewel’ in Developmental Biology on Faculty of 1000
How the lateral line gets its glia.
Chien CB and Piotrowski T. (2002). Trends in Neurosciences. Vol.25, 544-546.
Retinoic acid signaling in the zebrafish embryos is necessary to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud.
Grandel H, Lun K, Rauch GJ Piotrowski T, Houart C, Sordino P, Kuechler AM, Schulte-Merker S, Geisler R, Holder N, Wilson S and Brand M. (2002). Development 129, 2851-2865.
The endomesoderm plays an important role in segmentation of the pharyngeal arches in the zebrafish (Danio rerio).
Piotrowski T and Nüsslein-Volhard C. (2000). Dev. Biol. 225, 339-356.
The embryonic development of Polypterus senegalus Cuvier, 1829: its staging with reference to external and skeletal features, behaviour and locomotory habits.
Bartsch P, Gemballa S and Piotrowski T. (1997). Acta Zoologica (Stockholm) 78, No. 4, pp.309-328.
Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation.
Piotrowski T, Schilling TF, Brand M, Jiang YJ, Heisenberg CP, Beuchle D, Grandel H, Eeden FJM, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Warga RM and Nüsslein-Volhard C. (1996). Development 123, 345-356.
Jaw and branchial arch mutants in zebrafish I: branchial arches.
Schilling TF, Piotrowski T, Grandl H, Brand M, Jiang YJ, Heisenberg CP, Beuchle D, van Eeden, FJM,, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal, J and Nüsslein-Volhard C. (1996). Development 123, 329-344.
The cranial nerves of the Senegal bichir, Polypterus senegalus (Osteichthyes; Actinopterygii, Cladistia).
Piotrowski T and Northcutt RG. (1996). Brain, Behavior and Evolution 47; 55-102.